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A. Proofs
A.1. Proof of Theorem 4.1
We assume that there indeed exists some incentive-compatible payment function f , and prove a contradiction.
Let us first consider the special case of N = G = 1 and B = 2. Since N = G = 1, there is only one question. Let
p1 > 0.5 be the probability, according to the belief of the worker, that option 1 is correct; the worker then believes
that option 2 is correct with probability (1� p1).
When p1 = 1, we need the worker to select option 1 alone. Thus we need

f(1) > f(2).

When p1 2 (0.5, 1), we require the worker to select options 1 and 2, as opposed to selecting option 1 alone. For this
we need

p1f(1) + (1� p1)f(�1) < f(2)

It follows that we need

(1� p1)(f(1)� f(�1)) > f(1)� f(2). (5)

However, the inequality (5) is satisfied only when f(1) > f(�1) and (1 � p1) >

f(1)�f(2)
f(1)�f(�1) . Thus for any given

payment function f , a worker with belief (1� p1) 2 (0, f(1)�f(2)
f(1)�f(�1) ) will not be incentivized to select the support of

her belief. This yields a contradiction.
We now move on to the general case of N � G � 1 and B � 2. Consider a worker who is clueless about questions
2 through N (i.e., her belief is uniform across all options for these questions). Suppose this worker selects all B
options for these questions as desired. For the first question, suppose that the worker is sure that options 3, . . . , B
are incorrect. We are now left with the first question and the first two options for this question. Letting X denote a
random variable representing the evaluation of the worker’s response to the first question, the expected payment then
is

G

N

E[f(X,B, . . . , B)] + (1� G

N

)f(B, . . . , B).

The expectation in the first term is taken with respect to the randomness in X . Defining

f̃(X) :=
G

N

f(X,B, . . . , B) + (1� G

N

)f(B, . . . , B),

and applying the same arguments to f̃ as those for f for the case of N = G = 1, B = 2 above gives the desired
contradiction. This thus completes the proof of impossibility.

Remark 1. We can use the techniques developed in this section to prove a stronger result: Consider any value
T 2 [0, 1]. A natural goal is to design a mechanism such that for any question, the worker is incentivized to select
the smallest subset of items whose combined belief is T or larger; if there are multiple such smallest subsets then the
worker should be incentivized to select the subset among these that has the largest combined belief.
The case of T = 1 degenerates to Theorem 4.1, the case of T 2 [0, 1

B

] degenerates to the traditional single-selection
setting, and the case of B = 2, T 2 ( 1

B

, 1) degenerates to the skip-based setting of Shah & Zhou (2014). We can
show that for the remaining parameter space, i.e., for any value of B � 3, T 2 ( 1

B

, 1), and N � G � 1, there exists
no incentive-compatible mechanism.
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A.2. Proof of Lemma 6.3
Consider some ⇢0 2 (⇢, 1

B

). Consider a worker such that for every question i 2 I, her belief is ⇢0 for the first option
and 1�⇢0

yi�1 for each of the last (y
i

�1) options. For every question i /2 I, her belief is uniformly distributed among the
first y

i

options. Now, if the worker selects precisely the support of her beliefs for every question then her expected
payment $1 is

$1 =
1�
N

G

�
X

(j1,...,jG)✓[N ]

f(y
j1 , . . . , yjG). (6)

We will compare the aforementioned action to another action, where for each question i 2 I, the worker selects only
the last (y

i

� 1) options but not the first option; for each question i /2 I, the worker selects the support of her belief.
Under this action, the expected payment $2 is

$2 =
1�
N

G

�
X

(j1,...,jG)
✓[N ]

X

(✏1,...,✏G)
2{�1,1}G

1{{j
i

| ✏
i

= �1} ✓ I}(1� ⇢0)
|I\{ji|✏i=1}|

⇢

|I\{ji|✏i=�1}|
0 f(✏1y

0
j1
, . . . , ✏

G

y

0
jG
). (7)

In the expression (7), the outer summation represents the expectation over the random choice of the G gold standard
questions among the N questions. The inner summation represents the expectation with respect to the correctness or
incorrectness of the answers to the G gold standard questions: for any question i, ✏

i

= 1 captures the event where
the i

th question in the gold standard is answered correctly and ✏

i

= �1 represents the event of this question being
answered incorrectly. The term 1{{j

i

| ✏
i

= �1} ✓ I} ensures that only the questions in I can be wrong, since it is
only these questions for which the worker has selected a subset of her belief’s support.
Since f(x) � 0 for all x, we can lower bound $2 as

$2 � 1�
N

G

�
X

(j1,...,jG)✓[N ]

