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1. Illustrative example of the statistical and
computational challenge

We begin with an example to illustrate the complexity
of the combinatorial relationships that exist between the
marginals of a ranking model, and how it leads to a sta-
tistical and computational challenge. Let n = 4 and
A = {{1, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}}. Assum-
ing the PA’s are known, finding a function q ∈ L(S4) such
that MAq = PA for all A ∈ A boils down to solving the
linear system given in Figure 1. The values of q are denoted
by qσ instead of q(σ) for σ ∈ S4. This system shows that
all the equations are quite entangled. For instance, the un-
known q1234 appears in 5 equations. Hence, not only the
dimension of the system quickly explodes with n, but all
the equations have complex relationships, and decompos-
ing this system into simpler ones is far from being obvious.

In a statistical setting, a natural approach would certainly
be to perform a least-square regression with the unknowns
as parameters. The complex relationships between the
marginals would however remain, and the computation of
the gradient would quickly become intractable as n grows.

2. General definitions and results
Here we introduce some general definitions and results that
are useful for the technical proofs in the sequel. We de-
note by I{E} the indicator function of any event E so that
I{E} = 1 if E is true and 0 if it is false.

Definition 1 (Induced ranking). Let π ∈ Γn be an incom-
plete ranking and A ∈ P(c(π)) be a subset of items in the
content of π. The ranking induced by π over A is by defi-
nition the unique subword of π of content A. We denote it
by π|A.

Definition 2. For a ranking π = π1 . . . πk ∈ Γn and for
1 ≤ i < j ≤ k, we denote by πJi,jK its subword defined by
πJi,jK = πi . . . πj .

Definition 3. Define the coefficients αB(π, π′) :=
XBδπ(π′) for B ∈ P(JnK) and π, π′ ∈ Γ(B), so that for

F ∈ L(Γ(A)) with A ∈ P(JnK) and π ∈ Γ(B):

XBF (π) =
∑

π′∈Γ(B)

αB(π, π′)MBF (π′).

Lemma 1. Let A ∈ P(JnK) with |A| = k and
(FB)B∈P(A) ∈

⊕
B∈P(A)HB . Then for all π ∈ Γ(A),

∑
B∈P(A)

φAFB(π) =
∑

1≤i<j≤k

Fc(πJi,jK)

(
πJi,jK

)
(k − j + i)!

.

Proof. By definition of the embedding operator,

φAFB(π) =
∑

π′∈Γ(B)

FB(π′)
I{π′ @ π}

(k − |π′|+ 1)!

= FB(π|B)
I{π|B @ π}

(k − |B|+ 1)!
.

Thus only the terms φAFB(π) whereB is such that π|B is a
contiguous subword of π are potentially not null in the sum∑
B∈P(A) φAFB(π). As the contiguous subwords of π are

all of the form πJi,jK with 1 ≤ i < j ≤ k, this concludes
the proof.

3. Technical proofs of Section 4
For a random variable X in Rd with d ≥ 1 and a sigma-
algebra B, we denote by E[X|B] the conditional expec-
tation of X given B, and define Var[X|B] := E[(X −
E[X])2|B].

Proof of Proposition 1. Since
∑
σ∈Sn

q̂N (σ) = 1, one has
for any A ∈ P(JnK)

‖MAq̂N − PA‖2A =
∥∥∥ ∑
B∈P(A)

φA(XB q̂N −XBp)
∥∥∥2

A

≤ 2|A|
∑

B∈P(A)

