
Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Appendix

A. Conditional Entropy Bounds Derivation

The conditional entropy H
q

�
X

(t�1)|X(t)

�
of a step in the reverse trajectory is

H
q

⇣
X

(t�1),X(t)

⌘
= H

q

⇣
X

(t),X(t�1)

⌘
(24)

H
q

⇣
X

(t�1)|X(t)

⌘
+H

q

⇣
X

(t)

⌘
= H

q

⇣
X

(t)|X(t�1)

⌘
+H

q

⇣
X

(t�1)

⌘
(25)

H
q

⇣
X

(t�1)|X(t)

⌘
= H

q

⇣
X

(t)|X(t�1)

⌘
+H

q

⇣
X

(t�1)

⌘
�H

q

⇣
X

(t)

⌘
(26)

An upper bound on the entropy change can be constructed by observing that ⇡ (y) is the maximum entropy distribution.
This holds without qualification for the binomial distribution, and holds for variance 1 training data for the Gaussian case.
For the Gaussian case, training data must therefore be scaled to have unit norm for the following equalities to hold. It need
not be whitened. The upper bound is derived as follows,

H
q

⇣
X

(t)

⌘
� H

q

⇣
X

(t�1)

⌘
(27)

H
q

⇣
X

(t�1)

⌘
�H

q

⇣
X

(t)

⌘
 0 (28)

H
q

⇣
X

(t�1)|X(t)

⌘
 H

q

⇣
X

(t)|X(t�1)

⌘
. (29)

A lower bound on the entropy difference can be established by observing that additional steps in a Markov chain do not
increase the information available about the initial state in the chain, and thus do not decrease the conditional entropy of
the initial state,

H
q

⇣
X

(0)|X(t)

⌘
� H

q

⇣
X

(0)|X(t�1)

⌘
(30)

H
q

⇣
X

(t�1)

⌘
�H

q

⇣
X

(t)

⌘
� H

q

⇣
X

(0)|X(t�1)

⌘
+H

q

⇣
X

(t�1)

⌘
�H

q

⇣
X

(0)|X(t)

⌘
�H

q

⇣
X

(t)

⌘
(31)

H
q

⇣
X

(t�1)

⌘
�H

q

⇣
X

(t)

⌘
� H

q

⇣
X

(0),X(t�1)

⌘
�H

q

⇣
X

(0),X(t)

⌘
(32)

H
q

⇣
X

(t�1)

⌘
�H

q

⇣
X

(t)

⌘
� H

q

⇣
X

(t�1)|X(0)

⌘
�H

q

⇣
X

(t)|X(0)

⌘
(33)

H
q

⇣
X

(t�1)|X(t)

⌘
� H

q

⇣
X

(t)|X(t�1)

⌘
+H

q

⇣
X

(t�1)|X(0)

⌘
�H

q

⇣
X

(t)|X(0)

⌘
. (34)

Combining these expressions, we bound the conditional entropy for a single step,

H
q

⇣
X

(t)|X(t�1)

⌘
� H

q

⇣
X

(t�1)|X(t)

⌘
� H

q

⇣
X

(t)|X(t�1)

⌘
+H

q

⇣
X

(t�1)|X(0)

⌘
�H

q

⇣
X

(t)|X(0)

⌘
, (35)

where both the upper and lower bounds depend only on the conditional forward trajectory q
�
x

(1···T)|x(0)

�
, and can be

analytically computed.

B. Log Likelihood Lower Bound

The lower bound on the log likelihood is

L � K (36)

K =

Z
dx(0···T)q

⇣
x

(0···T)

⌘
log

"
p
⇣
x

(T)

⌘ TY

t=1

p
�
x

(t�1)|x(t)

�

q
�
x

(t)|x(t�1)

�
#

(37)

(38)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

B.1. Entropy of p
�
X

(T)

�

We can peel off the contribution from p
�
X

(T)

�
, and rewrite it as an entropy,

K =

Z
dx(0···T)q

⇣
x

(0···T)

⌘ TX

t=1

log

"
p
�
x

(t�1)|x(t)

�

q
�
x

(t)|x(t�1)

�
#
+

Z
dx(T)q

⇣
x

(T)

⌘
log p

⇣
x

(T)

⌘
(39)

=

Z
dx(0···T)q

⇣
x

(0···T)

⌘ TX

t=1

log

"
p
�
x

(t�1)|x(t)

�

q
�
x

(t)|x(t�1)

�
#
+

Z
dx(T)q

⇣
x

(T)

⌘
log ⇡

�
x

T

�
(40)

. (41)

By design, the cross entropy to ⇡
�
x

(t)

�
is constant under our diffusion kernels, and equal to the entropy of p

�
x

(T)

�
.

