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Abstract
Gaussian processes (GP) provide an attrac-
tive machine learning model due to their non-
parametric form, their flexibility to capture many
types of observation data, and their generic infer-
ence procedures. Sparse GP inference algorithms
address the cubic complexity of GPs by focusing
on a small set of pseudo-samples. To date, such
approaches have focused on the simple case of
Gaussian observation likelihoods. This paper de-
velops a variational sparse solution for GPs under
general likelihoods by providing a new character-
ization of the gradients required for inference in
terms of individual observation likelihood terms.
In addition, we propose a simple new approach
for optimizing the sparse variational approxima-
tion using a fixed point computation. We demon-
strate experimentally that the fixed point operator
acts as a contraction in many cases and therefore
leads to fast convergence. An experimental eval-
uation for count regression, classification, and or-
dinal regression illustrates the generality and ad-
vantages of the new approach.

1. Introduction
Gaussian process (GP) models are a flexible class of non-
parametric Bayesian methods that have been used in a vari-
ety of supervised machine learning tasks. A GP induces
a normally distributed set of latent values which in turn
generate observation data. GPs have been successfully ap-
plied to many observation types including regression with
Gaussian likelihood, binary classification (Rasmussen &
Williams, 2006), robust regression (Vanhatalo et al., 2009),
ordinal regression (Chu & Ghahramani, 2005), quantile re-
gression (Boukouvalas et al., 2012), and relational learning

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

(Chu et al., 2007). In addition, a generalized GPs formu-
lation (Shang & Chan, 2013), using observation data from
a generic exponential family distribution, enables a non-
parametric extension of generalized linear models. The
main difficulty in applying GP models is the complexity
which is cubic in the number of observations N . In addi-
tion, non-Gaussian likelihoods require some approximation
of the posterior as the GP prior is non-conjugate.

In recent years, a number of approaches have been devel-
oped to address this issue. The variational Gaussian ap-
proximation has received renewed attention (Opper & Ar-
chambeau, 2009; Lázaro-gredilla & Titsias, 2011; Khan
et al., 2012; Challis & Barber, 2013; Khan et al., 2013)
with reformulations and algorithms that reduce the num-
ber of estimated parameters, and improve convergence of
the estimates. This provides significant improvements but
retains the overall O

(
N3
)

complexity of inference. Sev-
eral recent papers develop novel algorithmic frameworks,
including online stochastic solutions for variational infer-
ence via data sub-sampling (Hoffman et al., 2013) and dis-
tribution sampling (Titsias & Lázaro-gredilla, 2014), and
parallelization (Gal et al., 2014).

An alternative known as sparse solutions (see e.g. (Seeger
et al., 2003; Keerthi & Chu, 2006; Quiñonero Candela
et al., 2005; Snelson & Ghahramani, 2006; Titsias, 2009))
uses an additional approximation to reduce complexity. In
particular, Titsias (2009) formulated this approximation as
an optimization of a variational bound on the marginal
likelihood. In these methods, an active set of M real or
“pseudo” samples, where M � N , is used as an approxi-
mate sufficient statistic for inference and prediction, reduc-
ing training complexity to O

(
M2N

)
. Despite significant

interest, and some work on specific models (Naish-Guzman
& Holden, 2008; Vanhatalo & Vehtari, 2007), there is no
general formulation of sparse GPs for general likelihoods.

In this paper, we extend the formulation of Titsias (2009)
to handle arbitrary likelihoods. Our formulation and solu-
tion are generic in that they depend directly on properties of
the likelihood function of individual observations. In par-
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ticular we show that the gradients needed to optimize the
sparse solution can be calculated from derivative informa-
tion of individual observation likelihoods. This allows for
a generic solution that also applies in the generalized GP
framework. A similar derivation was recently developed,
independently from our work, by Hensman et al. (2015)
for the case of GP for classification.

We show that the sparse model can be optimized by adapt-
ing previous work on Latent Gaussian Models (LGM). In
particular, both the gradient method of Challis & Barber
(2013) and the dual method of Khan et al. (2013) can be
used for the optimization. However, these approaches are
sometimes slow or fail to converge. To address this, we
propose a new method for solving the optimization prob-
lem using fixed point updates on the variational covari-
ance. Although we are not able to analyze it theoretically,
we demonstrate experimentally that the fixed point opera-
tor acts as a contraction in many cases and therefore leads
to fast convergence. An experimental evaluation on count
regression, classification, and ordinal regression compares
these algorithms to several baselines and illustrates the gen-
erality and advantages of the new approach.