‖φA(XB q̂N −XBp)‖2A,

using Theorem 3 and the Cauchy-Schwarz inequality. For
A,B ∈ P(JnK) with A ⊂ B, F ∈ L(Γ(B)) and π ∈
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q1234 + q1243 + q1324 + q1342 + q1423 + q1432 + q2134 + q2143 + q2413 + q4123 + q4132 + q4213 = P{1,3}(13)

q2314 + q2341 + q2431 + q3124 + q3142 + q3214 + q3241 + q3412 + q3421 + q4231 + q4312 + q4321 = P{1,3}(31)

q1234 + q1243 + q1324 + q2134 + q2143 + q2314 + q2341 + q2413 + q2431 + q3124 + q3212 + q3241 = P{2,4}(24)

q1342 + q1423 + q1423 + q3142 + q3412 + q3421 + q4123 + q4132 + q4213 + q4231 + q4312 + q4321 = P{2,4}(42)

q1234 + q1324 + q1342 + q2134 + q2314 + q2341 + q3124 + q3142 + q3214 + q3241 + q3412 + q3421 = P{3,4}(34)

q1243 + q1423 + q1432 + q2143 + q2413 + q2431 + q4123 + q4132 + q4213 + q4231 + q4312 + q4321 = P{3,4}(43)

q1234 + q1243 + q1423 + q4123 = P{1,2,3}(123)

q1324 + q1342 + q1432 + q4132 = P{1,2,3}(132)

q2134 + q2143 + q2413 + q4213 = P{1,2,3}(213)

q2314 + q2341 + q2431 + q4231 = P{1,2,3}(231)

q3124 + q3142 + q3412 + q4312 = P{1,2,3}(312)

q3214 + q3241 + q3421 + q4321 = P{1,2,3}(321)

q1234 + q1324 + q1342 + q2134 = P{1,3,4}(134)

q1243 + q1423 + q1432 + q2143 = P{1,3,4}(143)

q2314 + q3124 + q3142 + q3214 = P{1,3,4}(314)

q2341 + q3241 + q3412 + q3421 = P{1,3,4}(341)

q2413 + q4123 + q4132 + q4213 = P{1,3,4}(413)

q2431 + q4231 + q4312 + q4321 = P{1,3,4}(431)

Figure 1. Linear system to find a function q on S4 with the same marginals as p for A ∈ {{1, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}}

Γ(A), one has by definition of the embedding operator,
φAF (π) = F (π|B)I{π|B @ π}/(|A| − |B|+ 1)! and thus

‖φAF‖2A =
∑

π∈Γ(A)

F (π|B)2

(|A| − |B|+ 1)!2
I{π|B @ π}

=
∑

π′∈Γ(B)

F (π′)2

(|A| − |B|+ 1)!2

∑
π∈Γ(A)
π|B=π′

I{π|B @ π}.

Now, for π ∈ Γ(A) and π′ ∈ Γ(B), π′ = π|B and π|B @
π is equivalent to π′ @ π, so

∑
π∈Γ(A), π|B=π′ I{π|B @

π} = |{π ∈ Γ(A) | π′ @ π}|. It is easy to see that this
last value is equal to the number of permutations on the set
(c(π)\c(π′))∪{�}where � is an element that represents the
block π′. It is thus equal to (|A| − |B|+ 1)!, and therefore
‖φAX‖2A = ‖F‖2B/(|A| − |B| + 1)!. Injecting this result,
one obtains

E (q̂N ) ≤
∑
A∈A

ν(A)
∑

B∈P(A)

2|A|

(|A| − |B|+ 1)!

E
[
‖X̂B −XBp‖2B

]
.

Inverting the sums concludes the proof.

The proof of Proposition 2 relies on the following result.

Lemma 2. Let B ∈ P(A) and θ̂ ∈ F(BνN ,R2n

). For
π ∈ Γ(B),

E
[
X̂B,θ̂(π)

]
= XBp(π)E

 ∑
A∈ÂN∩Q(B)

θ̂(A)

 .

Proof. For π ∈ Γ(B), one has

E
[
X̂B,θ̂(π)

]
= E

[
E

[ ∑
A∈ÂN∩Q(B)

θ̂(A)XBP̂A(π)

∣∣∣∣∣BνN
]]
.

Since ÂN is BνN -measurable by construction and θ̂ ∈
F(BνN ,R2n

) by hypothesis,

E

[ ∑
A∈ÂN∩Q(B)

θ̂(A)XBP̂A(π)

∣∣∣∣∣ BνN
]

=

∑
A∈ÂN∩Q(B)

θ̂(A)E
[
XBP̂A(π) | BνN

]
.



