
Deep Unsupervised Learning using

Nonequilibrium Thermodynamics

Jascha Sohl-Dickstein JASCHA@STANFORD.EDU

Stanford University

Eric A. Weiss EWEISS@BERKELEY.EDU

University of California, Berkeley

Niru Maheswaranathan NIRUM@STANFORD.EDU

Stanford University

Surya Ganguli SGANGULI@STANFORD.EDU

Stanford University

Abstract

A central problem in machine learning involves
modeling complex data-sets using highly flexi-
ble families of probability distributions in which
learning, sampling, inference, and evaluation
are still analytically or computationally tractable.
Here, we develop an approach that simultane-
ously achieves both flexibility and tractability.
The essential idea, inspired by non-equilibrium
statistical physics, is to systematically and slowly
destroy structure in a data distribution through
an iterative forward diffusion process. We then
learn a reverse diffusion process that restores
structure in data, yielding a highly flexible and
tractable generative model of the data. This ap-
proach allows us to rapidly learn, sample from,
and evaluate probabilities in deep generative
models with thousands of layers or time steps,
as well as to compute conditional and posterior
probabilities under the learned model. We addi-
tionally release an open source reference imple-
mentation of the algorithm.

1. Introduction

Historically, probabilistic models suffer from a tradeoff be-
tween two conflicting objectives: tractability and flexibil-

ity. Models that are tractable can be analytically evaluated
and easily fit to data (e.g. a Gaussian or Laplace). However,
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these models are unable to aptly describe structure in rich
datasets. On the other hand, models that are flexible can be
molded to fit structure in arbitrary data. For example, we
can define models in terms of any (non-negative) function
�(x) yielding the flexible distribution p (x) = �(x)

Z

, where
Z is a normalization constant. However, computing this
normalization constant is generally intractable. Evaluating,
training, or drawing samples from such flexible models typ-
ically requires a very expensive Monte Carlo process.

A variety of analytic approximations exist which amelio-
rate, but do not remove, this tradeoff–for instance mean
field theory and its expansions (T, 1982; Tanaka, 1998),
variational Bayes (Jordan et al., 1999), contrastive diver-
gence (Welling & Hinton, 2002; Hinton, 2002), minimum
probability flow (Sohl-Dickstein et al., 2011b;a), minimum
KL contraction (Lyu, 2011), proper scoring rules (Gneit-
ing & Raftery, 2007; Parry et al., 2012), score matching
(Hyvärinen, 2005), pseudolikelihood (Besag, 1975), loopy
belief propagation (Murphy et al., 1999), and many, many
more. Non-parametric methods (Gershman & Blei, 2012)
can also be very effective1.

1.1. Diffusion probabilistic models

We present a novel way to define probabilistic models that
allows:

1. extreme flexibility in model structure,
2. exact sampling,

1Non-parametric methods can be seen as transitioning
smoothly between tractable and flexible models. For instance,
a non-parametric Gaussian mixture model will represent a small
amount of data using a single Gaussian, but may represent infinite
data as a mixture of an infinite number of Gaussians.
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3. easy multiplication with other distributions, e.g. in or-
der to compute a posterior, and

4. the model log likelihood, and the probability of indi-
vidual states, to be cheaply evaluated.

Our method uses a Markov chain to gradually convert one
distribution into another, an idea used in non-equilibrium
statistical physics (Jarzynski, 1997) and sequential Monte
Carlo (Neal, 2001). We build a generative Markov chain
which converts a simple known distribution (e.g. a Gaus-
sian) into a target (data) distribution using a diffusion pro-
cess. Rather than use this Markov chain to approximately
evaluate a model which has been otherwise defined, we ex-
plicitly define the probabilistic model as the endpoint of the
Markov chain. Since each step in the diffusion chain has an
analytically evaluable probability, the full chain can also be
analytically evaluated.

Learning in this framework involves estimating small per-
turbations to a diffusion process. Estimating small pertur-
bations is more tractable than explicitly describing the full
distribution with a single, non-analytically-normalizable,
potential function. Furthermore, since a diffusion process
exists for any smooth target distribution, this method can
capture data distributions of arbitrary form.