(1� ⇢0)
|I\{j1,...,jG}|

f(y0
j1
, . . . , y

0
jG
). (8)

An incentive compatible mechanism must incentivize the worker to perform the first action (over the second), i.e,
must have $1 > $2. Thus from (6) and (8), we get

1�
N

G

�
X

(j1,...,jG)✓[N ]

f(y
j1 , . . . , yjG) >

1�
N

G

�
X

(j1,...,jG)✓[N ]

(1� ⇢0)
|I\{j1,...,jG}|

f(y0
j1
, . . . , y

0
jG
). (9)

Note that (9) must hold for all ⇢0 > ⇢. The left hand side of (9) does not involve ⇢0 whereas the right hand side is
continuous in ⇢0. It follows that

1�
N

G

�
X

(j1,...,jG)✓[N ]

f(y
j1 , . . . , yjG) �

1�
N

G

�
X

(j1,...,jG)✓[N ]

(1� ⇢)|I\{j1,...,jG}|
f(y0

j1
, . . . , y

0
jG
). (10)

This proves the first part of the lemma.
We now move on to the second part of the lemma, concerning equality in (10). Suppose f(✏1y0

j1
, . . . , ✏

G

y

0
jG
) is

strictly positive for any (j1, . . . , jG) ✓ [N ], {(✏1, . . . , ✏G) 2 {�1, 1}G\{1}G | ✏
i

= 1 whenever j
i

/2 I}. Then (10)
will necessarily be a strict inequality. The claimed necessary condition for equality is thus established.

A.3. Proof of Theorem 6.2
Consider any incentive compatible mechanism f such that f(1, . . . , 1) = ↵ and f(B, . . . , B) = (1 � ⇢)G(B�1)

↵.
We will show that this payment mechanism must be identical to the mechanism described in Algorithm 1.
We consider the set of evaluations x whose elements are non-decreasing, i.e., x1 � x2 � · · · � x

G

; The proof for
any other ordering follows in an identical manner.
First consider any x such that x

G

> 0.

• Let �(x) denote the number of distinct entries in x:

�(x) := 1 +
G�1X

i=1

1{x
i

6= x

i+1}
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• Let �(x) denote the size of the last jump in x:

�(x) := x

j

� x

j+1 where j = arg max
i2[G�1]

x

i

6= x

i+1

• Let �(x) denote the numeric value of x in a B-ary number system:

�(x) :=
GX

i=1

B

G�i(x
i

� 1).

For example, if B = 5, G = 5 and x = (5, 5, 4, 1, 1) then �(x) = |{5, 4, 1}| = 3, �(x) = 4� 1 = 3 (where j = 3),
and �(x) = 4 · 54 + 4 · 53 + 3 · 52 + 0 · 51 + 0 · 50 = 3075. The proof involves three nested levels of induction: on
�, on � and then on �.
We first induct on �. The base case is the set {x|�(x) = 1}, i.e., the set of vectors which have the same value for all its
components. Consider any x0 2 [B�1]. Applying Lemma 6.3 with y = (x0+1, . . . , x0+1) and y

0 = (x0, . . . , x0)
gives

f(x0 + 1, . . . , x0 + 1) � (1� ⇢)Gf(x0, . . . , x0).

Since this inequality is true for every x0 2 [B � 1], we have

f(B, . . . , B) � (1� ⇢)(B�x0)G
f(x0, . . . , x0) � (1� ⇢)(B�1)G

f(1, . . . , 1).

Setting f(B, . . . , B) = (1� ⇢)(B�1)
↵ and f(1, . . . , 1) = ↵ proves the base case.

Now suppose our hypothesis is true for all {x|�(x)  �0 � 1} for some �0 2 {2, . . . , B}. We will now prove
that the hypothesis is also true for all {x|�(x)  �0}. Towards this goal, we will now induct on �. The set of all
{x|�(x) = �0 � 1} can be treated as a base case for our induction, with this base case corresponding to � = 0. Due
to the induction hypothesis on �, the base case of � = 0 is already proven.
Now suppose that the hypothesis is true for all {x|�(x) = �0, �(x)  �0� 1} for some �0 2 [B� 1]. We will prove
that the hypothesis remains true for all {x|�(x) = �0, �(x) = �0}. To this end, we will induct on �.
Recall that we have restricted our attention to those x which have their elements in a descending order. Observe that
the element with the minimum value of � in the set {x|�(x) = �0, �(x) = �0} is (�0+�0�1, . . . ,�0+1, 1, . . . , 1).
We will prove the hypothesis for this element as the base case for our induction on �. Applying Lemma 6.3 with
y = (�0 + �0 � 1, . . . ,�0 +2,�0 +1, 1, . . . , 1) and y

