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Abstract
Telling a cause from its effect using observed
time series data is a major challenge in natural
and social sciences. Assuming the effect is gen-
erated by the cause through a linear system, we
propose a new approach based on the hypothesis
that nature chooses the “cause” and the “mecha-
nism generating the effect from the cause” inde-
pendently of each other. Specifically we postu-
late that the power spectrum of the “cause” time
series is uncorrelated with the square of the fre-
quency response of the linear filter (system) gen-
erating the effect. While most causal discov-
ery methods for time series mainly rely on the
noise, our method relies on asymmetries of the
power spectral density properties that exist even
in deterministic systems. We describe mathemat-
ical assumptions in a deterministic model under
which the causal direction is identifiable. In par-
ticular, we show a scenario where the method
works but Granger causality fails. Experiments
show encouraging results on synthetic as well as
real-world data. Overall, this suggests that the
postulate of Independence of Cause and Mecha-
nism is a promising principle for causal inference
on observed time series.

1. Introduction
A major challenge in the study of complex natural sys-
tems is to infer the causal relationships between elemen-
tary characteristics of these systems. This provides key
information to understand the underlying mechanisms at
play and possibly allows to intervene on them to influence
the overall behavior of the system. While causal knowl-
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edge is traditionally built by performing experiments, boil-
ing down to modifying a carefully selected parameter of the
system and analyzing the resulting changes, many natural
systems do not allow such interventions without tremen-
dous cost or complexity. For example, it is very difficult to
influence the activity of a specific brain region without in-
fluencing other properties of the neural system (Logothetis
et al., 2010). Causal inference methods have been devel-
oped to avoid such interventions and infer the causal rela-
tionships from observational data only (Spirtes et al., 1993;
Pearl, 2000). To be able to build such knowledge without
interventions, these approaches have to rely on key assump-
tions pertaining to the mechanisms generating the observed
data.

The framework of causality described in Spirtes et al.
(1993) and Pearl (2000) has originally addressed this ques-
tion by modelling observations as i.i.d. random variables.
However, observed data from complex natural systems are
often not i.i.d. and time dependent information reflects key
aspects of those systems. Many causal inference meth-
ods for time series, including the widely used Granger
causality (Granger, 1969), assume the data is generated
from a stochastic model through a structural equation link-
ing past values to future ones through an i.i.d. additive
noise term, the “innovation of the process” (Granger, 1969;
Peters et al., 2013). While these methods can successfully
estimate the causal relationships when empirical data is
generated according to the model assumptions, the results
can be misleading when the model is misspecified. In par-
ticular, this is the case when the data generating model has
unknown measurement delays.

In this paper, we introduce a new approach for inferring
causal directions in time series, the Spectral Independence
Criterion (SIC). The idea behind SIC, as well as several
new approaches to causal inference (Daniusis et al., 2010;
Janzing et al., 2010; Mooij et al., 2010; Zscheischler et al.,
2011; Janzing et al., 2012; Sgouritsa et al., 2015), is to
rely on the “philosophical” principle that the cause and
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the mechanism that generates the cause from the effect
are chosen independently by Nature. Thus, these two ob-
jects should not contain any information about each other
(Janzing & Schölkopf, 2010; Lemeire & Janzing, 2012;
Schölkopf et al., 2012). Here, we refer to this abstract prin-
ciple as the postulate of Independence of Cause and Mecha-
nism (ICM). The above mentioned methods based on ICM
refer to different domains and rely on quite different for-
malizations of the concept of “independence”. SIC formal-
izes the ICM postulate in the context where both cause and
effect are stationary time series and the cause generates the
effect through a linear time invariant filter. The SIC postu-
late assumes that the frequency spectrum of the cause does
not correlate with the frequency response of the filter. This
assumption will be justified by its connection to the Trace
Method (Janzing et al., 2010) and by a generative model
of the system. Under this postulate, we prove that SIC can
tell the causal direction of the system from its anti-causal
counterpart. Moreover, we elaborate on the connection be-
tween this novel framework and linear Granger causality,
showing they are exploiting fundamentally different infor-
mation from the observed data. In addition, superiority to
Granger causality is shown theoretically in the context of
time series measurements perturbed by an unknown time
lag. We perform extensive experimental comparisons, both
on simulated and real datasets. In particular, we show that
our approach outperforms Granger causality to estimate the
direction of causation between two structures of rat hip-
pocampus using Local Field Potential (LFP) recordings.

