
A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

A. Proof of Lemma 1
Since we focus on a particular epoch s, let us drop the subscript from w̃s−1, and denote it simply at w̃. Rewriting the
update equations from the algorithm, we have that

wt+1 =
w′t+1

‖w′t+1‖
, where w′t+1 = (I + ηA)wt + η(xx> −A)(wt − w̃),

where x is the random instance chosen at iteration t.

It is easy to verify that
〈w′t+1,vi〉 = ai + zi, (15)

where
ai = (1 + ηsi)〈wt,vi〉 , zi = ηv>i (xx> −A)(wt − w̃).

Moreover, since v1, . . . ,vd form an orthonormal basis in Rd, we have

‖w′t+1‖2 =

d∑
i=1

〈vi,w′t+1〉2 =

d∑
i=1

(ai + zi)
2. (16)

Let E denote expectation with respect to x, conditioned on wt. Combining Eq. (15) and Eq. (16), we have

E
[
〈wt+1,v1〉2

]
= E

[〈
w′t+1

‖w′t+1‖
,v1

〉2
]

= E
[
〈w′t+1,v1〉2

‖w′t+1‖2

]
= E

[
(a1 + z1)2∑d
i=1(ai + zi)2

]
. (17)

Note that conditioned on wt, the quantities a1 . . . ad are fixed, whereas z1 . . . zd are random variables (depending on the
random choice of x) over which we take an expectation.

The first step of the proof is to simplify Eq. (17), by pushing the expectations inside the numerator and the denominator.
Of course, this may change the value of the expression, so we need to account for this change with some care. To do so,
define the auxiliary non-negative random variables x, y and a function f(x, y) as follows:

x = (a1 + z1)2 , y =

d∑
i=2

(ai + zi)
2 , f(x, y) =

x

x+ y
.

Then we can write Eq. (17) as Ex,y[f(x, y)]. We now use a second-order Taylor expansion to relate it to f(E[x],E[y]) =
E[(a1+z1)2]

E[
∑d
i=1(ai+zi)2]

. Specifically, we have that Ex,y[f(x, y)] can be lower bounded by

Ex,y

[
f(E[x],E[y]) +∇f(E[x],E[y])>

((
x

y

)
−
(
E[x]

E[y]

))
−max

x,y
‖∇2f(x, y)‖max

x,y

∥∥∥∥(xy
)
−
(
E[x]

E[y]

)∥∥∥∥2
]

= f(E[x],E[y])−max
x,y
‖∇2f(x, y)‖max

x,y

∥∥∥∥(x− E[x]
y − E[y]

)∥∥∥∥2

, (18)

where ∇2f(x, y) is the Hessian of f at (x, y).

We now upper bound the two max-terms in the expression above. First, it is easily verified that

∇2f(x, y) =
1

(x+ y)3

(
−2y x− y
x− y 2x

)
.

Since the spectral norm is upper bounded by the Frobenius norm, which for 2 × 2 matrices is upper bounded by 2 times
the magnitude of the largest entry in the matrix (which in our case is at most 2(x + y)/(x + y)3 = 2/(x + y)2 ≤ 2/x2),
we have

max
x,y
‖∇2f(x, y)‖ ≤ max

x

4

x2
= max

z1

4

(a1 + z1)2
.

A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

Now, recall that a1 ≥ 1
2 by the Lemma’s assumptions, and in contrast |z1| ≤ η

∣∣v>i (xx> −A)(wt − w̃)
∣∣ ≤

η‖vi‖‖xx> − A‖‖wt − w̃‖ ≤ cη, so for η sufficiently small, |z1| ≤ 1
2 |a1|, and we can upper bound 4

(a1+z1)2 (and
hence maxx,y ‖∇2f(x, y)‖) by some numerical constant c.

Turning to the maxx,y[(x−E[x])2 +(y−E[y])2] term in Eq. (18), and recalling that x = (a1 +z1)2, y =
∑d
i=2(ai+zi)

2,
and the zi’s are zero-mean, we have

max
x,y

(
(x− E[x])2 + (y − E[y])2

)
= max

z1...zd
4

(a1z1)
2

+

(
d∑
i=2

aizi

)2

By definition of ai, zi, and recalling that ‖wt‖,‖v1‖,ηsi and ‖xx> − A‖ are all bounded by constants, this expression
equals

4η2

((1 + ηs1)〈wt,v1〉v>1 (xx> −A)(wt − w̃)
)2

+

(
d∑
i=2

(1 + ηsi)〈wt,vi〉v>i (xx> −A)(wt − w̃)

)2

≤ cη2

‖wt − w̃‖2 +

(∥∥∥∥∥
d∑
i=2

(1 + ηsi)〈vi,wt〉vi

∥∥∥∥∥ ‖wt − w̃‖

)2

= cη2‖wt − w̃‖2
1 +

∥∥∥∥∥
d∑
i=2

(1 + ηsi)viv
>
i wt

∥∥∥∥∥
2

≤ cη2‖wt − w̃‖2
(

1 + ‖
d∑
i=2

(1 + ηsi)viv
>
i ‖2

)
≤ cη2‖wt − w̃‖2,

where in the last inequality we used the fact that v2 . . .vd are orthonormal vectors, and (1 +ηsi) is bounded by a constant.