We demonstrate the utility of these diffusion probabilistic

models by training high log likelihood models for a two-
dimensional swiss roll, binary sequence, handwritten digit
(MNIST), and several natural image (CIFAR-10, bark, and
dead leaves) datasets.

1.2. Relationship to other work

The wake-sleep algorithm (Hinton, 1995; Dayan et al.,
1995) introduced the idea of training inference and gen-
erative probabilistic models against each other. This
approach remained largely unexplored for nearly two
decades, though with some exceptions (Sminchisescu et al.,
2006; Kavukcuoglu et al., 2010). There has been a re-
cent explosion of work developing this idea. In (Kingma
& Welling, 2013; Gregor et al., 2013; Rezende et al., 2014;
Ozair & Bengio, 2014) variational learning and inference
algorithms were developed which allow a flexible genera-
tive model and posterior distribution over latent variables
to be directly trained against each other.

The variational bound in these papers is similar to the one
used in our training objective and in the earlier work of
(Sminchisescu et al., 2006). However, our motivation and
model form are both quite different, and the present work
retains the following differences and advantages relative to
these techniques:

1. We develop our framework using ideas from physics,
quasi-static processes, and annealed importance sam-
pling rather than from variational Bayesian methods.

2. We show how to easily multiply the learned distribu-
tion with another probability distribution (eg with a
conditional distribution in order to compute a poste-
rior)

3. We address the difficulty that training the inference
model can prove particularly challenging in varia-
tional inference methods, due to the asymmetry in the
objective between the inference and generative mod-
els. We restrict the forward (inference) process to a
simple functional form, in such a way that the re-
verse (generative) process will have the same func-
tional form.

4. We train models with thousands of layers (or time
steps), rather than only a handful of layers.

5. We provide upper and lower bounds on the entropy
production in each layer (or time step)

There are a number of related techniques for training prob-
abilistic models (summarized below) that develop highly
flexible forms for generative models, train stochastic tra-
jectories, or learn the reversal of a Bayesian network.
Reweighted wake-sleep (Bornschein & Bengio, 2015) de-
velops extensions and improved learning rules for the orig-
inal wake-sleep algorithm. Generative stochastic networks
(Bengio & Thibodeau-Laufer, 2013; Yao et al., 2014) train
a Markov kernel to match its equilibrium distribution to
the data distribution. Neural autoregressive distribution
estimators (Larochelle & Murray, 2011) (and their recur-
rent (Uria et al., 2013a) and deep (Uria et al., 2013b) ex-
tensions) decompose a joint distribution into a sequence
of tractable conditional distributions over each dimension.
Adversarial networks (Goodfellow et al., 2014) train a gen-
erative model against a classifier which attempts to dis-
tinguish generated samples from true data. A similar ob-
jective in (Schmidhuber, 1992) learns a two-way map-
ping to a representation with marginally independent units.
In (Rippel & Adams, 2013; Dinh et al., 2014) bijective
deterministic maps are learned to a latent representation
with a simple factorial density function. In (Stuhlmüller
et al., 2013) stochastic inverses are learned for Bayesian
networks. Mixtures of conditional Gaussian scale mix-
tures (MCGSMs) (Theis et al., 2012) describe a dataset
using Gaussian scale mixtures, with parameters which de-
pend on a sequence of causal neighborhoods. There is
additionally significant work learning flexible generative
mappings from simple latent distributions to data distribu-
tions – early examples including (MacKay, 1995) where
neural networks are introduced as generative models, and
(Bishop et al., 1998) where a stochastic manifold mapping
is learned from a latent space to the data space. We will
compare experimentally against adversarial networks and
MCGSMs.

Related ideas from physics include the Jarzynski equal-
ity (Jarzynski, 1997), known in machine learning as An-
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Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q

⇣
x

(0···T )
⌘

. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p

⇣
x

(0···T )
⌘

. An identity-covariance
Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x

(t)
, t

⌘
� x

(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that forward
and reverse diffusion processes can be described using the
same functional form. The Kolmogorov forward equation
corresponds to the Fokker-Planck equation, while the Kol-
mogorov backward equation describes the time-reversal of
this diffusion process, but requires knowing gradients of
the density function as a function of time.