2. Preliminaries: Sparse Variational GP
We briefly review Gaussian process (GP) models and de-
scribe our notation. A more thorough introduction can be
found in (Rasmussen & Williams, 2006). A GP is specified
by a mean function m(·) and covariance function k(·, ·)
and is used to provide a prior distribution over functions.
For any finite set of N inputs X , the function values at X ,
denoted fX , are distributed as multivariate Gaussian with
mean mX and covariance KN = k(X ,X ). The function
values are typically assumed to be latent and the observa-
tions are distributed as

∏N
i=1 p(yi|f(xi)), where p(·|·) is

the likelihood of the i’th observation yi given the latent
function evaluated at input xi. We let y stand for the vector
of observations at inputs X . In our notation, subscripts M
or U refer to evaluation on the inducing set (also referred
to as active or pseudo set) while N or X refer to evalua-
tion on the training set, K·M ≡ k(·,U) and KM · = KT

·M .
S++
M refers to the space of symmetric positive definite ma-

trices. For matrices A,B denote A � B to mean that for
all vectors c, we have cTAc ≤ cTBc.

Given the observations y our goal is to calculate the poste-
rior distribution over fX (i.e., inference) as well as make
predictions p(y∗|x∗,y) at a new input x∗. Calculating the
posterior requires cubic run time in the number of data
points and is not feasible for large datasets. Sparse GP
methods approximate this by reducing the number of “rel-
evant points” to M � N . The standard approach first aug-
ments the data with M pseudo inputs U = {ul|1 ≤ l ≤
M � N} and assumes for prediction that p(y∗|x∗,y) =

p(y∗|x∗,fU ). Titsias (2009) formulated this task as an
optimization where the set U and the distribution of fU
are chosen to maximize a variational lower bound on the
marginal likelihood of the data. In this paper we extend
this formulation to handle general likelihood functions.

2.1. Variational Lower Bound

Following Titsias (2009), the posterior p(fX ,fU |y) is ap-
proximated by the variational distribution

q(fX ,fU ) = p(fX |fU )φ(fU ) (1)

where φ is a multivariate Gaussian distribution with (un-
known) meanm and covariance V .

The approximate posterior q(fX ,fU ) is found by min-
imizing the Kullback-Liebler (KL) divergence between
q(fX ,fU ) and the full posterior p(fX ,fU |y) which is
equivalent to maximizing the following lower bound on the
log marginal likelihood (see related derivations by Titsias,
2009; Khan et al., 2012; Gal et al., 2014):

log p(y) ≥
N∑
i=1

Eq(f(xi)) [log p(yi|f(xi))]

−KL(φ(fU )||p(fU ))

(2)

where q(f(xi)) denotes the marginal distribution of f(xi)
with respect to the approximate posterior q(fX ,fU ). We
refer to the RHS of Equation (2) as the variational lower
bound (VLB).

Since q(fX ,fU ) is jointly Gaussian, the marginal distri-
bution is given by a univariate Gaussian with meanmq(xi)
and variance vq(xi) where

mq(x) = m(x) +KxMK
−1
M (m−mU ) (3a)

vq(x) = k(x,x) +KxMK
−1
M (V −KM )K−1M KMx

(3b)

3. Inference for the Sparse Model
By first-order optimality, (m?, V ?) is found via the condi-
tions ∂VLB

∂m |m=m? = 0 and ∂VLB
∂V |V=V ? = 0. We start by

showing how the derivatives can be calculated.

3.1. Characterization of the Variational Solution

The first term of the VLB represents the goodness of fit
for the model. As in (Challis & Barber, 2013) we use a
change of variables to simplify the analysis. In particular,
by making the change of variables fi = zi

√
vqi +mqi , we

can express the expectation with respect to the approximate
marginal qi as (we drop the argument xi for notational con-
venience): Eqi(fi) [log p(yi|fi)] =

1√
2π

∫
log p(yi|zi

√
vqi +mqi)e

− 1
2 z

2
i dzi (4)
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We can now develop the derivatives of the observation term
with respect to the variational parameters by taking deriva-
tives of (4). Starting with mqi we get:

∂

∂mqi

[
1√
2π

∫
log p(yi|zi

√
vqi +mqi)e

− 1
2 z

2
i dzi

]
=

1√
2π

∫
∂

∂mqi

log p(yi|zi
√
vqi +mqi)e

− 1
2 z

2
i dzi

=
1√
2π

∫
∂(zi
√
vqi +mqi)

∂mqi

`i(zi)e
− 1

2 z
2
i dzi

=
1√
2π

∫
`i(zi)e

− 1
2 z

2
i dzi

= EN (zi|0,1) [`i(zi)] (5)

where `i(zi) ≡ ∂
∂(zi
√
vqi+mqi )

log p(yi|zi
√
vqi + mqi).