Supplementary Material for the paper “MRA-based Statistical Learning from Incomplete Rankings”

Then for A ∈ ÂN ∩Q(B),

E
[
XBP̂A(π) | BνN

]
= E

 ∑
π′∈Γ(B)

αB(π, π′)MBP̂A(π′)

∣∣∣∣∣ BνN


=
∑

π′∈Γ(B)

αB(π, π′)
∑

σ∈Γ(A), π′⊂σ

E
[
P̂A(σ) | BνN

]
,

where the αB(π, π′) coefficients are defined in Definition
3. Now, for σ ∈ Γ(A), P̂A(σ) = (

∑
i∈ÎA I{π(i) =

σ})/|ÎA| so |ÎA|P̂A(σ) | BνN is a binomial random variable

of parameters (|ÎA|, PA(σ)), and thus E
[
P̂A(σ) | BνN

]
=

PA(σ). Therefore

E
[
XBP̂A(π) | BνN

]
=∑

π′∈Γ(B)

αB(π, π′)
∑

σ∈Γ(A), π′⊂σ

PA(σ) = XBPA(π),

so that

E
[
X̂B,θ̂(π)

]
= E

 ∑
A∈ÂN∩Q(B)

θ̂(A)

XBPA(π),

which is the desired result.

Proof of Proposition 2. Using Lemma 2, one has for A ∈
P(A) and π ∈ Γ(A)

E [MAq̂N (π)] = E

 ∑
B∈P(A)∪{∅}

φAX̂B,θ̂(π)


=

1

|A|!
+

∑
B∈P(A)

XBp(π)E

 ∑
A′∈ÂN∩Q(B)

θ̂(A′)

 .
Thus if limn→∞ E

[∑
A∈ÂN∩Q(B) θ̂(A)

]
= 1, then

MAq̂N (π) =
1

|A|!
+

∑
B∈P(A)

XBp(π) = MAp(π).

The proof of Theorem 4 relies on the two following lemmas

Lemma 3. Let B ∈ P(A) and θ̂ ∈ F(BνN ,R2n

). For
π ∈ Γ(B),

Var
[
X̂B,θ̂(π)

]
=
(
X2
Bp(π)−XBp(π)2

)
× E

 ∑
A∈ÂN∩Q(B)

θ̂(A)2

|ÎA|

 ,

where X2
B is the operator on L(Γ(B)) defined by

X2
Bf(π) :=

∑
π′∈Γ(B) α

2
B(π, π′)f(π′) for f ∈ L(Γ(B)).

Proof. For π ∈ Γ(B), one has

Var
[
X̂B,θ̂(π)

]
=

E

[
Var

[ ∑
A∈ÂN∩Q(B)

θ̂(A)XBP̂A(π)

∣∣∣∣∣ BνN
]]
.

Since θ̂ ∈ F(BνN ,R2n

) by hypothesis and the P̂A’s are
independent conditionally to ÂN ,

Var

[ ∑
A∈ÂN∩Q(B)

θ̂(A)XBP̂A(π)

∣∣∣∣∣ BνN
]

=

∑
A∈ÂN∩Q(B)

θ̂(A)2Var
[
XBP̂A(π)

∣∣∣ BνN] .
Now, for A ∈ P(JnK),

Var
[
XBP̂A(π)

∣∣∣ BνN] = E
[(
XBP̂A(π)

)2 ∣∣∣ BνN]
− E

[
XBP̂A(π)

∣∣∣ BνN]2 , (1)

with

XBP̂A(π)2 =∑
π′,π′′∈Γ(B)

αB(π, π′)αB(π, π′′)
∑

σ′,σ′′∈Γ(A)
π′⊂σ′

π′′⊂σ′′

P̂A(σ′)P̂A(σ′′).