2. Algorithm

Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a

simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show
how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x

(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T

⇡

(y|y0
;�) for ⇡ (y), where

� is the diffusion rate,

⇡ (y) =

Z
dy0T

⇡

(y|y0
;�)⇡ (y

0
) (1)

q
⇣
x

(t)|x(t�1)

⌘
= T

⇡

⇣
x

(t)|x(t�1)

;�
t

⌘
. (2)
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Figure 2. Binary sequence learning via binomial diffusion. A binomial diffusion model was trained on binary ‘heartbeat’ data, where a
pulse occurs every 5th bin. Generated samples (left) are identical to the training data. The sampling procedure consists of initialization
at independent binomial noise (right), which is then transformed into the data distribution by a binomial diffusion process, with trained
bit flip probabilities. Each row contains an independent sample. For ease of visualization, all samples have been shifted so that a pulse
occurs in the first column. In the raw sequence data, the first pulse is uniformly distributed over the first five bins.

(a) (b)

Figure 3. The proposed framework trained on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. (a) Example training data. (b)

Random samples generated by the diffusion model.

The forward trajectory, corresponding to starting at the data
distribution and performing T steps of diffusion, is thus

q
⇣
x

(0···T )

⌘
= q

⇣
x

(0)

⌘ TY

t=1

q
⇣
x

(t)|x(t�1)

⌘
(3)

For the experiments shown below, q
�
x

(t)|x(t�1)

�
corre-

sponds to either Gaussian diffusion into a Gaussian distri-
bution with identity-covariance, or binomial diffusion into
an independent binomial distribution. Table C.1 gives the
diffusion kernels for both Gaussian and binomial distribu-
tions.

2.2. Reverse Trajectory

The generative distribution will be trained to describe the
same trajectory, but in reverse,

p
⇣
x

(T )

⌘
= ⇡

⇣
x

(T )

⌘
(4)

p
⇣
x

(0···T )

⌘
= p

⇣
x

(T )

⌘ TY

t=1

p
⇣
x

(t�1)|x(t)

⌘
. (5)

For both Gaussian and binomial diffusion, for continuous
diffusion (limit of small step size �) the reversal of the
diffusion process has the identical functional form as the

forward process (Feller, 1949). Since q
�
x

(t)|x(t�1)

�
is a

Gaussian (binomial) distribution, and if �
t

is small, then
q
�
x

(t�1)|x(t)

�
will also be a Gaussian (binomial) distribu-

tion. The longer the trajectory the smaller the diffusion rate
� can be made.

During learning only the mean and covariance for a Gaus-
sian diffusion kernel, or the bit flip probability for a bi-
nomial kernel, need be estimated. As shown in Table
C.1, f

µ

�
x

(t), t
�

and f

⌃

�
x

(t), t
�

are functions defining the
mean and covariance of the reverse Markov transitions for
a Gaussian, and f

b

�
x

(t), t
�

is a function providing the bit
flip probability for a binomial distribution. The computa-
tional cost of running this algorithm is the cost of the these
functions, times the number of time-steps. For all results in
this paper, multi-layer perceptrons are used to define these
functions. A wide range of regression or function fitting
techniques would be applicable however, including nonpa-
rameteric methods.