Since ∂mqi
∂m = K−1M KMi, we get that

∂

∂m
Eqi [log p(yi|fi)] = K−1M KMi (6)

EN (zi|0,1)

[
∂

∂fi
log p(yi|fi)

∣∣∣
fi=zi

√
vqi+mqi

]
Similarly for vqi :

∂

∂(
√
vqi)

[
1√
2π

∫
log p(yi|zi

√
vqi +mqi)e

− 1
2 z

2
i dzi

]
=

1√
2π

∫
∂(zi
√
vqi +mqi)

∂(
√
vqi)

`i(zi)e
− 1

2 z
2
i dzi

=
1√
2π

∫
zi`i(zi)e

− 1
2 z

2
i dzi

= − 1√
2π
`i(zi)e

− 1
2 z

2
i ]+∞−∞ +

∫
∂

∂zi
`i(zi)e

− 1
2 z

2
i dzi

(7)

where in the last step we have used integration in parts. If
`i(zi) = o(e

1
2 z

2
i ) as zi → ±∞, then (7) reduces to∫

∂

∂zi
`i(zi)e

− 1
2
z2i dzi

=

∫
∂

∂zi

∂

∂(zi
√
vqi +mqi)

log p(yi|zi
√
vqi +mqi)e

− 1
2
z2i dzi

=

∫
∂

∂(zi
√
vqi +mqi)

∂

∂zi
log p(yi|zi

√
vqi +mqi)e

− 1
2
z2i dzi

=

∫
∂

∂(zi
√
vqi +mqi)

√
vqi`i(zi)e

− 1
2
z2i dzi

=
√
vqi

∫
∂2

∂(zi
√
vqi +mqi)

2
log p(yi|zi

√
vqi +mqi)e

− 1
2
z2i dzi

=
√
vqi EN (z|0,1)

[
∂2

∂f2
i

log p(yi|fi)
∣∣∣
fi=zi

√
vqi+mqi

]
(8)

It can be seen from Section 3.2 that the regularity
condition, `(z) = o(e

1
2 z

2

) as z → ±∞, is met

by many likelihoods of interest. Since ∂(
√
vqi )

∂V =
1

2
√
vqi
K−1M KMiKiMK

−1
M , we get

∂

∂V
Eqi [log p(yi|fi)] =

1

2
K−1M KMiKiMK

−1
M

EN (zi|0,1)

[
∂2

∂f2i
log p(yi|fi)

∣∣∣
fi=zi

√
vqi+mqi

]
(9)

Our formulation in (5) and (8) can be seen as an alterna-
tive derivation of Eq (18), (19) of (Opper & Archambeau,
2009). Finally, defining

ρi = EN (fi|mqi ,vqi )

[
∂

∂fi
log p(yi|fi)

]
(10a)

λi = EN (fi|mqi ,vqi )

[
∂2

∂f2i
log p(yi|fi)

]
(10b)

and putting together the derivatives above with the standard
derivatives of the KL divergence we get a simple character-
ization of the derivatives of the VLB:

∂VLB
∂m

=
∑
i

(
ρiK

−1
M KMi

)
−K−1

M (m−mU ) (11a)

∂VLB
∂V

=
1

2

∑
i

(
λiK

−1
M KMiKiMK

−1
M

)
+

1

2
(V −1 −K−1

M )

(11b)

This formulation is generic in the sense that it has the
same form for any likelihood function and is simply de-
termined by ρi and λi. These quantities can be evaluated
independently of the sparse model, and rely on derivatives
of the observation distribution and their expectations un-
der a Gaussian distribution. Challis & Barber (2013) have
pointed out that in some interesting cases (for example,
the Laplace likelihood) log p(yi|fi) is not differentiable
but EN (fi|mqi ,vqi ) [log p(yi|fi)] is continuous and differ-
entiable. In such cases, our model is still applicable and
ρi and λi can be alternatively calculated via derivatives of
(4) w.r.t. mqi and √vqi .