Overall, the proposed method constitutes a novel approach
to causal inference for time series data with identifiability
results, and shows unprecedented robustness to measure-
ment delays. The encouraging results on real data suggest
ICM is a promising principle to design new causal infer-
ence methods for empirical time series.

2. Spectral Independence Criterion (SIC)
2.1. Notations and Model Description

We refer to a sequence of real or complex numbers a =
{at, t ∈ Z} as a deterministic time series. Its discrete
Fourier transform (represented by â) is defined by

â(ν) =
∑
t∈Z

at exp(−i2πνt), ν ∈ [−1/2, 1/2] =: I

The energy of the deterministic time series is the squared l2

norm: ‖a‖22 =
∑
t |at|2. For ease of notation we will also

use the Z-transform of a

ã(z) =
∑
t∈Z

atz
−t, z ∈ C

such that â(ν) = ã(exp(i2πν)).

We assume that the causal mechanism is given by a (de-
terministic) Linear Time Invariant (LTI) filter. That is, the
causal mechanism is formalized by the convolution

y = {yt} = {
∑
τ∈Z

xt−τhτ } = x ∗ h, (1)

where h denotes the impulse response, x the input time
series and y the output. We will assume that the filter sat-
isfies the Bounded Input Bounded Output (BIBO) stability
property (Proakis, 2001), which boils down to the condi-
tion ‖h‖1 =

∑
t |ht| < +∞. Under this assumption, the

Fourier transform ĥ is well defined and we call it the fre-
quency response of the system. We assume that the input
time series x is a sample drawn from a stochastic process,
{Xt, t ∈ Z}. We use {Xt} or simply X to represent the
complete stochastic process. We use Xt:s to indicate the
random vector corresponding to the restriction of the time
series to the integer interval [t .. s]. Assuming X is a zero
mean stationary process (in this paper, stationary will al-
ways stand for weakly or wide-sense stationary as defined
in Brockwell & Davis (2009)), we will denote byCxx(τ) =
E[XtXt+τ ] the autocovariance function of the process and
assume it is absolutely summable. Then, we can define its
Power Spectral Density (PSD) Sxx = Ĉxx. Under these as-
sumptions, the power of the process P (X) = E(|Xt|2) is
finite and P (X) =

∫ 1/2

−1/2 Sxx(ν)dν, such that Sxx belongs
to L1. Moreover, we recall the following basic property for
our model:

Proposition 1. Assume the weakly stationary input X is
filtered by the BIBO linear system of impulse response
hX→Y to provide the output Y. Then ‖hX→Y‖22 < +∞,
ĥ ∈ L∞ and Y is weakly stationary with summable auto-
covariance such that

Syy(ν) = |ĥX→Y(ν)|2Sxx(ν), ν ∈ I. (2)

Proof. Results from elementary properties of the Fourier
transform and Proposition 3.1.2. in Brockwell & Davis
(2009).

If such a linear filtering relationship exists for X as input
and Y as output, but not in the opposite way, we can use
this information to infer that X is causing Y and not the
other way around. If there exist such impulse responses
for both directions, say hX→Y and hY→X, their Fourier
transforms are related by

ĥX→Y =
1

ĥY→X

, (3)

and we have to resort to a more refined criterion for the
causal inference. We will assume this situation in the re-
maining of the paper.
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2.2. Definition of SIC

Assume we are given the two processes X := {Xt, t ∈ Z}
and Y := {Yt, t ∈ Z}. Moreover, we assume that exactly
one of the following two alternatives is true: (1) X causes
Y or (2) Y causes X. Suppose that there are no unobserved
common causes of X and Y. Our causal inference problem
thus reduces to a binary decision. In the spirit of ICM,
we propose a Spectral Independence Criterion (SIC) which
assumes that in case (1), X and hX→Y should not contain
information about each other. To formalize this idea, we
assume:

Postulate 1 (Spectral Independence Criterion (SIC)). If Y
is the effect generated by X through a LTI system with im-
pulse response hX→Y, then we have:

〈|ĥX→Y|2Sxx〉 = 〈|ĥX→Y|2〉〈Sxx〉 , (4)

where 〈f〉 =
∫
I f(ν)dν denotes the average over the unit

frequency interval I.