0 = (�0 + �0 � 1, . . . ,�0 +2,�0, 1, . . . , 1) gives the inequality

c1f(�0 + �0 � 1, . . . ,�0 + 2,�0 + 1, 1, . . . , 1) + c

0
1f(�0 + �0 � 1, . . . ,�0 + 2, 1, 1, . . . , 1)

+
X

s({�0+�0�1,...,�0+2}

(c
s

f(s, 1, 1, . . . , 1) + c

0
s

f(s,�0 + 1, 1, . . . , 1))

� c1(1� ⇢)f(�0 + �0 � 1, . . . ,�0 + 2,�0, 1, . . . , 1) + c

0
1f(�0 + �0 � 1, . . . ,�0 + 2, 1, 1, . . . , 1)

+
X

s({�0+�0�1,...,�0+2}

(c
s

f(s, 1, 1, . . . , 1) + c

0
s

(1� ⇢)f(s,�0, 1, . . . , 1)) , (11)

for some positive constants c1, c01, cs, c0s (which represent the probabilities of the respective set of G questions being
chosen as the G gold standard questions). Now, for any s ( {�0 + �0 � 1, . . . ,�0 + 2}, observe that �(s,�0 +
1, 1, . . . , 1)  �0 � 1 and �(s,�0, 1, . . . , 1)  �0 � 1. Thus from our induction hypothesis, we have

f(s,�0 + 1, 1, . . . , 1) = (1� ⇢)f(s,�0, 1, . . . , 1). (12)

Also, �(�0 + �0 � 1, . . . ,�0 + 2,�0, 1, . . . , 1) = �0 and �(�0 + �0 � 1, . . . ,�0 + 2,�0, 1, . . . , 1) = �0 � 1.
Consequently from our induction hypothesis, we have

f(�0 + �0 � 1, . . . ,�0 + 2,�0, 1, . . . , 1) = (1� ⇢)�0+�0�2+···+�0+1+�0�1
↵. (13)

Substituting (12) and (13) in (11) and canceling out common terms gives

f(�0+�0 � 1, . . . ,�0 + 2,�0 + 1, 1, . . . , 1) � (1� ⇢)�0+�0�2+···+�0
↵.
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We will now derive a matching upper bound on f(�0 + �0 � 1, . . . ,�0 + 2,�0 + 1, 1, . . . , 1). Applying Lemma 6.3
with y = (�0 + �0 � 1, . . . ,�0 + 1, 2, . . . , 2) and y

0 = (�0 + �0 � 1, . . . ,�0 + 1, 1, . . . , 1) gives

c1f(�0 + �0 � 1, . . . ,�0 + 1, 2, . . . , 2) +
X

s({�0+�0�1,...,�0+1}

c

s

f(s, 2, . . . , 2)

� c1(1� ⇢)G��+1
f(�0 + �0 � 1, . . . ,�0 + 1, 1, . . . , 1) +

X

s({�0+�0�1,...,�0+1}

c

s

(1� ⇢)G�|s|
f(s, 1, . . . , 1),

(14)

for some positive constants c1, cs. Now, for any s ( {�0+�0� 1, . . . ,�0+2}, observe that �(s, 2, . . . , 2)  �0� 1
and �(s, 1, . . . , 1)  �0 � 1. Thus from our induction hypothesis, we have

f(s, 2, . . . , 2) = (1� ⇢)G�|s|
f(s, 1, . . . , 1). (15)

Also, �(�0 + �0 � 1, . . . ,�0 + 1, 2, . . . , 2)  �0 and �(�0 + �0 � 1, . . . ,�0 + 1, 2, . . . , 2) = �0 � 1. Consequently
from our induction hypothesis,

f(�0 + �0 � 1, . . . ,�0 + 1, 2, . . . , 2) = (1� ⇢)�0+�0�2+...+�0+G��+1
↵. (16)

Substituting these values in (14) and canceling out common terms gives

f(�0 + �0 � 1, . . . ,�0 + 2,�0 + 1, 1, . . . , 1)  (1� ⇢)�0+�0�2+···+�0
↵.