Finally, we note that the same derivation applies to the full
(non-sparse) variational approximation, where the deriva-
tives w.r.t. tom, V are respectively

∑
i (ρiei)−K

−1
N (m−

mN ) and 1
2

∑
i

(
λieie

T
i

)
+ 1

2 (V
−1 −K−1N ) where ei is a

unit vector. This matches the form for the optimal V in
(Opper & Archambeau, 2009) and (Khan et al., 2012).

3.2. Some Observation Models

In this section we illustrate the generality of the model by
providing details of several specific observation likelihood
functions. Table 1 provides a list of likelihood functions,
derivatives, and evaluations of (10a) and (10b) for standard
GP regression w/ Gaussian likelihood, count regression w/
Poisson likelihood, binary classification w/ Bernoulli-logit
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Table 1. List of likelihood functions, their derivatives, and expectations of the derivatives with respect to N (f |m, v) as given by (10a)
and (10b) where available in closed form (NA denotes not available). For the ordinal likelihood, L denotes the number of ordered
categories, ko is a shape parameter, and the bin edges {φl}Ll=1 obey −∞ = φ0 < φ1 < . . . < φL−1 < φL =∞.

y p(y|f) ∂
∂f log p(y|f) ∂2

∂f2
log p(y|f) ρ λ

R 1√
2πσ

e
− (y−f)2

2σ2 1
σ2

(y − f) − 1
σ2

1
σ2

(y −m) − 1
σ2

{0, 1, 2, . . . } 1
y! e
−ef efy −ef + y −ef −em+1

2
v + y −em+1

2
v

{−1,+1} σ(yf) y(1− σ(yf)) −σ(yf) σ(−yf) NA NA

{1, 2, . . . , L} σ(ko(φy − f)) ko(1− σ(ko(f − φy)) −k2o(σ(ko(φy − f))σ(ko(f − φy)) NA NA

−σ(ko(φy−1 − f)) −σ(ko(f − φy−1))) +σ(ko(φy−1 − f))σ(ko(f − φy−1)))

likelihood, and ordinal regression w/ a cumulative-logit
likelihood. Gaussian-Hermite quadrature is used to calcu-
late expectations where closed form expressions for ρ and
λ are not available. We remark here that all likelihoods are
log concave in f which is useful for empirical analysis of
our proposed fixed point operator in the next section.

In addition, our formulation applies directly (but is not lim-
ited) to the framework of generalized GP models (Shang &
Chan, 2013) in which p(yi|θi) is given by an exponential
family distribution where θi is related to fi through the link
function. In this case ρi, λi are given by standard quantities
as in Eq (39-41) of (Shang & Chan, 2013).

4. VLB Optimization
Parameterized in ρ and λ, the optimal variational parame-
ters are given by

m? = KMNρ
? +mU (12a)

V ? =
(
K−1M −K

−1
M KMN diag(λ?)KNMK

−1
M

)−1
(12b)

It is only for standard GP regression with Gaussian like-
lihood that closed form solutions for m? and V ? can be
obtained (matching the ones in (Titsias, 2009)). In general,
(12a) and (12b) are a set of nonlinear equations coupled
through their dependencies on ρ and λ.

We explore three inference algorithms for our model. The
first two follow previous derivations for LGM. Although
LGM does not capture the sparse model as a special case,
the corresponding optimization problems are very close
and the ideas can be used. Due to space constraints we only
sketch these here. Our first algorithm optimizes (m?, V ?)
by coordinate ascent across the parameters. Newton’s
method is used to optimize the variational mean at a cost
of O

(
M3
)
. For the covariance, Challis & Barber (2013)

proposed an optimization through the Cholesky factor L
of V = LLT showing that the objective is concave for
log concave likelihoods. This also automatically guaran-
tees that V is positive-definite. In our case the gradient is
∂VLB
∂L =

∑
i

(
λiK

−1
M KMiKiMK

−1
M L

)
+(L−1

T −K−1M L).

The recent work of Hensman et al. (2015) similarly opti-
mized the covariance through the Cholesky factors.