Note that the left hand side of (4) is the average intensity of
the output signal {Yt, t ∈ Z} over all frequencies. Hence,
SIC states that the average output intensity is the same as
amplifying all frequencies by the average amplifying fac-
tor. To motivate why we call (4) an independence criterion
we note that the difference between the l.h.s and r.h.s can
be written as a covariance:

〈Sxx · |ĥX→Y|2〉 − 〈Sxx〉〈|ĥX→Y|2〉 =

Cov
[
Sxx, |ĥX→Y|2

]
,

where we consider Sxx and |ĥX→Y|2 as functions of the
random variable ν uniformly distributed on I. As a con-
sequence statistical independence between those random
variables implies that (4) is satisfied.

Note that the criterion (4) can be rephrased in terms of the
power spectra of X and Y alone using (2), which are closer
to observable quantities than ĥX→Y:

Proposition 2 (SIC in terms of power spectra). If Y is the
effect generated by X through a LTI system, the SIC postu-
late is equivalent to:

〈Syy〉 = 〈Sxx〉〈Syy/Sxx〉 . (5)

2.3. Quantifying Violation of SIC

This motivates us to define a measure of dependence be-
tween the input PSD on the one hand and frequency re-
sponse of the mechanism on the other hand. To assess to
what degree such a relation holds we introduce a scale in-
variant expression ρX→Y, that we call the Spectral Depen-
dency Ratio (SDR) from X to Y:

ρX→Y :=
〈Syy〉

〈Sxx〉〈Syy/Sxx〉
(6)

Here, the value 1 means independence in the sense of SIC,
which becomes more obvious by rewriting (6) as

ρX→Y =
Cov[Sxx, |ĥX→Y|2]

〈Sxx〉〈|ĥX→Y|2〉
+ 1 .

We define ρY→X as well by exchanging the roles of X and
Y:

ρY→X :=
〈Sxx〉

〈Syy〉〈Sxx/Syy〉
. (7)

2.4. Identifiability Results

In order to identify the true causal direction from SIC, it is
necessary to show that ρX→Y and ρY→X take characteris-
tic values that are informative about this inference problem.
The following crucial result shows explicitly how depen-
dence measures in both directions are related:

Proposition 3. (Forward-backward inequality) For a
given linear filter with input PSD Sxx, output PSD Syy and
a frequency response ĥX→Y of non-constant modulus, we
have

ρX→Y.ρY→X =
1

〈|ĥX→Y|2〉〈1/|ĥX→Y|2〉
< 1 . (8)

Moreover, if it exists α > 0 such that, for all ν ∈ I,
|ĥX→Y(ν)|2 ≤ (2− α)‖hX→Y‖22 , then

ρX→Y.ρY→X ≤
[
1 + αCV

(
|ĥX→Y|2

)2]−1
< 1 . (9)

where CV (|ĥ|2) denotes the coefficient of variation of |ĥ|2
along the frequency axis, i.e. the ratio of the standard de-
viation to the mean.

The proof of this proposition is given in the supplemen-
tary material. Assuming the SIC postulate is satisfied in
the forward direction such that ρX→Y = 1, it follows nat-
urally from 8 that ρY→X < 1. However ρX→Y cannot
be guaranteed to be exactly one in practice, due to sta-
tistical fluctuations. According to equation (9), the more
|ĥX→Y|2 fluctuates around its mean (resulting in a large
coefficient of variation), the more the product of the inde-
pendence measures can be bounded away from 1. Equa-
tion (9) thus guaranties that the two causal directions can
still be distinguished whenever ρX→Y fluctuates around
one. In particular, if ρX→Y is slightly below 1, the bound
(9) still guarantees that ρY→X is even smaller provided that
the coefficient of variation of |ĥX→Y|2 is sufficiently large.
As a consequence, our causal inference rule will select the
causal direction to be the one with the largest ρ value.