We have thus proved that the hypothesis is true for x = (�0 + �0 � 1, . . . ,�0 +2,�0 +1, 1, . . . , 1), the base case for
our induction on �.
Now consider some x

⇤ such that �(x⇤) = �0, �(x⇤) = �0 and �(x⇤) = �0, for some �0. Let us denote the
components of x⇤ as x

⇤ = (x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

, x

⇤
G

, . . . , x

⇤
G

) with x

⇤
1 � x

⇤
2 � · · · � x

⇤
m

> �0 +

x

⇤
G

for some m � 0, m1 � 1, m + m1 < G. Suppose the hypothesis is true for all {x|�(x) = �0, �(x) =
�0, �(x)  �0 � 1}. Applying Lemma 6.3 with y = (x⇤

1, . . . , x
⇤
m

,�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

, x

⇤
G

, . . . , x

⇤
G

) and y

0 =

(x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

� 1, . . . ,�0 + x

⇤
G

� 1| {z }
m1

, x

⇤
G

, . . . , x

⇤
G

) gives the inequality

c1f(x
⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

, x

⇤
G

, . . . , x

⇤
G

)

+
X

s({x⇤
1 ,...,x

⇤
m,�0+x

⇤
G,...,�0+x

⇤
G| {z }

m1

}

c

s

f(s, x⇤
G

, . . . , x

⇤
G

)

� c1(1� ⇢)m1
f(x⇤

1, . . . , x
⇤
m

,�0 + x

⇤
G

� 1, . . . ,�0 + x

⇤
G

� 1| {z }
m1

, x

⇤
G

, . . . , x

⇤
G

)

+
X

s({x⇤
1 ,...,x

⇤
m,�0+x

⇤
G�1,...,�0+x

⇤
G�1| {z }

m1

}

c

s

(1� ⇢)
P

i 1{si=�0+x

⇤
G�1}

f(s, x⇤
G

, . . . , x

⇤
G

), (17)

for some positive constants c1, cs. Observe that

�(x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

� 1, . . . ,�0 + x

⇤
G

� 1| {z }
m1

, x

⇤
G

, . . . , x

⇤
G

) =

(
�0 � 1 if �0 = 1

�0 otherwise,

and the induction hypothesis is satisfied in the first case. In the second case,

�(x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

� 1, . . . ,�0 + x

⇤
G

� 1| {z }
m1

, x

⇤
G

, . . . , x

⇤
G

) = �0 � 1,
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and hence the induction hypothesis is satisfied in the second case as well. Thus

f(x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

� 1, . . . ,�0 + x

⇤
G

� 1| {z }
m1

, x

⇤
G

, . . . , x

⇤
G

)

= (1� ⇢)
Pm

i=1(x
⇤
i �1)+m1(�0+x

⇤
G�2)+(G�m1�m)(x⇤

G�1)
↵. (18)

For any for any s ( {x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

� 1, . . . ,�0 + x

⇤
G

� 1| {z }
m1

}, define m1(s) :=
P

i

1{s
i

= �0 + x

⇤
G

� 1}.

Observe that if m1(s) > 0 then either �((s, x⇤
G

, . . . , x

⇤
G

))  �0 � 1 or �((s, x⇤
G

, . . . , x

⇤
G

))  �0 � 1; if m1(s) = 0
then �((s, x⇤

G

, . . . , x

⇤
G

))  �0 � 1. For any s ( {x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

}, define m̃1(s) :=
P

i

1{s
i

=

�0 + x

⇤
G

}. Observe that if m̃1(s) > 0 then either �((s, x⇤
G

, . . . , x

⇤
G

))  �0 � 1 or �((s, x⇤
G

, . . . , x

⇤
G

))  �0 � 1; if
m̃1(s) = 0 then �((s, x⇤

G

, . . . , x

⇤
G

))  �0 � 1. Consequently from our induction hypothesis we have
X

s({x⇤
1 ,...,x

⇤
m,�0+x

⇤
G,...,�0+x

⇤
G| {z }

m1

}

c

s

f(s, x⇤
G

, . . . , x

⇤
G

)

=
X

s({x⇤
1 ,...,x

⇤
m,�0+x

⇤
G�1,...,�0+x

⇤
G�1| {z }

m1

}

c

s

(1� ⇢)
P

i 1{si=�0+x

⇤
G�1}

f(s, x⇤
G

, . . . , x

⇤
G

).

(19)

Substituting (18) and (19) in (17) and canceling out common terms gives

f(x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

, x

⇤
G

, . . . , x

⇤
G

)

� (1� ⇢)m1
f(x⇤

1, . . . , x
⇤
m

,�0 + x

⇤
G

� 1, . . . ,�0 + x

⇤
G

� 1| {z }
m1

, x

⇤
G

, . . . , x

⇤
G

)

= (1� ⇢)
Pm

i=1(x
⇤
i �1)+m1(�0+x

⇤
G�1)+(G�m1�m)(x⇤

G�1)
↵.