Plugging the bounds we have derived into Eq. (18), we get a lower bound of

f(E[x],E[y])− cη2‖wt − w̃‖2 =
a2

1 + z2
1∑d

i=1(a2
i + z2

i)
− cη2‖wt − w̃‖2 (19)

By definition of zi and the fact that v1, . . . ,vd are orthonormal (hence
∑
i viv

>
i is the identity matrix), we have

d∑
i=1

z2
i = η2(wt − w̃)>(xx> −A)

(
d∑
i=1

viv
>
i

)
(xx> −A)(wt − w̃)

= η2(wt − w̃)>(xx> −A)(xx> −A)(wt − w̃)

= η2‖(xx> −A)(wt − w̃)‖2 ≤ cη2‖wt − w̃‖2,

so we can lower bound Eq. (19) by

a2
1∑d

i=1 a
2
i + cη2‖wt − w̃‖2

− cη2‖wt − w̃‖2. (20)

A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

Focusing on the first term in Eq. (20) for the moment, and substituting in the definition of ai, we can write it as

(1 + ηs1)2〈wt,v1〉2

(1 + ηs1)2〈wt,v1〉2 +
∑d
i=2(1 + ηsi)2〈vi,wt〉2 + cη2‖wt − w̃‖2

≥ 〈wt,v1〉2

〈wt,v1〉2 +
(

1+ηs2
1+ηs1

)2∑d
i=2〈vi,wt〉2 + cη2‖wt − w̃‖2

=
〈wt,v1〉2

〈wt,v1〉2 +
(

1+ηs2
1+ηs1

)2

(1− 〈wt,v1〉2) + cη2‖wt − w̃‖2

=
〈wt,v1〉2

1−
(

1−
(

1+ηs2
1+ηs1

)2
)

(1− 〈wt,v1〉2) + cη2‖wt − w̃‖2

≥ 〈wt,v1〉2
(

1 +

(
1−

(
1 + ηs2

1 + ηs1

)2
)(

1− 〈wt,v1〉2
)
− cη2‖wt − w̃‖2

)
,

where in the last step we used the elementary inequality 1
1−x ≥ 1 + x for all x ≤ 1 (and this is indeed justified since

〈wt,v1〉 ≤ 1 and 1+ηs2
1+ηs1

≤ 1). This can be further lower bounded by

〈wt,v1〉2
(

1 +

(
1−

(
1 + ηs2

1 + ηs1

))(
1− 〈wt,v1〉2

)
− cη2‖wt − w̃‖2

)
= 〈wt,v1〉2

(
1 +

η(s1 − s2)

1 + ηs1

(
1− 〈wt,v1〉2

)
− cη2‖wt − w̃‖2

)
≥ 〈wt,v1〉2

(
1 +

ηλ

2

(
1− 〈wt,v1〉2

)
− cη2‖wt − w̃‖2

)
,

where in the last inequality we used the fact that s1 − s2 = λ and that ηs1 ≤ η which is at most 1 (again using the
assumption that η is sufficiently small).

Plugging this lower bound on the first term in Eq. (20), and recalling that 〈wt,v1〉2 is assumed to be at least 1/4, we get
the following lower bound on Eq. (20):

〈wt,v1〉2
(

1 +
ηλ

2

(
1− 〈wt,v1〉2

)
− cη2‖wt − w̃‖2

)
− cη2‖wt − w̃‖2

≥ 〈wt,v1〉2
(

1 +
ηλ

2

(
1− 〈wt,v1〉2

)
− cη2‖wt − w̃‖2

)
.

To summarize the derivation so far, starting from Eq. (17) and concatenating the successive lower bounds we have derived,
we get that

E[〈wt+1,v1〉2] ≥ 〈wt,v1〉2
(

1 +
ηλ

2

(
1− 〈wt,v1〉2

)
− cη2‖wt − w̃‖2

)
. (21)

We now get rid of the ‖wt − w̃‖2 term, by noting that since (x+ y)2 ≤ 2(x2 + y2) and ‖wt‖ = ‖v1‖ = 1,

‖wt − w̃‖2 ≤ (‖wt − v1‖+ ‖w̃ − v1‖)2 ≤ 2
(
‖wt − v1‖2 + ‖w̃ − v1‖2

)
= 2 (2− 2〈wt,v1〉+ 2− 2〈w̃,v1〉) .

Since we assume that 〈wt,v1〉, 〈w̃,v1〉 are both positive, and they are also at most 1, this is at most

2
(
2− 2〈wt,v1〉2 + 2− 2〈w̃,v1〉2

)
= 4

(
1− 〈wt,v1〉2

)
+ 4

(
1− 〈w̃,v1〉2

)
.

Plugging this back into Eq. (21), we get that

E[〈wt+1,v1〉2] ≥ 〈wt,v1〉2
(

1 +

(
ηλ

2
− cη2

)(
1− 〈wt,v1〉2

)
− cη2

(
1− 〈w̃,v1〉2

))
,

A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

and since we can assume ηλ
2 − cη

2 ≥ ηλ
4 by picking η sufficiently smaller than λ, this can be simplified to

E[〈wt+1,v1〉2] ≥ 〈wt,v1〉2
(

1 +
ηλ

4

(
1− 〈wt,v1〉2

)
− cη2

(
1− 〈w̃,v1〉2

))
.

