
Supplementary Material for Scalable Bayesian Optimization Using
Deep Neural Networks

Jasper Snoek∗ jsnoek@seas.harvard.edu
Oren Rippel†∗ rippel@math.mit.edu
Kevin Swersky§ kswersky@cs.toronto.edu
Ryan Kiros§ rkiros@cs.toronto.edu
Nadathur Satish‡ nadathur.rajagopalan.satish@intel.com
Narayanan Sundaram‡ narayanan.sundaram@intel.com
Md. Mostofa Ali Patwary‡ mostofa.ali.patwary@intel.com
Prabhat? prabhat@lbl.gov
Ryan P. Adams∗ rpa@seas.harvard.edu
∗Harvard University, School of Engineering and Applied Sciences
†Massachusetts Institute of Technology, Department of Mathematics
§University of Toronto, Department of Computer Science
‡Intel Labs, Parallel Computing Lab
?NERSC, Lawrence Berkeley National Laboratory

A. Convolutional neural network
experiment specifications

In this section we elaborate on the details of the net-
work architecture, training and the meta-optimization.
In the following subsections we elaborate on the hyper-
parametrization scheme. The priors on the hyperpa-
rameters as well as their optimal configurations for the
two datasets can be found in Table 2.

A.1. Architecture

The model architecture is specified in Table 1.

A.2. Data augmentation

We corrupt each input in a number of ways. Below we
describe our parametrization of these corruptions.

HSV We shift the hue, saturation and value fields
of each input by global constants bH ∼ U(−BH , BH),
bS ∼ U(−BS , BS), bV ∼ U(−BV , BV). Similarly,
we globally stretch the saturation and value
fields by global constants aS ∼ U(1

1+AS
, 1 +AS),

aV ∼ U(1
1+AV

, 1 +AV).

Scalings Each input is scaled by some factor
s ∼ U(1

1+S , 1 + S).

Translations We crop each input to size 27 × 27,
where the window is chosen randomly and uniformly.

Layer type # Filters Window Stride

Convolution 96 3 × 3

Convolution 96 3 × 3

Max pooling 3 × 3 2

Convolution 192 3 × 3

Convolution 192 3 × 3

Convolution 192 3 × 3

Max pooling 3 × 3 2

Convolution 192 3 × 3

Convolution 192 1 × 1

Convolution 10/100 1 × 1

Global averaging 6 × 6

Softmax

Table 1. Our convolutional neural network architecture.
This choice was chosen to be maximally generic. Each
convolution layer is followed by a ReLU nonlinearity.

Horizontal reflections Each input is reflected hor-
izontally with a probability of 0.5.

Pixel dropout Each input element is dropped in-
dependently and identically with some random prob-
ability D0.

A.3. Initialization and training procedure

We initialize the weights of each convolution layer m
with i.i.d zero-mean Gaussians with standard devia-

Supplementary Material for Scalable Bayesian Optimization Using Deep Neural Networks

tion σ√
Fm

where Fm is the number of parameters per

filter for that layer. We chose this parametrization to
produce activations whose variances are invariant to
filter dimensionality. We use the same standard devia-
tion for all layers but the input, for which we dedicate
its own hyperparameter σI as it oftentimes varies in
scale from deeper layers in the network.

We train the model using the standard stochastic gra-
dient descent and momentum optimizer. We use mini-
batch size of 128, and tune the momentum and learn-
ing rate, which we parametrize as 1 − 0.1M and 0.1L

respectively. We anneal the learning rate by a factor of
0.1 at epochs 130 and 190. We terminate the training
after 200 epochs.

We regularize the weights of all layers with weight de-
cay coefficient W . We apply dropout on the outputs
of the max pooling layers, and tune these rates D1, D2

separately.

A.4. Testing procedure

We evaluate the performance of the learned model by
averaging its log-probability predictions on 100 sam-
ples drawn from the input corruption distribution,
with masks drawn from the unit dropout distribution.

B. Additional figures for image caption
generation

In Figures 1(a) and 1(b) we provide some additional vi-
sualization of the results from the image caption gener-
ation experiments from Section 4.2 to highlight the be-
havior of the Bayesian optimization routine. Both fig-
ures show the validation BLEU-4 Score on MS COCO
corresponding to different hyperparameter configura-
tions as evaluated over iterations of the optimization
procedure. In Figure 1(a), these are represented as
a planar histogram, where the shade of each bin in-
dicates the total count within it. The current best
validation score discovered is traced in black. Fig-
ure 1(b) shows a scatter plot of the validation score
of all the experiments in the order in which they fin-
ished. Validation scores of 0 correspond to constraint
violations. These figures demonstrate the exploration-
versus-exploitation paradigm of Bayesian Optimiza-
tion, in which the algorithm trades off visiting unex-
plored parts of the space, and focusing on parts which
show promise.