Therefore,

K =

TX

t=1

Z
dx(0···T)q

⇣
x

(0···T)

⌘
log

"
p
�
x

(t�1)|x(t)

�

q
�
x

(t)|x(t�1)

�
#
�H

p

⇣
X

(T)

⌘
. (42)

B.2. Remove the edge effect at t = 0

In order to avoid edge effects, we set the final step of the reverse trajectory to be identical to the corresponding forward
diffusion step,

p
⇣
x

(0)|x(1)

⌘
= q

⇣
x

(1)|x(0)

⌘ ⇡
�
x

(0)

�

⇡
�
x

(1)

�
= T

⇡

⇣
x

(0)|x(1)

;�
1

⌘
. (43)

We then use this equivalence to remove the contribution of the first time-step in the sum,

K =

TX

t=2

Z
dx(0···T)q

⇣
x

(0···T)

⌘
log

"
p
�
x

(t�1)|x(t)

�

q
�
x

(t)|x(t�1)

�
#
+

Z
dx(0)dx(1)q

⇣
x

(0),x(1)

⌘
log

"
q
�
x

(1)|x(0)

�
⇡
�
x

(0)

�

q
�
x

(1)|x(0)

�
⇡
�
x

(1)

�
#
�H

p

⇣
X

(T)

⌘

(44)

=

TX

t=2

Z
dx(0···T)q

⇣
x

(0···T)

⌘
log

"
p
�
x

(t�1)|x(t)

�

q
�
x

(t)|x(t�1)

�
#
�H

p

⇣
X

(T)

⌘
, (45)

where we again used the fact that by design �
R
dx(t)q

�
x

(t)

�
log ⇡

�
x

(t)

�
= H

p

�
X

(T)

�
is a constant for all t.

B.3. Rewrite in terms of posterior q
�
x

(t�1)|x(0)

�

Because the forward trajectory is a Markov process,

K =

TX

t=2

Z
dx(0···T)q

⇣
x

(0···T)

⌘
log

"
p
�
x

(t�1)|x(t)

�

q
�
x

(t)|x(t�1),x(0)

�
#
�H

p

⇣
X

(T)

⌘
. (46)

Using Bayes’ rule we can rewrite this in terms of a posterior and marginals from the forward trajectory,

K =

TX

t=2

Z
dx(0···T)q

⇣
x

(0···T)

⌘
log

"
p
�
x

(t�1)|x(t)

�

q
�
x

(t�1)|x(t),x(0)

� q
�
x

(t�1)|x(0)

�

q
�
x

(t)|x(0)

�
#
�H

p

⇣
X

(T)

⌘
. (47)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

B.4. Rewrite in terms of KL divergences and entropies

We then recognize that several terms are conditional entropies,

K =

TX

t=2

Z
dx(0···T)q

⇣
x

(0···T)

⌘
log

"
p
�
x

(t�1)|x(t)

�

q
�
x

(t�1)|x(t),x(0)

�
#
+

TX

t=2

h
H

q

⇣
X

(t)|X(0)

⌘
�H

q

⇣
X

(t�1)|X(0)

⌘i
�H

p

⇣
X

(T)

⌘

(48)

=

TX

t=2

Z
dx(0···T)q

⇣
x

(0···T)

⌘
log

"
p
�
x

(t�1)|x(t)

�

q
�
x

(t�1)|x(t),x(0)

�
#
+H

q

⇣
X

(T)|X(0)

⌘
�H

q

⇣
X

(1)|X(0)

⌘
�H

p

⇣
X

(T)

⌘
.