We will now employ Lemma 6.3 again to derive a matching lower bound. Setting y = (x⇤
1, . . . , x

⇤
m

,

�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

, x

⇤
G

+ 1, . . . , x⇤
G

+ 1) and y

0 = (x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

, x

⇤
G

, . . . , x

⇤
G

) in

Lemma 6.3 yields the inequality

c1f(x
⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

, x

⇤
G

+ 1, . . . , x⇤
G

+ 1)

+
X

s({x⇤
1 ,...,x

⇤
m,�0+x

⇤
G,...,�0+x

⇤
G| {z }

m1

}

c

s

f(s, x⇤
G

+ 1, . . . , x⇤
G

+ 1)

� c1(1� ⇢)m1
f(x⇤

1, . . . , x
⇤
m

,�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

, x

⇤
G

, . . . , x

⇤
G

)

+
X

s({x⇤
1 ,...,x

⇤
m,�0+x

⇤
G,...,�0+x

⇤
G| {z }

m1

}

c

s

(1� ⇢)G�|s|
f(s, x⇤

G

, . . . , x

⇤
G

), (20)

for some positive constants c1, cs. Observe that

�(x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

, x

⇤
G

+ 1, . . . , x⇤
G

+ 1) =

(
�0 � 1 if �0 = 1

�0 otherwise,
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and that the induction hypothesis is satisfied in the first case. In the second case,

�(x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

, x

⇤
G

+ 1, . . . , x⇤
G

+ 1) = �0 � 1,

and hence the induction hypothesis is satisfied in the second case as well. Thus

f(x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

, x

⇤
G

+ 1, . . . , x⇤
G

+ 1)

= (1� ⇢)
Pm

i=1(x
⇤
i �1)+m1(�0+x

⇤
G�1)+(G�m1�m)(x⇤

G�2)
↵. (21)

Now consider any s ( {x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

}, and recall our notation of m̃1(s) :=
P

i

1{s
i

=

�0 + x

⇤
G

}. If �0 = 1 or if m̃1(s) = 0 then �((s, x⇤
G

+ 1, . . . , x⇤
G

+ 1))  �0 � 1; if � > 1 and m̃1(s) > 0 then
�((s, x⇤

G

+ 1, . . . , x⇤
G

+ 1))  �0 and �(s, x⇤
G

+ 1, . . . , x⇤
G

+ 1)  �0 � 1. If m̃1(s) = 0 then �((s, x⇤
G

, . . . , x

⇤
G

)) 
�0 � 1, otherwise �((s, x⇤

G

, . . . , x

⇤
G

))  �0, �((s, x⇤
G

, . . . , x

⇤
G

)) = �0 and �((s, x⇤
G

, . . . , x

⇤
G

))  �0 � 1. These
terms thus satisfy our induction hypothesis and hence

f(s, x⇤
G

+ 1, . . . , x⇤
G

+ 1) = (1� ⇢)G�|s|
f(s, x⇤

G

, . . . , x

⇤
G

). (22)

Substituting (21) and (22) in (20) gives us our desired matching lower bound

f(x⇤
1, . . . , x

⇤
m

,�0 + x

⇤
G

, . . . ,�0 + x

⇤
G| {z }

m1

, x

⇤
G

, . . . , x

⇤
G

)  (1� ⇢)
Pm

i=1(x
⇤
i �1)+m1(�0+x

⇤
G�1)+(G�m1�m)(x⇤

G�1)
↵.

This completes the proof for {x|x
i

� 0 8 i 2 [G]}.
We will now show that f(x) = 0 for all {x | min

i2[G] xi

< 0}. The arguments above for the case {x | min
i2[G] xi

>

0} imply that for any incentive-compatible function f , the first part of Lemma A.1 must be satisfied with equality.
This allows us to employ the second part of Lemma A.1. For i 2 [G], let y

i

= y

0
i

= x

i

if x
i

> 0, and y

i

� 1 =
y

0
i

= |x
i

| otherwise; set y
i

= y

0
i

= B for all i 2 {G + 1, . . . , N}. Then the second part of Lemma 6.3 necessitates
f(x1, . . . , xG

) = 0, thus completing the proof.

A.4. Proof of Theorem 7.1
First consider the case of N = G = 1. The mechanism of Algorithm 1 reduces to f(x) = ↵(1�⇢)(x1�1)1{x1 � 0}.
Suppose without loss of generality that the worker’s beliefs for the B options are p1 � · · · � p

B

and suppose
m = arg max

z

⇣
p(z)Pz
i=1 p(i)

> ⇢

⌘
. A mechanism that is incentive compatible will strictly maximize the worker’s

expected payment when she selects the options {1, . . . ,m}.
Suppose a worker decides to select some ` of the B options, say options {o1, . . . , o`} ✓ [B]. Then it is easy to see
that her expected payment,

↵

`X

i=1

p

oi(1� ⇢)`�1
,

is maximized when she selects options {1, . . . , `}, i.e., the ` options that are most likely to be correct. It remains to
show that among all choices of ` 2 [B], the expected payment is maximized when the worker selects ` = m. Let $

`

denote the expected payment when the worker selects ` options:

$
`

= ↵

`X

i=1

p

i

(1� ⇢)`�1
.