The second method adapts the dual algorithm by Khan et al.
(2013) to our objective. Unlike LGM, in our model the
latent variables, fX , are not deterministic functions of the
latent variables, fU . Accounting for this results in the dual
objective, Eq. 20 of (Khan et al., 2013), being augmented
with − 1

2λ
T diag(KN −WKMW

T )−αT (mX −WmU )
where W = KNMK

−1
M (where, in the notation of Khan

et al. (2013), λ and α are Lagrange multipliers).

4.1. Fixed Point Operator

We propose a third method, optimizing the covariance
through the following fixed-point operator, T : SM++ →
SM++ derived from the optimality condition (12b),

T (V ) =
(
K−1M −K

−1
M KMN diag(λ)KNMK

−1
M

)−1
(13)

By inspection of (13) and (11b), it is obvious that T con-
tains V ? in its fixed point set. To prove that the limit of
the sequence defined by V (k+1) = T (V (k)) is equal to V ?

for any initial V (0), requires showing that T is a contrac-
tion mapping, that is, there exists an L ∈ [0, 1) such that
‖T (V )− T (U)‖ ≤ L‖V −U‖, for all U, V . The presence
of the nonlinear operation in λ that maps the covariance
to a vector has rendered a general proof of contraction for
arbitrary likelihoods difficult.

We next show that although the contraction property does
not always hold, it does hold in many cases of interest. In
particular, we test the property experimentally by simulat-
ing observations, drawing random matrices from SM++, ap-
plying (13), and testing whether the contraction property is
maintained. Now, sinceλ? � 0 (element-wise) for log con-
cave likelihoods, (V ?)−1 � K−1M is implied from (12b).
This limits the pairs of covariances that require testing to
those that satisfy 0 � U, V � KM .

We report here on tests using a zero-mean GP prior with
Gaussian RBF kernel (` =

√
10
3 , σ2 = 1). The inputs

{U ,X} are 1000 i.i.d (uniform) samples from the domain
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Figure 1. Results of contraction tests shown on log scale. The color coding refers to active set size. The dashed line represents the curve
‖T (U)− T (V )‖2 = ‖U − V ‖2 in log space.

[0, 1]10. We compare the 2-norm of the distance between
covariance pairs before and after the mapping. We generate
such data for each of the 3 observation models defined in
the previous section and repeat the process 500 times.

The results are given in Figure 1. The contraction property
appears to hold under the conditions tested for the count
and binary models for all active set sizes, but not for the
ordinal model at small set sizes. Additional tests (not re-
ported here) using the Matern RBF kernel (ν = 1

2 ) and a
polynomial degree 2 kernel showed the contraction prop-
erty holding for all models under the same conditions. A
broader characterization of contraction behavior of (13) as
a function of the kernel, its parameters, the likelihood and
input distribution is the subject of continuing work.

5. Experiments
To evaluate the proposed method, we apply it to count re-
gression, binary classification, and ordinal regression. The
datasets used in the experiment are summarized in Ta-
ble 2. The dataset ucsdpeds1l (Chan & Vasconcelos, 2012)
contains counts of pedestrians extracted from video data.
The datasets stock and bank were used in previous ordi-
nal regression experiments with GPs (Chu & Ghahramani,
2005). The remaining datasets are available from the UCI
Machine Learning Repository (Lichman, 2013). In all ex-
periments, data is normalized using training data only and
the same normalization is applied to the test data.

As baselines for the sparse methods we compare against
subset of data (SoD) algorithms that reduce data size to the
active set but unlike the sparse methods ignore the addi-
tional data. We use four different variants of SoD. The first
is the Laplace approximation. The remaining are all varia-
tional Gaussian approximations but differ in the method of
optimization. We test the gradient ascent method and our
fixed point method by restricting to the active subset to per-
form the optimization (i.e., N = M and KNM = KMM ).

Table 2. Summary of data sets. Values in parentheses refer to
number of categories

NAME SAMPLES NO. DIM. MODEL TYPE

UCSDPEDS1L 4000 30 COUNT
ABALONE 4177 8 COUNT
USPS35 1540 256 BINARY
MUSK 6958 166 BINARY
STOCK (5) 950 9 ORDINAL
BANK (10) 8192 32 ORDINAL

We also test the dual method (using W = I). This can
be seen as if we are applying the methods to the “full
data” given by the active set. For the sparse model, we
compare three optimization methods: the gradient ascent
method, the fixed point method, and the dual method (us-
ing W = KNMK

−1
M ) implemented with L-BFGS.