How well real-world systems satisfy SIC in causal direc-
tion cannot be answered by theory alone. This is because
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bounding the probability for large deviations of ρX→Y

from 1 relies on simplistic models where linear systems are
generated by random processes. We now describe such a
model that independently generates X and hX→Y accord-
ing to some simple prior without claiming that this is an
appropriate description of how nature generates causal re-
lations. We start with a Finite Impulse Response (FIR) h,
that is, hτ = 0 for all τ < k and τ ≥ k + m, for some m
and k. Then h is given by m real numbers b1, . . . , bm such
that

hi+k = bi i = 0, . . . ,m− 1 .

We then apply an orthogonal transformation U, randomly
drawn from the orthogonal group O(m) according to the
‘uniform distribution’ on O(m), that is, the Haar measure.
In this way, we generate a new impulse response function

h′i+k := (Ub)i i = 0, . . . ,m− 1 , (10)

where h′τ = 0 for all τ < k and τ ≥ k + m. Since or-
thogonal transformations preserve the Euclidean norm by
definition, they preserve the energy of the filter. Our pro-
cedure thus chooses a random filter among the set of filters
having the same support of length m and the same energy.
We now show that for large m the resulting filter will ap-
proximately satisfy SIC with high probability:
Theorem 1. (Concentration of Measure for FIR filters)
For some fixed Sxx, let ρUX→Y be the SDR obtained from
h′ in (10). If U is chosen from the Haar measure on O(m),
then for any given ε > 0

|ρUX→Y − 1| ≤ 2ε

P (X)
max
ν

Sxx(ν) .

with probability δ := 1− exp(−κ(m− 1)ε2) where κ is a
positive global constant independent of m, ε, X and Y.

The proof of this theorem is provided in the supplementary
material. This result provides a justification for using SIC
provided that the number of nonzero elements of h, m, is
large enough. The relevance of m will be investigated in
practice in the experimental section.

Note also the following Bayesian generalization of Theo-
rem 1: Whenever one assigns independent priors to hX→Y

and X and the former one is O(m)-invariant, the above
bound holds regardless of how the latter has been chosen.
This way, we avoid the question of defining appropriate pri-
ors for the input signal.

2.5. Relation to the Trace Condition

We now describe the relation between SIC and a causal in-
ference method called Trace Method (Janzing et al., 2010).
Let X and Y be n- and m-dimensional variables respec-
tively, causally related by the linear structural equation

Y = AX + E ,

where A is an m × n structure matrix and E is a m-
dimensional noise variable independent of X . Janzing
et al. (2010) postulate the following independence condi-
tion between the covariance matrix of input distribution
ΣX and A:

Postulate 2 (Trace Condition).

τm(AΣXA
T ) = τn(ΣX)τm(AAT ) , (11)

approximately, where τn(B) denotes the renormalized
trace tr(B)/n.

The postulate can be justified by random matrix theory with
large m when A and ΣX are independently chosen accord-
ing to a distribution satisfying appropriate symmetry as-
sumptions (Janzing et al., 2010). To link SIC and trace
method we only need square matrices, i.e, m = n.

To quantify the violation of (11) we introduce the following
quantity:

Definition 1 (Tracial Dependency Ratio (TDR)). The tra-
cial dependency ratio is given by

rX→Y :=
τn(AΣXA

T )

τn(ΣX)τm(AAT )
. (12)

We thus can see that the TDR plays a role analogue to our
SDR ρ in the finite dimensional case. We can actually show
that SIC can be viewed as a limit case of the Trace Condi-
tion by defining the following truncated system.