Now, for σ, σ′ ∈ Γ(A),

E
[
P̂A(σ′)P̂A(σ′′)

∣∣∣ BνN]
= E

 1

|ÎA|2
∑
i∈ÎA

I{π(i) = σ′}
∑
i∈IA

I{π(i) = σ′′}

∣∣∣∣∣ BνN


=
1

|IA|2
∑
i,j∈IA

P
[
π(i) = σ′, π(j) = σ′′

]
.

If i = j,

P
[
π(i) = σ′, π(j) = σ′′

]
= PA(σ′)I{σ′ = σ′′}

and if i 6= j,

P
[
π(i) = σ′, π(j) = σ′′

]
= PA(σ′)PA(σ′′),
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because the π(i)’s are independent. Thus

E
[
P̂A(σ′)P̂A(σ′′)

∣∣∣ BνN] =

|ÎA| − 1

|ÎA|
PA(σ′)PA(σ′′) +

I{σ′ = σ′′}
|ÎA|

PA(σ′)

and so∑
σ′,σ′′∈Γ(A)
π′⊂σ′

π′′⊂σ′′

E
[
P̂A(σ′)P̂A(σ′′)

∣∣∣ BνN] =

|ÎA| − 1

|ÎA|
MBPA(π′)MBPA(π′′)+

I{π′ = π′′}
|ÎA|

MBPA(π′),

because for π′, π′′ ∈ Γ(B), π′ ⊂ σ′ and π′′ ⊂ σ′ implies
π′ = π′′ (in other words, σ′ has a unique subword of con-
tent B). Therefore

E
[(
XBP̂A(π)

)2 ∣∣∣ BνN] =
|ÎA| − 1

|ÎA|
XBPA(π)2

+
1

|ÎA|

∑
π′∈Γ(B)

αB(π, π′)2MBPA(π′)

and injecting this result into (1) gives

Var
[
XBP̂A(π)

∣∣∣ BνN] =
1

|ÎA|
(
X2
BPA(π)−XBPA(π)2

)
,

where X2
Bf :=

∑
π′∈Γ(B) αB(π, π′)2MBf(π′) for f ∈⊔

A∈P(JnK) L(Γ(A)). Gathering all the calculations, one
obtains

Var
[
X̂B,θ̂(π)

]
= E

 ∑
A∈ÂN∩Q(B)

θ̂(A)2

|ÎA|


×
(
X2
BPA(π)−XBPA(π)2

)
.

Lemma 4. For all B ∈ P(A),

E

 ∑
A∈ÂN∩Q(B)

θ̂WLS(A)

 = 1− (1− ν[Q(B)])
N
,

E

 ∑
A∈ÂN∩Q(B)

θ̂WLS(A)2

|ÎA|

 = E
[
I{ZBN ≥ 1}

ZBN

]
,

where for any collection S ⊂ P(JnK), ν[S] :=∑
A∈S ν(A), and ZBN is a binomial random variable of pa-

rameters N and ν[Q(B)].

Proof. By definition, the coefficients of the WLS estimator
are given for all A ∈ ÂN ∩Q(B) by

θ̂WLS(A) :=
ν̂N (A)∑

A′∈ÂN∩Q(B) ν̂N (A′)
.

For B ∈ P(A),

E

 ∑
A∈ÂN∩Q(B)

θ̂WLS(A)


= E

 ∑
A∈ÂN∩Q(B)

θ̂WLS(A)

∣∣∣∣∣B ∈ P(ÂN )


× P

[
B ∈ P(ÂN )

]
,

because
∑
A∈ÂN∩Q(B) θ̂

WLS(A) = 0 when ÂN ∩
Q(B) = ∅. On the one hand,

E

 ∑
A∈ÂN∩Q(B)

θ̂WLS(A)

∣∣∣∣∣B ∈ P(ÂN )


= E

 ∑
A∈ÂN∩Q(B)

ν̂N (A)∑
A′∈ÂN∩Q(B) ν̂N (A′)

 = 1,

and on the other hand,

P
[
B ∈ P(ÂN )

]
= 1− P

[
B 6∈ P(ÂN )

]
= 1− P

[
N⋂
i=1

{B 6⊂ Ai}

]
= 1− P [B 6⊂ A]

N
,

where A is a random variable on P(JnK) of law ν. Then
P [B 6⊂ A] = 1− P [B ⊂ A] = 1−

∑
A∈Q(B) ν(A).