Hence for any ` 2 {2, . . . , B}, we have

$
`�1

$
`

=
↵

P
`�1
i=1 pi(1� ⇢)`�2

↵

P
`

i=1 pi(1� ⇢)`�1
=

1

1� ⇢

 
1� p

`P
`

i=1 pi

!
.
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We know that p`P`
i=1 pi

< ⇢ whenever ` > m, and p`P`
i=1 pi

> ⇢ when ` = m. Furthermore, since p

`

decreases with `

and
P

`

i=1 pi increases with `, it must also be that p`P`
i=1 pi

> ⇢ for all ` < m. Thus we have $`
$`�1

> 1 for all `  m

and $`
$`�1

< 1 for all ` > m, or in other words,

· · · < $
m�2 < $

m�1 < $
m

> $
m+1 > $

m+2 > · · · .

It follows that the worker will be incentivized to choose ` = m.
Let us now consider the case of N = G � 1. By our assumption of the independence of the beliefs of the worker
across the questions, the expected payment equals

GY

i=1

E
h
↵(1� ⇢)(xi�1)1{x

i

� 0}
i
.

Since the payments are non-negative, if each individual component in the product is maximized then the product is
also necessarily maximized. Each individual component simply corresponds to the setting of N = G = 1 discussed
earlier. Thus calling upon our earlier result, we get that the expected payment for the case N = G � 1 is maximized
when the worker acts as desired for every question.
Let us finally consider the general case of N � G � 1. Recall from (3) that the expected payment for the general
case is a cascade of two expectations: the outer expectation is with respect to the uniformly random distribution of
the G gold standard questions among the N total questions, while the inner expectation is taken over the worker’s
beliefs of the different questions conditioned on the choice of the gold standard questions and restricts attention to
only these G questions. The arguments above for the case N = G prove that every individual term in the inner
expectation is maximized when the worker acts as desired. The outer expectation does not affect this argument. The
expected payment is thus maximized when the worker acts as desired.

A.5. Proof of Theorem 7.2
The proof of this theorem employs some of the tools developed in (Shah & Zhou, 2014). We begin with a lemma
deriving a condition that must necessarily be satisfied by any incentive-compatible mechanism. Note that we are not
making the coarse belief assumption and supposing that workers can have arbitrary beliefs.

Lemma A.1. Any incentive-compatible mechanism must satisfy

f(x1, . . . , xi�1, xi

+ 1, x
i+1, . . . , xG

)

= (1� ⇢)f(x1, . . . , xi�1, xi

, x

i+1, . . . , xG

) + ⇢f(x1, . . . , xi�1,�x

i

, x

i+1, . . . , xG

),

for every i 2 [G] and (x1, . . . , xi�1, xi+1, . . . , xG

) 2 {�(B � 1), . . . ,�1, 1, . . . , B}G�1, x
i

2 [B � 1].

Note that the lemma does not use the no-free-lunch condition. The proof of the lemma is provided at the end of this
section. Using this lemma, we now complete the proof of the theorem.
Consider any incentive-compatible mechanism f that satisfies the no-free-lunch condition. We first show that the
mechanism must necessarily make a zero payment when one more more questions in the gold standard are attempted
incorrectly. To this end, observe that since f � 0 and ⇢ 2 (0, 1), the statement of Lemma A.1 necessitates that for
every i 2 [G] and (x1, . . . , xi�1, xi+1, . . . , xG

) 2 {�(B � 1), . . . , B}G�1, x
i

2 [B � 1]:

If f(x1, . . . , xi�1, xi

+ 1, x
i+1, . . . , xG

) = 0

then f(x1, . . . , xi�1, xi

, x

i+1, . . . , xG

) = f(x1, . . . , xi�1,�x

i

, x

i+1, . . . , xG

) = 0.