Definition 2. For any given infinite dimensional linear sys-
tem X 7→ Y = h ∗X, the truncated system of order N is
defined by zeroing the input and the output values for inte-
gers k such that −N ≤ k < N :

X′N = X−N :N−1 7→ Y′N = (h ∗X′N )−N :N−1.

Note that in this definition for each N , the vectors
Y′−N :N−1 are inherently different. To reduce the nota-
tional complications, for any stochastic time series Z and
a given N we represent Z−N :N−1 as ZN . Every truncated
system defines a 2N dimensional deterministic linear struc-
tural equation. We then have the following result showing
that SIC can be obtained from the Trace Condition as an
appropriate limit:

Theorem 2. Let rX′
N→Y′

N
represent the TDR for the trun-

cated systems of order N for a given linear system with
SDR ρX→Y. Then

lim
N→∞

rX′
N→Y′

N
= ρX→Y

The proof, together with two necessary lemmas is available
in supplementary material.
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3. SIC for Vector Autoregressive Models
SIC and Granger causality rely on completely different as-
sumptions but both apply to linear systems. In this section,
we study the classical Vector Autoregressive (VAR) model
used in Granger causality from the SIC perspective to better
understand how they are related.

3.1. VAR Model

We assume the observed time series are generated by a
VAR model such that X Granger causes Y, but Y does
not Granger causes X:

Xt =
∑
k

akXt−k + εt (13)

Yt =
∑
k

bkYt−k +
∑
k

ckXt−k + ξt (14)

Both noise terms ε and ξ in this expression are i.i.d normal
noises.

3.2. Applying SIC to VAR Models

We want to rewrite this expression such that Y is generated
from X by a deterministic linear time invariant filter. We
observe that the VAR model can be cast as a linear time in-
variant filter if we neglect the additive noise ξ. Indeed, then
the mechanism is the following noiseless ARX (AutoRe-
gressive with eXogenous input) model (Keesman, 2011):

Yt =
∑
k

bkYt−k +
∑
k

ckXt−k. (15)

As a consequence, testing SIC on the VAR model in the for-
ward direction amounts (when neglecting the filtered noise
ξ) to test independence between

Sxx(ν) =
1

|1−∑k ak exp(−2πikν)|2 (16)

and

|ĥ(ν)|2 =
|∑k ck exp(−2πikν)|2
|1−∑k bk exp(−2πikν)|2 , (17)

parametrized by the coefficients {ak} and {bk, ck} respec-
tively (these expression are derived in the supplementary
material). We conjecture that a concentration of measure
result similar to Theorem 1 holds, stating that independent
choice of the coefficients from an appropriate symmetric
distribution typically yields small correlations between the
functions defined in (16) and (17). This will be tested em-
pirically in Section 4. The robustness of our approach to
noise in the VAR model remains an interesting question to
be addressed in future work.

3.3. Comparison of SIC and Granger Causality

The bivariate VAR model above is the typical model where
Granger causality works. To recall the idea of the latter,
note that it infers that there is an influence from X to Y
whenever predicting Y from its past is improved by ac-
counting for the past of X. Within the context of the above
linear model, knowing Xt−1, Xt−2, . . . reduces the vari-
ance of Yt, given Yt−1, Yt−2, . . . because then the noise εt
is the only remaining source of uncertainty. Without know-
ing Xt−1, Xt−2, . . . , we have additional uncertainty due to
the contribution of εt−1, εt−2, . . . .

SIC, on the other hand, does not rely on detecting whether
X helps in improving the prediction of Y. As demon-
strated above, SIC applied to a bivariate VAR model boils
down to quantifying independence between two linear fil-
ters parametrized by sets of coefficients, the filter gener-
ating the input with frequency response n̂ and the filter
of the mechanism with frequency response m̂. This is a
completely different concept. One can easily imagine that
the coefficients {bk, ck} and {ak} can be hand-designed
such that the functions (17) and (16) are correlated. This
would spoil SIC, but leave Granger unaffected. On the
other hand, the following subsection describes a scenario
where Granger fails but SIC still works.