Similarly,

E

 ∑
A∈ÂN∩Q(B)

θ̂WLS(A)2

|ÎA|


= E

 ∑
A∈ÂN∩Q(B)

θ̂WLS(A)2

|ÎA|
I{B ∈ P(ÂN )}


= E

 ∑
A∈ÂN∩Q(B)

ν̂N (A)2I{B ∈ P(ÂN )}
|ÎA|(

∑
A′∈ÂN∩Q(B) ν̂N (A′))2


= E

[ ∑
A∈ÂN∩Q(B) |ÎA|

(
∑
A′∈ÂN∩Q(B) |ÎA′ |)2

I{B ∈ P(ÂN )}

]

= E

[
1∑

A∈ÂN∩Q(B) |ÎA|
I{B ∈ P(ÂN )}

]
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(we recall that ν̂N (A) = |ÎA|/N ). Now, by definition

∑
A∈ÂN∩Q(B)

|ÎA| =
N∑
i=1

I{Ai ⊃ B}.

We denote by ZB this random variable. The Ai’s being
IID, ZBN is a binomial random variable of parameters N
and P[Ai ⊃ B] = ν[Q(B)]. Furthermore, the event {B ∈
P(ÂN )} is equal to {ZBN ≥ 1}. Thus in conclusion,

E

 ∑
A∈ÂN∩Q(B)

θ̂WLS(A)2

|ÎA|

 = E
[
I{ZBN ≥ 1}

ZBN

]
.

Proof of Theorem 4. For B ∈ P(JnK) and X̂B ∈
F(BN , L(Γ(B))), one has the usual bias-variance decom-
position

E
[
‖X̂B −XBp‖2B

]
=

∑
π∈Γ(B)

(
E
[
X̂B(π)

]
−XBp(π)

)2

+
∑

π∈Γ(B)

Var
[
X̂B(π)

]
.

Therefore, combining Proposition 1, and Lemmas 3 and 4,
one obtains

E
(
q̂WLS
N

)
≤

∑
B∈P(A)

νφ(B)E
[
‖X̂WLS

B −XBp‖2B
]

≤
∑

B∈P(A)

νφ(B)

 ∑
π∈Γ(B)

(
E
[
X̂WLS
B (π)

]
−XBp(π)

)2

+
∑

π∈Γ(B)

Var
[
X̂WLS
B (π)

]
≤

∑
B∈P(A)

νφ(B)

(
‖XBp‖2B(1− ν[Q(B)])2N

+
∑

π∈Γ(B)

(
X2
Bp(π)−XBp(π)2

)
E
[
I{ZBN ≥ 1}

ZBN

] .

Notice that for z ≥ 1, z + 1 ≤ 2z, so that

I{ZBN ≥ 1}
ZBN

≤ 2

ZBN + 1
.

Now, Chao & Strawderman (1972) provides the following
closed-form expression, for a binomial random variable Z
of parameters (n, p),

E
[

1

Z + 1

]
=

1− (1− p)n+1

p(n+ 1)
.

Therefore,

E
[
I{ZBN ≥ 1}

ZBN

]
≤ 2

ν[Q(B)](N + 1)
.

Defining the constants

C1 = 2
∑

B∈P(A)

νφ(B)
∑
π∈Γ(B)

(
X2
Bp(π)−XBp(π)2

)
ν[Q(B)]

C2 =
∑

B∈P(A)

νφ(B)‖XBp‖2B

ρ = 1− min
B∈P(A)

ν[Q(B)]

gives the desired formula. Since Q(B) ∩ A 6= ∅ for
B ∈ P(A), one has ν[Q(B)] > 0 for all B ∈ P(A) and
therefore ρ < 1. This concludes the proof.