A repeated application of this argument implies:

If f(x1, . . . , xi�1, B, x

i+1, . . . , xG

) = 0 then f(x1, . . . , xi�1, xi

, x

i+1, . . . , xG

) = 0,

for all x
i

2 {�(B � 1), . . . ,�1, 1, . . . , B � 1}.
Now consider any evaluation (x1, . . . , xG

) which has at least one incorrect answer. Suppose without loss of generality
that the first question is the one answered incorrectly, i.e., x1  �1. The no-free-lunch condition then makes
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f(x1, B, . . . , B) = 0. Applying our arguments from above we get that f(x1, x2, . . . , xG

) = 0 for every value of
(x2, . . . , xG

) 2 {�(B � 1), . . . ,�1, 1, . . . , B}.
Substituting this necessary condition in Lemma A.1, we get that for every question i 2 {1, . . . , G} and every
(x1, . . . , xi�1, xi+1, . . . , xG

) 2 [B]G�1, x
i

2 [B � 1],

f(x1, . . . , xi�1, xi

+ 1, x
i+1, . . . , xG

) = (1� ⇢)f(x1, . . . , xi�1, xi

, x

i+1, . . . , xG

).

Substituting f(1, . . . , 1) = ↵, we get the desired answer.
We now return to complete the proof of Lemma A.1.

Proof of Lemma A.1. First consider the case of G = N . Consider some ⌘, � 2 {0, . . . , G � 1} with ⌘ + � < G.
Suppose i = ⌘ + � + 1, x1, . . . , x⌘

2 [B � 1], x
⌘+1, . . . , x⌘+�

2 �[B � 1] and x

⌘+�+2, . . . , xN

= B.
For every question j 2 [⌘ + �], suppose the worker’s belief is �

j

2 (0, ⇢) for the last option and 1��j

|xj | each for the

first |x
j

| options. One can verify that since �

j

< ⇢ <

1
B

and |x
j

|  B � 1, it must be that 1��j

|xj | > �

j

, and that
incentive-compatibility requires incentivizing the worker to select the first |x

j

| options. Suppose the worker does
so. Now for every question j

0 2 {⌘ + � + 2, . . . , N}, suppose the belief of the worker is uniform across all B
options. The worker should be incentivized to select all B options in this case; suppose the worker does so. Finally,
for question i, suppose the worker’s belief is � 2 (⇢2 ,

3⇢
2 ) for the last option and 1��

|xi| each for the first |x
i

| options.
Then the worker must be incentivized to select the first |x

i

| options alone if � < ⇢, and select the last option along
with the first |x

i

| options if � > ⇢.
Define {r

j

}
j2[⌘+�] as r

j

= �

j

for j 2 [⌘], and r

j

= 1 � �

j

for j 2 {⌘ + 1, ⌘ + �}. Let ✏ := {✏1, . . . , ✏⌘+�

} 2
{�1, 1}⌘+� . Incentive-compatibility for question i necessitates

(1� �)
X

✏2{�1,1}⌘+�

0

@
f(✏1x1, . . . , ✏⌘x⌘

, ✏

⌘+1x⌘+1, . . . , ✏⌘+�

x

⌘+�

, x

i

, B, . . . , B)
Y

j2[⌘+�]

r

1�✏j
2

j

(1� r

j

)
1+✏j

2

1

A

+ �

X

✏2{�1,1}⌘+�

0

@
f(✏1x1, . . . , ✏⌘x⌘

, ✏

⌘+1x⌘+1, . . . , ✏⌘+�

x

⌘+�

,�x

i

, B, . . . , B)
Y

j2[⌘+�]

r

1�✏j
2

j

(1� r

j

)
1+✏j

2

1

A

�>⇢

7
�<⇢

X

✏2{�1,1}⌘+�

0

@
f(✏1x1, . . . , ✏⌘x⌘

, ✏

⌘+1x⌘+1, . . . , ✏⌘+�

x

⌘+�

, x

i

+ 1, B, . . . , B)
Y

j2[⌘+�]

r

1�✏j
2

j

(1� r

j

)
1+✏j

2

1

A
.

The left hand side of this expression is the expected payment if the worker chooses the first |x
i

| options for question
(⌘ + � + 1), while the right hand side is the expected payment if she chooses the first |x

i

| options as well as the last
option. For any real-valued variable q, and for any real-valued constants a, b and c,

aq

q<c

7
q>c

b ) ac = b .

With q = 1� � in this argument, we get

(1� ⇢)
X

✏2{�1,1}⌘+�

0

@
f(✏1x1, . . . , ✏⌘x⌘

, ✏

⌘+1x⌘+1, . . . , ✏⌘+�

x

⌘+�

, x

i

, B, . . . , B)
Y

j2[⌘+�]

r

1�✏j
2

j

(1� r

j

)
1+✏j

2

1

A

+ ⇢

X

✏2{�1,1}⌘+�

0

@
f(✏1x1, . . . , ✏⌘x⌘

, ✏

⌘+1x⌘+1, . . . , ✏⌘+�

x

⌘+�

,�x

i

, B, . . . , B)
Y

j2[⌘+�]

r

1�✏j
2

j

(1� r

j

)
1+✏j

2

1

A

�
X

✏2{�1,1}⌘+�

0

@
f(✏1x1, . . . , ✏⌘x⌘

, ✏

⌘+1x⌘+1, . . . , ✏⌘+�

x

⌘+�

, x

i

+ 1, B, . . . , B)
Y

j2[⌘+�]

r

1�✏j
2

j

(1� r

j

)
1+✏j

2

1

A = 0.