3.4. Sensitivity to Time Lag

Consider two time series {Xt} and {Yt} where {Xt} is
white noise and

∀t ∈ Z, Yt = cYt−1 +Xt−1,

for a given c. It can be easily seen that this type of in-
put and output can be simulated using an IIR filter with
(a1, a2) = (1, c) and b1 = 1 in (18) where the rest of the
coefficients are zero (please refer to the definition of coef-
ficients in section 4.1). The infinite DAG for this causal
structure can be seen in Fig. 1.

· · · Yt−1 Yt Yt+1 Yt+2 · · ·

· · · Xt−1 Xt Xt+1 Xt+2 · · ·

c c c c c

Figure 1. The original causal structure of section 3.4

Now if there would be a measurement delay of length k for
Y, the observed values will be a new time series, say Ỹ,
where Ỹt = Yt−k. Although the ground truth is X → Ỹ
independent of k, Granger causality only infers the correct
causal structure if k ≥ 0 (where there is a lag in measure-
ment of X, but not Y). However SIC always infers the
correct direction (except when c = 0 and the time structure
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is spoiled). This is because the PSD of the white noise X
is constant and depends only on the total power, i.e,

Sxx(ν) = Var(Xt) = P (X) ,

for all ν ∈ [−1/2, 1/2], and obviously this constant re-
mains the same for the lagged time series. In addition, time
lags are irrelevant for SIC since they do not affect the power
spectrum.

4. Experiments
In this section we study our causal inference algorithm us-
ing synthetic experiments and also apply it to several real
world data sets.

4.1. Synthetic Data: ARMA Filters and Processes

We designed synthetic experiments to assess the validity of
the SIC approach. The data generating process is as fol-
lows. The LTI filter S modeling the mechanism is chosen
among the family of ARMA(FO(S), BO(S)) filters with
parameters (a,b) defined by input-output difference equa-
tion:

yn =
1

a0

FO(S)∑
i=0

bixn−i +

BO(S)∑
j=1

ajyn−j

 . (18)

For these filters, FO(S) and BO(S) (FO and BO for
short) are the feedforward and feedback order respectively.
ai’s are feedforward and bi’s are feedback coefficients.
Note that when FO = 0, the filter is called an autoregres-
sive filter. Alternatively,BO = 0 corresponds to the family
of causal Finite Impulse Response (FIR) filters. Whenever
BO 6= 0, the filter has Infinite Impulse Response (IIR).
We chose two filters S and S ′, with parameters (a,b) and
(a′,b′) respectively. To simulate a cause effect pair X,Y,
we generated the cause X by applying S to a normally dis-
tributed i.i.d noise. Then, we generated Y by applying S ′
to X.

In each trial all the elements of vectors a, a′, b and b′ except
the first ones (i.e. a0, b0, a′0, b

′
0 which were fixed to one)

were sampled from an isotropic multidimensional Gaussian
distribution with variance 0.01. Coefficients are sampled
using rejection sampling such that only BIBO-stable filters
are kept.

We simulated sequences of length 1000. The PSD of X and
Y were estimated using Welch’s method (Welch, 1967).
We repeated this experiment 1000 times. Figure 2 shows an
example of the distribution of ρX→Y and ρY→X, as well
as their difference using FO(S) = BO(S) = FO(S ′) =
BO(S ′) = 10.

The SDR for the correct direction is concentrated around
one, while in the wrong direction most of the probability

Figure 2. Top plot: Histogram for the estimators of ρX→Y and
ρY→X. Bottom plot: Histogram of the estimated difference
ρX→Y − ρY→X

mass is below 1 (in this example 99.1%). Consequently
the SDR in correct direction is larger than the one in wrong
direction in 88.3% of the cases. Accordingly, our infer-
ence algorithm based on the sign of this difference will se-
lect the correct direction in most of the cases. Using this