4. Computation of wavelet projections
The computation of wavelet projections only involves the
parameters αB(π, π′) for B ∈ P(JnK) and π, π′ ∈
Γ(B). Their computation can be made once and for
all applications. Here we show how to perform it effi-
ciently. The first simplification comes from the follow-
ing lemma, established in Clémençon et al. (2014). For
π = πA . . . πk ∈ Γn and σ ∈ Sn, we denote by σ(π) the
word σ(π1) . . . σ(πk) ∈ Γ(σ(c(π))).

Lemma 5. Let B ∈ P(JnK) and σ ∈ Sn a permutation
that keeps the order of the items in B, i.e. such that for all
b, b′ ∈ B, b < b′ ⇒ σ(b) < σ(b′). Then for all π, π′ ∈
Γ(B),

αB(π, π′) = ασ(B)(σ(π), σ(π′)).

Lemma 5 implies two simplifications:

• First, for k ∈ {2, . . . , n}, the coefficients
(αB(π, π′))π,π′∈Γ(B) are obtained directly from the
(α{1,...,k}(π, π

′))π,π′∈Γ({1,...,k}) for all B ⊂ JnK with
|B| = k.

• Second, for B = {b1, . . . , bk} ∈ P(JnK) with b1 <
· · · < bk, the coefficients (αB(π, π′))π′∈Γ(B) are ob-
tained directly from the (αB(b1 . . . bk, π

′))π′∈Γ(B) for
any π ∈ Γ(B).

Example 1. Let B = {2, 4, 5} and σ ∈ Sn such that
σ(2) = 1, σ(4) = 2 and σ(5) = 3. Then for π, π′ ∈
Γ({2, 4, 5}), α{2,4,5}(π, π′) = α{1,2,3}(σ(π), σ(π′)).

With the precedent simplifications, one only
needs to compute and store the k! coefficients
(α{1,...,k}(12 . . . k, π))π∈Γ({1,...,k}) for each k ∈
{2, . . . ,K}. We now further describe how the com-
putation of each α{1,...,k}(12 . . . k, π) can be made
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efficiently. By construction

XAF = F − φAX∅F −
∑

B∈P(A)\{A}

φAXBF

for any A ∈ P(JnK) and F ∈ L(Γ(A)). Applying Lemma
1 gives the following recursive formula for the αB(π, π′)’s.

Lemma 6. Let B ∈ P(JnK) and k = |B|. Then for all
π, π′ ∈ Γ(B),

αB(π, π′) = I{π = π′} − 1

k!

−
∑

1≤i<j≤k
j−i<k−1

1

(k − j + i)!
αc(πJi,jK)

(
πJi,jK, π

′
|c(πJi,jK)

)
.

Using lemma 6, it is easy to see that the computation of all
the α{1,...,k}(12 . . . k, π) for π ∈ Γ({1, . . . , k}) and k ∈
{2, . . . ,K} can be implemented with complexity bounded
by k2. Combined with all the precedent simplifications,
this shows the following result.

Lemma 7. For K ∈ {2, . . . , n}, the computation of all
coefficients αB(π, π′) for π, π′ ∈ Γ(B) and B ∈ P(JnK)
with |B| ≤ K has complexity bounded by K2K!.

Example 2. The following tables give the values of the co-
efficients (α{1,...,k}(12 . . . k, π))π∈Γ({1,...,k}) for k = 2:

π α{1,2}(12, π)
12 1/2
21 −1/2

and k = 3:

π α{1,2,3}(123, π)
123 1/3
132 −1/6
213 −1/6
231 −1/6
312 −1/6
321 1/3

5. Technical proofs of Section 5
Proof of Proposition 3. By construction, any MRA-based
linear ranking model can be stored directly as the collection
of estimators (X̂B)B∈P(ÂN ) and not as a function on Sn.