C. Multimodal neural language model
hyperparameters

C.1. Description of the hyperparameters

We optimize a total of 11 hyperparameters of the log-
bilinear model (LBL). Below we explain what these
hyperparameters refer to.

Model The LBL model has two variants, an additive
model where the image features are incorporated via
an additive bias term, and a multiplicative that uses
a factored weight tensor to control the interaction be-
tween modalities.

Context size The goal of the LBL is to predict the
next word given a sequence of words. The context size
dictates the number of words in this sequence.

Learning rate, momentum, batch size These
are optimization parameters used during stochastic
gradient learning of the LBL model parameters. The
optimization over learning rate is carried out in log-
space, but the proposed learning rate is exponentiated
before being passed to the training procedure.

Hidden layer size This controls the size of the joint
hidden representation for words and images.

Embedding size Words are represented by feature
embeddings rather than one-hot vectors. This is the
dimensionality of the embedding.

Dropout A regularization parameter that deter-
mines the amount of dropout to be added to the hidden
layer.

Context decay, Word decay L2 regularization on
the input and output weights respectively. Like the
learning rate, these are optimized in log-space as they
vary over several orders of magnitude.

Factors The rank of the weight tensor. Only rele-
vant for the multiplicative model.

Supplementary Material for Scalable Bayesian Optimization Using Deep Neural Networks

0 500 1000 1500 2000

Iteration #

0

5

10

15

20

25

V
al

id
at

io
n
 B

LE
U

-4
 S

co
re

Current best

(a) Heatmap

Iteration #
500 1000 1500 2000 2500

V
a

lid
a

tio
n

 B
L

E
U

-4
 S

c
o

re

0

5

10

15

20

25

(b) Scatter Plot

Figure 1. Validation BLEU-4 Score on MS COCO corresponding to different hyperparameter configurations as evaluated
over time. In Figure 1(a), these are represented as a planar histogram, where the shade of each bin indicates the total
count within it. The current best validation score discovered is traced in black. Figure 1(b) shows a scatter plot of the
validation score of all the experiments in the order in which they finished. This projection demonstrates the exploration-
versus-exploitation paradigm of Bayesian Optimization, in which the algorithm trades off visiting unexplored parts of the
space, and focusing on parts which show promise.

Hyperparameter Notation Support of prior CIFAR-10 Optimum CIFAR-100 Optimum

Momentum M [0.5, 2] 1.6242 1.3339
Learning rate L [1, 4] 2.7773 2.1205
Initialization deviation σI [0.5, 1.5] 0.83359 1.5570
Input initialization deviation σ [0.01, 1] 0.025370 0.13556
Hue shift BH [0, 45] 31.992 19.282
Saturation scale AS [0, 0.5] 0.31640 0.30780
Saturation shift BS [0, 0.5] 0.10546 0.14695
Value scale AS [0, 0.5] 0.13671 0.13668
Value shift BS [0, 0.5] 0.24140 0.010960
Pixel dropout D0 [0, 0.3] 0.19921 0.00056598
Scaling S [0, 0.3] 0.24140 0.12463
L2 weight decay W [2, 5] 4.2734 3.1133
Dropout 1 D1 [0, 0.7] 0.082031 0.081494
Dropout 2 D2 [0, 0.7] 0.67265 0.38364

Table 2. Specification of the hyperparametrization scheme, and optimal hyperparameter configurations found.

Supplementary Material for Scalable Bayesian Optimization Using Deep Neural Networks

Hyperparameter Support of prior Notes COCO Optimum

Model {additive,multiplicative} additive
Context size [3, 25] 5
Learning rate [0.001, 10] Log-space 0.43193
Momentum [0, 0.9] 0.23269
Batch size [20, 200] 40
Hidden layer size [100, 2000] 441
Embedding size {50, 100, 200} 100
Dropout [0, 0.7] 0.14847
Word decay [10−9, 10−3] Log-space 2.98456−7

Context decay [10−9, 10−3] Log-space 1.09181−8

Factors [50, 200] Multiplicative model only -

Table 3. Specification of the hyperparametrization scheme, and optimal hyperparameter configurations found for the
multimodal neural language model. For parameters marked log-space, the log is given to the Bayesian optimization
routine and the result is exponentiated before being passed into the multimodal neural language model for training.
Square brackets denote a range of parameters, while curly braces denote a set of options.