Algorithm 1 SIC Inference
1: function SIC Inference(X,Y)
2: Calculate ρX→Y and ρY→X using (6)
3: if ρX→Y > ρY→X return X→ Y
4: else return Y → X
5: end function

inference algorithm, we tested the effect of the filter or-
ders on the performance of the method. We evaluated the
performance of each setting of FO(S), FO(S ′), BO(S)
and BO(S ′) over 1000 trials. We varied the orders be-
tween 2 and 21 and compared the performance of the cases
FO(S ′) = BO(S ′), FO(S ′) = 0 and BO(S ′) = 0. Con-
sidering that the experiments are independent and based on
the assumption that our method is successful with proba-
bility p where p has a binomial distribution, we calculated
confidence intervals using Wilson’s score interval (Wilson,
1927) where α = 0.05 (and therefore zα/2 = 1.96). The
performance increases rapidly with filter order, as can be
seen in the plots of Fig. 3. Moreover, the feedforward filter
coefficients seem the most beneficial to the approach, since
their absence leads to the worst performance (Fig. 3, red
line).

4.2. Real World Examples

We tried our method over several examples of real data
where the ground truth about the causal structure of the data
is known a priori and the data is labelled in a way that the
ground truth is X→ Y.
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Figure 3. SIC performance against filter order for synthetic exper-
iments for different types of filters (see text).

4.2.1. GAS FURNACE (BOX ET AL., 2013)

This dataset consists of 296 time points, with X the gas
rate consumed by a gas furnace and Y the produced rate
of CO2. Fig. 4 shows ρX→Y − ρY→X against the window
length, which was ranging from 50 to 150 points. As illus-
trated, the difference is always positive and our method is
able to correctly infer the right causal direction independent
from window length. TiMiNO and Granger causality cor-
rectly identified the ground truth in this case as well (Peters
et al., 2013).

4.2.2. OLD FAITHFUL GEYSER (AZZALINI &
BOWMAN, 1990)

N = 298 : X contains the duration of an eruption and Y
is the time interval to the next eruption of the Old Faith-
ful geyser. Figure 4 represents the difference in SDRs as a
function of window length with the same configuration as
the gas furnace experiment. Again the correct causal direc-
tion is inferred by our method independently of the window
length as illustrated in Fig. 4. In this case TiMiNO correctly
identifies the cause from effect but neither linear nor non-
linear Granger causality infer the correct causal direction
(Peters et al., 2013).

4.2.3. LFP RECORDINGS OF THE RAT HIPPOCAMPUS

It is known that contrary to neocortex where connectivity
between areas is bidirectional, monosynaptic connections
between several regions of the hippocampus are mostly
unidirectional (Andersen et al., 2006). An important ex-
ample of such connectivity is between the CA3 and CA1
subfields (Andersen et al., 2006). Despite this anatomical
fact, a study of causality based on Local Field Potentiare-
portl (LFP) recordings of CA1 and CA3 of the hippocam-
pus of the rat during sleep reports that Granger causality

40 60 80 100 120 140 160
Window size

0.0

0.5

1.0

1.5

2.0

2.5

ρ
X

→
Y
−
ρ
Y

→
X

Old Faithful Gas Furnace

Figure 4. Difference between the estimators of SDRs in both di-
rections against window length of the Welch periodogram.

infers strong bidirectional relations between the two areas
(Baccala et al., 1998). Baccala et al. (1998) explains the
possible reasons of such result as feedback loops involving
cortex and medial septum, and diffuse connections going
from CA1 to CA3.

To do a comparison with Granger causality, we applied our
framework to recordings from those regions using a pub-
licly available dataset1 (Mizuseki et al., 2009; 2006). LFP’s
were recorded using a 8 shank probe having 64 channels
downsampled to 1252Hz. Shanks were attributed by exper-
imentalists to the CA1 and CA3 areas (leaving 32 channels
for each area). For more information on the details of gath-
ered data please refer to Mizuseki et al. (2006). We used the
data for rat “vvp01” during a period of sleep and a period
of active behaviour in a linear environment. We applied
linear Granger causality using an implementation from the
statsmodel Python library2. We considered a forced de-
cision scheme for Granger causality (to make it compara-
ble to our method), where we selected the correct Granger
causal direction as the one having the lowest p-value for the
null hypothesis of absence of causal influence. Following
the usual methodology of causality analysis (Baccala et al.,
1998; Cadotte et al., 2010), we divided the duration of ten
minutes into 300 intervals of two seconds (N = 2504) to
reduce the effect of nonstationarity in data analysis, and
performed SIC causal inference on each interval for each
electrode pair. We took two different approaches to report
the performance of methods: one, based on a majority vote
over all 300 intervals for each channel pair, and two, by as-
sessing the average performance based on individual time
intervals. The results are plotted as histograms in Fig. 5 and
they show that SIC clearly outperforms Granger causality
on this dataset. The confidence intervals are once again
based on Wilson score but obviously this time the indepen-
dence assumption between the trials is not well justified.