(49)

Finally we transform the log ratio of probability distributions into a KL divergence,

K = �
TX

t=2

Z
dx(0)dx(t)q

⇣
x

(0),x(t)

⌘
D

KL

⇣
q
⇣
x

(t�1)|x(t),x(0)

⌘���
���p
⇣
x

(t�1)|x(t)

⌘⌘
(50)

+H
q

⇣
X

(T)|X(0)

⌘
�H

q

⇣
X

(1)|X(0)

⌘
�H

p

⇣
X

(T)

⌘
.

Note that the entropies can be analytically computed, and the KL divergence can be analytically computed given x

(0) and
x

(t).

C. Markov Kernel of Perturbed Distribution

In Equations 19 and 20, the perturbed diffusion kernels are set as follows (unlike in the text body, we include the normal-
ization constant)

q̃
⇣
x

(t)|x(t�1)

⌘
=

q
�
x

(t)|x(t�1)

�
r
�
x

(t)

�
R
dx(t)q

�
x

(t)|x(t�1)

�
r
�
x

(t)

� , (51)

q̃
⇣
x

(t�1)|x(t)

⌘
=

q
�
x

(t�1)|x(t)

�
r
�
x

(t�1)

�
R
dx(t�1)q

�
x

(t�1)|x(t)

�
r
�
x

(t�1)

� , (52)

or writing them instead in terms of the original transitions,

q
⇣
x

(t)|x(t�1)

⌘
=

q̃
�
x

(t)|x(t�1)

� R
dx(t)q

�
x

(t)|x(t�1)

�
r
�
x

(t)

�

r
�
x

(t)

� , (53)

q
⇣
x

(t�1)|x(t)

⌘
=

q̃
�
x

(t�1)|x(t)

� R
dx(t�1)q

�
x

(t�1)|x(t)

�
r
�
x

(t�1)

�

r
�
x

(t�1)

� . (54)

Similarly, we write Equation 16 in terms of the original forward distributions,

q
⇣
x

(t)

⌘
=

q̃
�
x

(t)

�
˜Z
t

r
�
x

(t)

� . (55)

We substitute into Equation 17,

q
⇣
x

(t�1)

⌘
q
⇣
x

(t)|x(t�1)

⌘
= q

⇣
x

(t)

⌘
q
⇣
x

(t�1)|x(t)

⌘
, (56)

q̃
�
x

(t�1)

�
˜Z
t�1

r
�
x

(t�1)

� q̃
�
x

(t)|x(t�1)

� R
dx(t)q

�
x

(t)|x(t�1)

�
r
�
x

(t)

�

r
�
x

(t)

�
=

q̃
�
x

(t)

�
˜Z
t

r
�
x

(t)

� q̃
�
x

(t�1)|x(t)

� R
dx(t�1)q

�
x

(t�1)|x(t)

�
r
�
x

(t�1)

�

r
�
x

(t�1)

� ,

(57)

q̃
⇣
x

(t�1)

⌘
q̃
⇣
x

(t)|x(t�1)

⌘
˜Z
t�1

Z
dx(t)q

⇣
x

(t)|x(t�1)

⌘
r
⇣
x

(t)

⌘
= q̃

⇣
x

(t)

⌘
q̃
⇣
x

(t�1)|x(t)

⌘
˜Z
t

Z
dx(t�1)q

⇣
x

(t�1)|x(t)

⌘
r
⇣
x

(t�1)

⌘
.

(58)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Figure App.1. Samples from a diffusion probabilistic model trained on MNIST digits. Note that unlike many MNIST sample figures,
these are true samples rather than the mean of the Gaussian or binomial distribution from which samples would be drawn.

We then substitute ˜Z
t

=

R
dx(t)q

�
x

(t)

�
r
�
x

(t)

�
,

q̃
⇣
x

(t�1)

⌘
q̃
⇣
x

(t)|x(t�1)

⌘Z
dx(t�1)q

⇣
x

(t�1)

⌘
r
⇣
x

(t�1)

⌘Z
dx(t)q

⇣
x

(t)|x(t�1)

⌘
r
⇣
x

(t)

⌘
(59)

= q̃
⇣
x

(t)

⌘
q̃
⇣
x

(t�1)|x(t)

⌘Z
dx(t)q

⇣
x

(t)

⌘
r
⇣
x

(t)

⌘Z
dx(t�1)q

⇣
x

(t�1)|x(t)

⌘
r
⇣
x

(t�1)