We ran all algorithms on all problems, except that we could
not apply the dual method in ordinal regression since we
were not aware of a closed-form for the Fenchel conjugate
which is required in the dual objective function.

All experiments use the GPML toolbox1 for implementa-
tion of GP mean, covariance, and likelihood functions as
well as for calculation of the approximate marginal like-
lihood via Laplace approximation and its derivatives. For
consistency across methods, the minFunc software2 is used
for all gradient-based optimization.3

In our experiments, we compare the algorithms when using
the same active sets. As shown in previous work, search for

1http://www.gaussianprocess.org/gpml/
code/matlab/doc/

2http://www.cs.ubc.ca/˜schmidtm/Software/
minFunc.html

3 Stopping conditions are ‖∇f(xk)‖∞ ≤ 10−5, f(xk−1) −
f(xk) ≤ 10−9, or k > 500 where f is the objective function
being optimized, k represents the iteration number, and x is the
current optimization variable.

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
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Figure 2. Learning curves with respect to subset/active set size. MFE is mean fractional error and MZE is mean zero-one error. Lower
values represent better performance. Triangles on the edges of plots refer to data that exists outside the axes of the plot. Legend for
plots: Laplace on SoD (- -), gradient ascent on SoD (- -), dual on SoD (- -), fixed point on SoD (- -), gradient ascent on full data (—),
dual on full data (—), fixed point on full data (—).

useful inducing points in the sparse framework can yield
a significant advantage in accuracy over subset of data, at
the cost of increased run time, and this is one of the ad-
vantages of the variational framework. Inducing inputs can
be chosen by optimizing the VLB similar to hyperparam-
eter optimization. Previous work used greedy search over
training samples (Titsias, 2009), gradient search (Wang &
Khardon, 2012) or other heuristics. However, this compli-
cates the comparison between methods so our comparison
keeps the active set fixed. In addition, we start by com-
paring the methods when using the same fixed hyperpa-
rameters. This gives a direct comparison of the inference
algorithms in the same context. The last comparison in this
section includes learning of hyperparameters as well.

The setting for algorithms is as follows. A Gaussian RBF
kernel is used in all cases. A zero-mean function is used
in all cases except count regression where a constant mean
function is used. For the count likelihood, the predictions
are the mean predictive estimates. For the binary classifi-
cation and ordinal likelihoods, the predictions are the pre-
dictive modes. For all methods, initial variational param-
eters are found by running the Laplace approximation on
the subset/active set. When used with SoD, the initial pa-
rameter of the dual method is obtained by solving a linear

system (Eq. 17 of (Khan et al., 2013)) with input param-
eters obtained from Laplace approximation on the subset.
When used on the sparse model, the elements of the dual
parameter are initialized to 1 for count regression and 1

2 for
binary classification. The hyperparameters are either esti-
mated from the active set or set to default values (σ2 = 1)
prior to training using the same procedure across methods.

To investigate the performance, we generate learning
curves as a function of active set size. For a given set
size, the subset/active set is randomly selected from the
data without replacement. After this set is selected, 10-
fold cross validation is performed with the remaining data.
The results with respect to set size are shown in the plots
in Figure 2. The curves are jittered horizontally to allow
for comparison. The left column shows the count regres-
sion tasks where the performance metric is mean fractional
error (MFE). For count regression, we see all the sparse
variational methods achieving the same performance. We
expect equivalent performance between the dual and pri-
mal methods since strong duality holds with the Poisson
likelihood. Notably, this performance is better than either
Laplace approximation or variational Gaussian approxima-
tion with just a subset of data. The middle column shows
the binary classification tasks where the performance met-
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Figure 3. Training time / accuracy curves. Each dot represents a different subset/active set size. A circled dot represents the smallest
subset/active set size for a method. Legend for plots: Laplace on SoD (- -), gradient ascent on SoD (- -), dual on SoD (- -), fixed point
on SoD (- -), gradient ascent on full data (—), dual on full data (—), fixed point on full data (—).

ric is mean zero-one error (MZE). Here, gradient ascent
and fixed point methods with the sparse model achieve the
best performance. The dual method applied on the SoD and
sparse variational models yielded poor performance appar-
ently due to convergence failures. Given the loss of strong
duality for this likelihood, it is not guaranteed that the op-
timal solution would be located even if the optimization
converged. Finally, the last column shows MZE for ordinal
regression problems. Again, the sparse variational model
with both gradient ascent and fixed point methods results
in improved performance. To summarize, looking only at
subset size the sparse methods have lower error than SoD
and when they converge they provide similar results. The
dual method is less stable for the classification task.