Denoting by N̂ the total number of parameters to be stored,
one then has

N̂ ≤
∑

B∈P(ÂN )

|B|! ≤ K! |P(ÂN )|

≤ K!
∑
A∈ÂN

2|A| ≤ K! 2K |ÂN |,

which gives the result because |ÂN | ≤ min(N, |A|). Now
for any A ∈ P(JnK), the marginal on A of q̂N is given by
MAq̂N =

∑
B∈P(A)∪{∅} φAX̂B , where we set by conven-

tion X̂B = 0 for B ∈ P(JnK) \ P(A). Applying Lemma
1, one then has for any π ∈ Γ(A) with k = |A|,

MAq̂N (π) =
1

k!
+

∑
1≤i<j≤k

1

(k − j + i)!
X̂c(πJi,jK)(πJi,jK).

The computation of MAq̂N (π) thus requires at most k(k−
1)/2 operations.

Proof of Proposition 4. Using the formula of Definition 4,

X̂WLS
B (π) =

∑
A∈ÂN∩Q(B)

θ̂WLS(A)XBP̂A(π)

=
∑

A∈ÂN∩Q(B)

ν̂N (A)∑
A′∈ÂN∩Q(B) ν̂N (A′)∑

π′∈Γ(B)

αB(π, π′)MBP̂A(π′).

Now, for A ∈ P(JnK) and π′ ∈ Γ(B),

MBP̂A(π′) =
∑

π∈Γ(A), π′⊂π

P̂A(π)

=
∑

π∈Γ(A), π′⊂π

1

|ÎA|

∑
i∈ÎA

I{π(i) = π}

=
1

|ÎA|
|{i ∈ ÎA | π′ ⊂ π}|.

Thus, recalling that ν̂N (A) = |ÎA|/N for A ∈ P(JnK),

X̂WLS
B (π) =

1∑
A′∈ÂN∩Q(B) |ÎA′ |

×
∑

A∈ÂN∩Q(B)

|{i ∈ ÎA | π′ ⊂ π}|,

which concludes the proof.

Proof of Proposition 5. The explicit formula given by
Proposition 4 for the WLS estimators X̂WLS

B shows that
their computation can be decomposed in two steps:

• Compute all the |ÎA| for A ∈ ÂN and all the |{1 ≤
i ≤ N | π′ ⊂ π(i)}| for π ∈ Γn such that c(π) ∈
P(ÂN )

• Compute all the X̂WLS
B (π) for all B ∈ P(ÂN ) and

π ∈ Γ(B) using the quantities computed in the first
step and the pre-computed coefficients αB(π, π′) for
π, π′ ∈ Γ(B) and B ∈ P(ÂN ).
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The first step is a simple counting of occurrence numbers
and it can be performed in one loop over the dataset DN
with complexity bounded by N2K . The second step re-
quires for each couple (B, π) ∈ P(ÂN ) × Γ(B) at most∑
A∈ÂN∩Q(B)(|ÎA| + 1) operations. Indeed, the number

of rankings π′ ∈ Γ(B) for which |{1 ≤ i ≤ N | π′ ⊂
π(i)}| 6= 0 is bounded by

∑
A∈ÂN∩Q(B) |ÎA|. The global

complexity of the second step is therefore bounded by∑
B∈P(ÂN )

|B|!
∑

A∈ÂN∩Q(B)

(|ÎA|+ 1)

≤ K!
∑
A∈ÂN

∑
B∈P(A)

(|ÎA|+ 1)

≤ K!2K
∑
A∈ÂN

(|ÎA|+ 1)

≤ K!2K(N + |A|),

because
∑
A∈ÂN

|ÎA| = N by definition and |ÂN | ≤ |A|.
The global complexity of the two steps is then bounded by
2K(K! + 1)(N + |A|).

References
Chao, M.T. and Strawderman, W.E. Negative moments of

positive random variables. Journal of the American Sta-
tistical Society, 67:429–431, 1972.
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