⌘
,

q̃
⇣
x

(t�1)

⌘
q̃
⇣
x

(t)|x(t�1)

⌘Z
dx(t�1)dx(t)q

⇣
x

(t)|x(t�1)

⌘
q
⇣
x

(t�1)

⌘
r
⇣
x

(t)

⌘
r
⇣
x

(t�1)

⌘
(60)

= q̃
⇣
x

(t)

⌘
q̃
⇣
x

(t�1)|x(t)

⌘Z
dx(t�1)dx(t)q

⇣
x

(t�1)|x(t)

⌘
q
⇣
x

(t)

⌘
r
⇣
x

(t�1)

⌘
r
⇣
x

(t)

⌘
,

q̃
⇣
x

(t�1)

⌘
q̃
⇣
x

(t)|x(t�1)

⌘Z
dx(t�1)dx(t)q

⇣
x

(t�1),x(t)

⌘
r
⇣
x

(t)

⌘
r
⇣
x

(t�1)

⌘
(61)

= q̃
⇣
x

(t)

⌘
q̃
⇣
x

(t�1)|x(t)

⌘Z
dx(t�1)dx(t)q

⇣
x

(t�1),x(t)

⌘
r
⇣
x

(t�1)

⌘
r
⇣
x

(t)

⌘
.

We can now cancel the identical integrals on each side, achieving our goal of showing that the choice of perturbed Markov
transitions in Equations 19 and 20 satisfy Equation 18,

q̃
⇣
x

(t�1)

⌘
q̃
⇣
x

(t)|x(t�1)

⌘
= q̃

⇣
x

(t)

⌘
q̃
⇣
x

(t�1)|x(t)

⌘
. (62)

G
a

u
s
s
i
a

n
B

i
n

o
m

i
a

l

W
el

l
be

ha
ve

d
(a

na
ly

tic
al

ly
tra

ct
ab

le
)d

is
tri

bu
tio

n
⇡
� x

(
T
)

�
=

N
� x

(
T
)

;
0
,I
�

B
� x

(
T
)

;
0
.5
�

Fo
rw

ar
d

di
ff

us
io

n
ke

rn
el

q
� x

(
t
)

|x
(
t
�
1
)

�
=

N
� x

(
t
)

;
x

(
t
�
1
)

p
1
�
�
t

,I
�
t

�
B
� x

(
t
)

;
x

(
t
�
1
)

(
1
�
�
t

)
+
0
.5
�
t

�

R
ev

er
se

di
ff

us
io

n
ke

rn
el

p
� x

(
t
�
1
)

|x
(
t
)

�
=

N
� x

(
t
�
1
)

;
f

µ

� x
(
t
)

,t
� ,

f

⌃

� x
(
t
)

,t
��

B
� x

(
t
�
1
)

;
f

b

� x
(
t
)

,t
��

Tr
ai

ni
ng

ta
rg

et
s

f

µ

� x
(
t
)

,t
� ,f

⌃

� x
(
t
)

,t
� ,�

1
···

T

f

b

� x
(
t
)

,t
�

Fo
rw

ar
d

di
st

rib
ut

io
n

q
� x

(
0
···

T
)

�
=

q
� x

(
0
)

� Q
T t
=
1

q
� x

(
t
)

|x
(
t
�
1
)

�

R
ev

er
se

di
st

rib
ut

io
n

p
� x

(
0
···

T
)

�
=

⇡
� x

(
T
)

� Q
T t
=
1

p
� x

(
t
�
1
)

|x
(
t
)

�

Lo
g

lik
el

ih
oo

d
L
=

R
d
x

(
0
)

q
� x

(
0
)

� l
o
g
p
� x

(
0
)

�

Lo
w

er
bo

un
d

on
lo

g
lik

el
ih

oo
d

K
=

�
P

T t
=
2

E q
(

x

(
0
)
,
x

(
t
)
)

⇥ D
K

L

� q
� x

(
t
�
1
)

|x
(
t
)

,x
(
0
)

�� �
� � p
� x

(
t
�
1
)

|x
(
t
)

��
⇤ +

H
q

� X
(
T
)

|X
(
0
)

� �
H

q

� X
(
1
)

|X
(
0
)

� �
H

p

� X
(
T
)