Figure 3 shows the same performance metrics with respect
to the average cpu time (across folds) required for training.
For the sparse approach, the fixed point method is signifi-
cantly faster than the gradient ascent or dual methods in the
count regression and binary classification tasks, and is very
close to the gradient method in ordinal regression. Compar-
ing the variants of SoD we see that the fixed point method
also shows some advantage in binary classification prob-
lems. This suggests that it might be a good alternative for
variational inference in the full data case. Focusing on or-
dinal regression, we see that the fixed point method is no

longer faster in the sparse case and is significantly slower
than the gradient method for SoD. The results of the con-
traction experiment of the previous section point to a pos-
sible cause. The combination of Gaussian RBF kernel and
ordinal likelihood was the only one which resulted in the
contraction property not being maintained. In summary,
the gradient ascent method is the most consistent across
problems but the fixed point method performs better in the
cases where it was shown empirically to be a contraction.

Finally, we consider the comparison to the Laplace approx-
imation. This method is simpler and can therefore handle
larger active sets for the same run time. The figures clearly
show that, in general, the fixed point method for the sparse
model has higher training times than the Laplace approx-
imation. On the other hand, in a few cases, the sparse
method with a small active set size outperforms the Laplace
approximation even when a much larger dataset is used so
that they have the same run time. This holds for the ucs-
dpeds1l count dataset, and the musk classification dataset.

Figure 4 displays the results of performing both inference
for the variational posterior and hyperparameter optimiza-
tion. Three of the datasets were used to compare the al-
gorithms. Hyperparameter optimization was implemented
using L-BFGS with the VLB as the objective function for
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Figure 4. Results of hyperparameter optimization. See Figures 2 and 3 captions for legends.

all methods except Laplace approximation where the ap-
proximate marginal likelihood was used. For count data,
both the sparse fixed point and dual methods provide some
improvement in performance over SoD, but the fixed point
method achieves improvement faster. In binary classifi-
cation, there exist a range of active set sizes for which
the fixed point method provides some improvement over
Laplace approximation. The dual inference method suf-
fered convergence issues in binary classification. On ordi-
nal data, the fixed point and gradient methods perform sim-
ilarly. In summary, with hyperparameter optimization, the
fixed point method is competitive with other sparse meth-
ods and sometimes faster, and can provide performance im-
provements over SoD.

Finally, to illustrate the potential for scalability we ran
the sparse approach on the BlogFeedback (count) dataset
(Lichman, 2013) containing 52,397 training samples and
280 features. The sparse fixed point method withM = 200
converged to the optimal variational parameters in 2709 sec
(cpu time). Recent work (Hensman et al., 2013; 2015) has
successfully used Stochastic Gradient Descent (SGD) for
optimization but noted sensitivity and that tuning of pa-
rameters is needed. SGD can be applied to our objective
and our findings, without extensive tuning, are similar. Us-
ing the same M and mini-batches of 200 samples, SGD re-
duces error relatively fast at first, but levels off and does not
reach the optimal variational parameters within the same

time limit. We leave further investigation of SGD and scal-
ability for very large datasets to future work.

6. Conclusion
The paper introduced a direct formulation of variational
sparse GP with general likelihoods. The model combines
the concept of active sets with the variational Gaussian ap-
proximation in a general framework. A novel characteri-
zation of the derivatives of the variational lower bound en-
ables a generic solution that readily includes non-conjugate
likelihood functions as well as the generalized GPs. We
have shown that the gradient method and the dual method
for solving LGM can be adapted to optimize the objective
of the sparse model. In addition, the paper proposed and
evaluated a method based on fixed point iteration for op-
timizing the variational covariance, and showed that this
operator acts as a contraction in practice in many cases.
Our proposed method generally outperforms the other ap-
proaches both in terms of quality and stability.

The fixed point method was shown to be useful but it is not
a contraction in all cases. Characterizing the fixed point
operator and specifically under what conditions it is a con-
traction operator is an important direction for future work.
Given that it often converges in a few iterations, we propose
that it can also be a useful alternative to current approaches
for the full variational Gaussian approximation.
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