(23)
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The left hand side of (23) represents a polynomial in (⌘+ �) variables {r
j

}⌘+�

j=1 which evaluates to zero for all values
of the variables within an (⌘ + �)-dimensional solid ball. Thus, the coefficients of the monomials in this polynomial
must be zero. In particular, the constant term must be zero. The constant term appears when ✏

j

= 1 8 j in the
summations in (23). Setting the constant term to zero gives

(1� ⇢)f(x1, . . . , x⌘+�

, x

⌘+�+1, B, . . . , B) + ⇢f(x1, . . . , x⌘+�

,�x

⌘+�+1, B, . . . , B)

� f(x1, . . . , x⌘+�

, x

⌘+�+1 + 1, B, . . . , B) = 0

as desired. Since the arguments above hold for any permutation of the N questions, this completes the proof for the
case of G = N .
Now consider the case G < N . Let g : {�(B � 1), . . . ,�1, 1, · · · , B}N ! R+ represent the expected payment
given an evaluation of all the N answers, when the identities of the gold standard questions are unknown. Here, the
expectation is with respect to the (uniformly random) choice of the G gold standard questions. If (x1, . . . , xN

) 2
{�(B � 1), . . . ,�1, 1, · · · , B}N are the evaluations of the worker’s answers to the N questions then the expected
payment is

g(x1, . . . , xN

) =
1�
N

G

�
X

(i1,...,iG)✓{1,...,N}

f(x
i1 , . . . , xiG). (24)

Applying the same arguments to g as done to f above, gives

(1� ⇢)g(x1, . . . , x⌘+�

, x

⌘+�+1, B, . . . , B) + ⇢g(x1, . . . , x⌘+�

,�x

⌘+�+1, B, . . . , B)

� g(x1, . . . , x⌘+�

, x

⌘+�+1 + 1, B, . . . , B) = 0. (25)

The proof now proceeds via an induction on the quantity (G�⌘���1). We begin with the case of (G�⌘���1) =
G� 1 which implies ⌘ = � = 0. In this case (23) simplifies to

(1� ⇢)g(x1, B, . . . , B) + ⇢g(�x1, B, . . . , B) = g(x1 + 1, B, . . . , B).

Applying the expansion of function g in terms of function f from (24) for some x1 2 [B � 1] gives

(1� ⇢) (c1f(x1, B, . . . , B) + c2f(B,B, . . . , B)) + ⇢ (c1f(�x1, B, . . . , B) + c2f(B,B, . . . , B))

= c1f(x1 + 1, B, . . . , B) + c2f(B,B, . . . , B)

for constants c1 > 0 and c2 > 0 that respectively represent the probabilities that the first question is picked and not
picked in the set of G gold standard questions. Cancelling out the common terms on both sides of the equation, we
get the desired result

(1� ⇢)f(x1, B, . . . , B) + ⇢f(�x1, B, . . . , B) = f(x1 + 1, B, . . . , B).

Next, we consider the case when (G � ⌘ � � � 1) questions are skipped in the gold standard, and assume that the
result is true when more than (G � ⌘ � � � 1) questions are skipped in the gold standard. In (25), the functions g
decompose into a sum of the constituent f functions. These constituent functions f are of two types: the first where
all of the first (⌘ + � + 1) questions are included in the gold standard, and the second where one or more of the first
(⌘ + � + 1) questions are not included in the gold standard. The second case corresponds to situations where there
are more than (G � ⌘ � � � 1) questions skipped in the gold standard and hence satisfies our induction hypothesis.
The terms corresponding to these functions thus cancel out in the expansion of (25). The remainder comprises only
evaluations of function f for arguments in which the first (⌘ + � + 1) questions are included in the gold standard.
Since the last (N � ⌘ � � � 1) questions are skipped by the worker, the remainder evaluates to

(1� ⇢)c3f(x1, . . . , x⌘+�

, x

i

, B, . . . , B) + ⇢c3f(x1, . . . , x⌘+�

,�x

i

, B, . . . , B)

= c3f(x1, . . . , x⌘+�

, x

i

+ 1, B, . . . , B) (26)

for some constant c3 > 0. Dividing throughout by c3 gives the desired result.
Finally, the arguments above hold for any permutation of the first G questions, thus completing the proof.