The final stage of the proof consists of converting the bound above to a bound on E[1 − 〈wt+1,v1〉2] in terms of 1 −
〈wt,v1〉2. To simplify the notation, let b =

(
1− 〈wt,v1〉2

)
and b̃ = cη2

(
1− 〈w̃,v1〉2

)
, so the bound above implies

E[1− 〈wt+1,v1〉2] ≤ 1− (1− b)
(

1 +
ηλ

4
b− b̃

)
= 1− (1− b)− ηλ

4
b(1− b) + (1− b)b̃

= b− ηλ

4
b(1− b)− bb̃+ b̃

= b

(
1− ηλ

4
(1− b)− b̃

)
+ b̃.

Plugging back the definitions of b̃, b, we get that

E[1− 〈wt+1,v1〉2] ≤
(
1− 〈wt,v1〉2

)(
1− ηλ

4
〈wt,v1〉2 − cη2

(
1− 〈w̃,v1〉2

))
+ cη2

(
1− 〈w̃,v1〉2

)
.

Since we assume 〈wt,v1〉 ≥ 1
2 , we can upper bound this by

(
1− 〈wt,v1〉2

)(
1− ηλ

16

)
+ cη2

(
1− 〈w̃,v1〉2

)
as required. Note that to get this bound, we assumed at several places that η is smaller than either a constant, or a constant
factor times λ (which is at most 1). Hence, the bound holds by assuming η ≤ cλ for a sufficiently small numerical c.

B. Implementing Epochs in O(ds(m+ n)) Runtime
As discussed in remark 2, the runtime of each iteration in our algorithm (as presented in our pseudo-code) is O(d), and
the total runtime of each epoch is O(dm+ dsn), where ds is the average sparsity (number of non-zero entries) in the data
points xi. Here, we explain how the total epoch runtime can be improved (at least in terms of the theoretical analysis) to
O(ds(m+ n)). For ease of exposition, we reproduce the pseudo-code together with line numbers below:

1: Parameters: Step size η, epoch length m
2: Input: Data matrix X = (x1, . . . ,xn); Initial unit vector w̃0

3: for s = 1, 2, . . . do
4: ũ = 1

n

∑n
i=1 xi

(
x>i w̃s−1

)
5: w0 = w̃s−1

6: for t = 1, 2, . . . ,m do
7: Pick it ∈ {1, . . . , n} uniformly at random
8: w′t = wt−1 + η

(
xit
(
x>itwt−1 − x>itw̃s−1

)
+ ũ

)
9: wt = 1

‖w′t‖
w′t

10: end for
11: w̃s = wm

12: end for

First, we can assume without loss of generality that d ≤ dsn. Otherwise, the number of non-zeros in the n× d data matrix
X is smaller than d, so the matrix must contain some all-zeros columns. But then, we can simply drop those columns
(the value of the largest singular vectors in the corresponding entries will be zero anyway), hence reducing the effective
dimension d to be at most dsn. Therefore, given a vector w̃s−1, we can implement line (4) inO(d+ dsn) ≤ O(dsn) time,
by initializing the d-dimensional vector ũ to be 0, and iteratively adding to it the sparse (on-average) vector xi

(
x>i w̃s−1

)
.

Similarly, we can implement lines (5),(11) in O(d) ≤ O(dsn) time.

A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

It remains to show that we can implement each iteration in lines (8) and (9) in O(ds) time. To do so, instead of explicitly
storing wt,w

′
t, we only store ũ, an auxiliary vector g, and auxiliary scalars α, β, γ, δ, ζ, such that

• At the end of line (8), w′t is stored as αg + βũ

• At the end of line (9), wt is stored as αg + βũ

• It holds that γ = ‖αg‖2 , δ = 〈αg, ũ〉 , ζ = ‖ũ‖2. This ensures that γ + 2δ + ζ expresses ‖αg + βũ‖2.

Before the beginning of the epoch (line (5)), we initialize g = w̃s−1, α = 1, β = 0 and compute γ = ‖αg‖2 , δ =
〈αg, ũ〉 , ζ = ‖ũ‖2, all in timeO(d) ≤ O(dsn). This ensures that w0 = αg+βu. Line (8) can be implemented inO(ds)
time as follows:

• Compute the sparse (on-average) update vector ∆g := ηxit
(
x>itwt−1 − x>itw̃s−1

)
• Update g := g + ∆g/α; β := β + η; γ := γ + 2α〈g,∆g〉 + ‖∆g‖2; δ := δ + 〈∆g, ũ〉. This implements line (8),

and ensures that w′t is represented as αg + βu, and its squared norm equals γ + 2δ + ζ.

To implement line (9), we simply divide α, β by
√
γ + 2δ + ζ (which equals the norm of w′t), and recompute γ, δ accord-

ingly. After this step, wt is represented by αg + βũ as required.