1http://crcns.org/data-sets/hc
2Statsmodels: Statistical library for Python. More details on

the null hypothesis for Granger causality can be found on the web-
site.

http://crcns.org/data-sets/hc
http://statsmodels.sourceforge.net/
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Figure 5. Average performance of the linear Granger causality
and SIC methods for deciding CA3→CA1 ground truth direction
against the opposite. For both the linear and sleep sessions the
performance is significantly above the chance level for SIC. ∗ in-
dicates the use of a majority voting scheme.

4.2.4. CHARACTERIZING THE ECHO

The echo effect of a room on a sound generated in the
room can be well estimated by a convolution of the gen-
erated signal with a function known as room Impulse Re-
sponse Function (IRF). In this experiment we used an open
source database of room IRFs available at the Open AIR li-
brary3. We chose the IRFs for Elevden Hall, Elevden, Suf-
folk, England and Hamilton Mausoleum, Hamilton, Scot-
land. We convolved these signals with 30± 5 seconds seg-
ments of two classical music pieces: The first movement
of Vivaldi’s Winter Concerto consisting of 9190656 data
points, and the Lacrimosa of Mozart’s Requiem, consist-
ing of 8842752 points, both ‘.wav’ files with the rate of
44100Hz. Regardless of the segment the SDR in forward
direction is considerably larger than the SDR in the back-
ward direction as can be seen in Fig. 6. In another experi-
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Figure 6. The plots represent the value ρX→Y − ρY→X for 4 dif-
ferent environments as a function of different music segments.
The method correctly infers the causal direction in all the cases.

ment we used a computer to play the musical pieces above
in an academic Lecture Hall (labelled as “Hall” in plots)
and in an office room (labelled as “Room” in plots) and
recorded the echoed version in the environment. In a series

3Open AIR: Open source library for acoustic IRFs.

of different tests, we splitted the data into 9, 17, 33, 65, 129
pieces, and we ignored the last piece so that all the pieces
would have an equal length. In each test we averaged the
performance of our causal inference method over all the
segments and plotted this performance against the size of
the window length in Welch method. The window size
was varied between 500 and half of the length of the mu-
sic segment length (which is dependent on the number of
segments). The results can be found in Fig. 7 and show a
very good performance of the approach for large window
lengths.
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Figure 7. The performance of the method over real echoed audio
signals recorded simultaneously by playing the piece in two dif-
ferent closed environments that have their own acoustic structure.

5. Conclusion
We have introduced a causal discovery method for time
series based on the SIC postulate, assuming a LTI rela-
tionship for a given pair of time series X and Y, such
that either X → Y or Y → X. Theoretical justifica-
tions are provided for this postulate to lead to identifia-
bility. The method provides an extension of the recently
proposed Trace Method for time series. Encouraging ex-
perimental results have been presented on real world and
synthetic data. In particular, this method proved to be more
effective than linear Granger causality on LFP recordings
from the CA1 and CA3 areas of rat hippocampus, assum-
ing a ground truth causal direction from CA3 to CA1 based
on anatomy. We suggest that this method provides a new
perspective for causal inference in time series based on as-
sumptions fundamentally different from Granger causal-
ity. Including confounders, establishing a statistical sig-
nificance test (for example using a procedure inspired by
(Zscheischler et al., 2011)), and extending this method to
multivariate time series is left to future work.

http://www.openairlib.net/
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