�

Pe
rtu

rb
ed

fo
rw

ar
d

di
ff

us
io

n
ke

rn
el

q̃
� x

(
t
)

|x
(
t
�
1
)

�
=

N
✓
x

(
t
)

;
x

(
t
�
1
)

p
1
�
�
t

+

⇣
�

t

2

⌘
1 2

@
l
o
g
r

(

x

(
t
)
)

@
x

(
t
)

,I
�
t

◆
B
⇣ x

(
t
)

i

;

b

t i
d

t i

x

t i
d

t i
+
(
1
�
b

t i
)
(
1
�
d

t i
)

⌘

Pe
rtu

rb
ed

re
ve

rs
e

di
ff

us
io

n
ke

rn
el

p̃
� x

(
t
�
1
)

|x
(
t
)

�
=

N

x

(
t
�
1
)

;
f

µ

� x
(
t
)

,t
� +

✓
f

⌃
(

x

(
t
)
,
t

)

2

◆
1 2

@
l
o
g
r

(

x

(
t
�

1
)
)

@
x

(
t
)

,f
⌃

� x
(
t
)

,t
�!

B
⇣ x

(
t
�
1
)

i

;

c

t
�

1
i

d

t
�

1
i

x

t
�

1
i

d

t
�

1
i

+
(
1
�
c

t
�

1
i

)
(
1
�
d

t
�

1
i

)

⌘

Ta
bl

e
C

.1
.

Th
e

ke
y

eq
ua

tio
ns

in
th

is
pa

pe
rf

or
th

e
sp

ec
ifi

c
ca

se
so

fG
au

ss
ia

n
an

d
bi

no
m

ia
ld

iff
us

io
n

pr
oc

es
se

s.
N

(u
;µ

,
⌃
)

is
a

G
au

ss
ia

n
di

st
rib

ut
io

n
w

ith
m

ea
n
µ

an
d

co
va

ria
nc

e
⌃

.
B
(u
;r
)

is
th

e
di

st
rib

ut
io

n
fo

ra
si

ng
le

B
er

no
ul

li
tri

al
,w

ith
u
=

1
oc

cu
rr

in
g

w
ith

pr
ob

ab
ili

ty
r
,a

nd
u
=

0
oc

cu
rr

in
g

w
ith

pr
ob

ab
ili

ty
1
�

r
.F

in
al

ly
,f

or
th

e
pe

rtu
rb

ed
B

er
no

ul
li

tri
al

s
b

t i
=

x

(t
�
1
)
(1

�
�

t
)
+

0.
5�

t
,c

t i
=

h f

b

⇣ x

(t
+
1
)
,
t

⌘i

i,a
nd

d

t i
=

r

⇣ x

(t
)

i
=

1⌘ ,a
nd

th
e

di
st

rib
ut

io
n

is
gi

ve
n

fo
ra

si
ng

le
bi

ti
.

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

D. Experimental Details

D.1. Toy Problems

D.1.1. SWISS ROLL

A probabilistic model was built of a two dimensional swiss
roll distribution. The generative model p

�
x

(0···T)

�
con-

sisted of 40 time steps of Gaussian diffusion initialized
at an identity-covariance Gaussian distribution. A (nor-
malized) radial basis function network with a single hid-
den layer and 16 hidden units was trained to generate the
mean and covariance functions f

µ

�
x

(t), t
�

and a diago-
nal f

⌃

�
x

(t), t
�

for the reverse trajectory. The top, read-
out, layer for each function was learned independently for
each time step, but for all other layers weights were shared
across all time steps and both functions. The top layer out-
put of f

⌃

�
x

(t), t
�

was passed through a sigmoid to restrict
it between 0 and 1. As can be seen in Figure 1, the swiss
roll distribution was successfully learned.

D.1.2. BINARY HEARTBEAT DISTRIBUTION

A probabilistic model was trained on simple binary se-
quences of length 20, where a 1 occurs every 5th time
bin, and the remainder of the bins are 0. The generative
model consisted of 2000 time steps of binomial diffusion
initialized at an independent binomial distribution with the
same mean activity as the data (p

⇣
x
(T)

i

= 1

⌘
= 0.2). A

multilayer perceptron with sigmoid nonlinearities, 20 in-
put units and three hidden layers with 50 units each was
trained to generate the Bernoulli rates f

b

�
x

(t), t
�

of the re-
verse trajectory. The top, readout, layer was learned inde-
pendently for each time step, but for all other layers weights
were shared across all time steps. The top layer output was
passed through a sigmoid to restrict it between 0 and 1. As
can be seen in Figure 2, the heartbeat distribution was suc-
cessfully learned. The log likelihood under the true gener-
ating process is log

2

�
1

5

�
= �2.322 bits per sequence. As

can be seen in Figure 2 and Table 1 learning was nearly
perfect.

D.2. Images

D.2.1. ARCHITECTURE

Readout In all cases, a convolutional network was used
to produce a vector of outputs y

i

2 R2J for each image
pixel i. The entries in y

i

are divided into two equal sized
subsets, yµ and y

⌃.

Temporal Dependence The convolution output y

µ is
used as per-pixel weighting coefficients in a sum over time-
dependent “bump” functions, generating an output zµ

i

2 R

for each pixel i,

z

µ

i

=

JX

j=1

y

µ

ij

g
j

(t) . (63)

The bump functions consist of

g
j

(t) =
exp

⇣
� 1

2w

2 (t� ⌧
j

)

2

⌘

P
J

k=1

exp

⇣
� 1

2w

2 (t� ⌧
k

)

2

⌘ , (64)

where ⌧
j

2 (0, T) is the bump center, and w is the spacing
between bump centers. z⌃ is generated in an identical way,
but using y⌃.

For all image experiments a number of timesteps T = 1000

was used, except for the bark dataset which used T = 500.

Mean and Variance Finally, these outputs are combined
to produce a diffusion mean and variance prediction for
each pixel i,

⌃

ii

= �
�
z⌃
i

+ ��1

(�
t

)

�
, (65)

µ
i

= (x
i

� zµ
i

) (1� ⌃

ii

) + zµ
i

. (66)

where both ⌃ and µ are parameterized as a perturbation
around the forward diffusion kernel T

⇡

�
x

(t)|x(t�1)

;�
t

�
,

and zµ
i

is the mean of the equilibrium distribution that
would result from applying p

�
x

(t�1)|x(t)

�
many times. ⌃

is restricted to be a diagonal matrix.

Multi-Scale Convolution We wish to accomplish goals
that are often achieved with pooling networks – specif-
ically, we wish to discover and make use of long-range
and multi-scale dependencies in the training data. How-
ever, since the network output is a vector of coefficients
for every pixel it is important to generate a full resolution
rather than down-sampled feature map. We therefore define
multi-scale-convolution layers that consist of the following
steps:

1. Perform mean pooling to downsample the image to
multiple scales. Downsampling is performed in pow-
ers of two.

2. Performing convolution at each scale.
3. Upsample all scales to full resolution, and sum the re-

sulting images.
4. Perform a pointwise nonlinear transformation, con-

sisting of a soft relu (log [1 + exp (·)]).

The composition of the first three linear operations resem-
bles convolution by a multiscale convolution kernel, up to
blocking artifacts introduced by upsampling. This method
of achieving multiscale convolution was described in (Bar-
ron et al., 2013).

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

Figure D.1. Network architecture for mean function fµ

⇣
x

(t)
, t

⌘

and covariance function f⌃

⇣
x

(t)
, t

⌘
, for experiments in Section

3.2. The input image x

(t) passes through several layers of multi-
scale convolution (Section D.2.1). It then passes through several
convolutional layers with 1 ⇥ 1 kernels. This is equivalent to a
dense transformation performed on each pixel. A linear transfor-
mation generates coefficients for readout of both mean µ

(t) and
covariance ⌃(t) for each pixel. Finally, a time dependent readout
function converts those coefficients into mean and covariance im-
ages, as described in Section D.2.1. For CIFAR-10 a dense (or
fully connected) pathway was used in parallel to the multi-scale
convolutional pathway. For MNIST, the dense pathway was used
to the exclusion of the multi-scale convolutional pathway.

Dense Layers Dense (acting on the full image vector)
and kernel-width-1 convolutional (acting separately on the
feature vector for each pixel) layers share the same form.
They consist of a linear transformation, followed by a tanh
nonlinearity.