2.3. Model Probability

The probability the generative model assigns to the data is

p
⇣
x

(0)

⌘
=

Z
dx(1···T )p

⇣
x

(0···T )

⌘
. (6)
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Naively this integral is intractable – but taking a cue from
annealed importance sampling and the Jarzynski equality,
we instead evaluate the relative probability of the forward
and reverse trajectories, averaged over forward trajectories,

p
⇣
x

(0)

⌘
=

Z
dx(1···T )p

⇣
x

(0···T )

⌘ q
�
x

(1···T )|x(0)

�

q
�
x

(1···T )|x(0)

� (7)

=

Z
dx(1···T )q

⇣
x

(1···T )|x(0)

⌘ p
�
x

(0···T )

�

q
�
x

(1···T )|x(0)

�

(8)

=

Z
dx(1···T )q

⇣
x

(1···T )|x(0)

⌘
·

p
⇣
x

(T )

⌘ TY

t=1

p
�
x

(t�1)|x(t)

�

q
�
x

(t)|x(t�1)

� . (9)

This can be evaluated rapidly by averaging over samples
from the forward trajectory q

�
x

(1···T )|x(0)

�
. For infinites-

imal � the forward and reverse distribution over trajecto-
ries can be made identical (see Section 2.2). If they are
identical then only a single sample from q

�
x

(1···T )|x(0)

�

is required to exactly evaluate the above integral, as can
be seen by substitution. This corresponds to the case of a
quasi-static process in statistical physics (Spinney & Ford,
2013; Jarzynski, 2011).

2.4. Training

Training amounts to maximizing the model log likelihood,

L =

Z
dx(0)q

⇣
x

(0)

⌘
log p

⇣
x

(0)

⌘
(10)

=

Z
dx(0)q

⇣
x

(0)

⌘
·

log

2

4
R
dx(1···T )q

�
x

(1···T )|x(0)

�
·

p
�
x

(T )

�Q
T

t=1

p

(

x

(t�1)|x(t)
)

q

(

x

(t)|x(t�1)
)

3

5 , (11)

which has a lower bound provided by Jensen’s inequality,

L �
Z

dx(0···T )q
⇣
x

(0···T )

⌘
·

log

"
p
⇣
x

(T )

⌘ TY

t=1

p
�
x

(t�1)|x(t)

�

q
�
x

(t)|x(t�1)

�
#
. (12)

As described in Appendix B, for our diffusion trajectories
this reduces to,

L � K (13)

K =�
TX

t=2

Z
dx(0)dx(t)q

⇣
x

(0),x(t)

⌘
·

D
KL

⇣
q
⇣
x

(t�1)|x(t),x(0)

⌘���
���p

⇣
x

(t�1)|x(t)

⌘⌘

+H
q

⇣
X

(T )|X(0)

⌘
�H

q

⇣
X

(1)|X(0)

⌘
�H

p

⇣
X

(T )

⌘
.

(14)

where the entropies and KL divergences can be analyt-
ically computed. The derivation of this bound parallels
the derivation of the log likelihood bound in variational
Bayesian methods.

As in Section 2.3 if the forward and reverse trajectories are
identical, corresponding to a quasi-static process, then the
inequality in Equation 13 becomes an equality.

Training consists of finding the reverse Markov transitions
which maximize this lower bound on the log likelihood,

p̂
⇣
x

(t�1)|x(t)

⌘
= argmax

p

(

x

(t�1)|x(t)
)

K. (15)

The specific targets of estimation for Gaussian and bino-
mial diffusion are given in Table C.1.

Thus, the task of estimating a probability distribution has
been reduced to the task of performing regression on the
functions which set the mean and covariance of a sequence
of Gaussians (or set the state flip probability for a sequence
of Bernoulli trials).

2.4.1. SETTING THE DIFFUSION RATE �
t

The choice of �
t

in the forward trajectory is important for
the performance of the trained model. In AIS, the right
schedule of intermediate distributions can greatly improve
the accuracy of the log partition function estimate (Grosse
et al., 2013). In thermodynamics the schedule taken when
moving between equilibrium distributions determines how
much free energy is lost (Spinney & Ford, 2013; Jarzynski,
2011).

In the case of Gaussian diffusion, we learn2 the forward
diffusion schedule �

2···T by gradient ascent on K. The
variance �

1

of the first step is fixed to a small constant
to prevent overfitting. The dependence of samples from
q
�
x

(1···T )|x(0)

�
on �

1···T is made explicit by using ‘frozen
noise’ – as in (Kingma & Welling, 2013) the noise is treated
as an additional auxiliary variable, and held constant while
computing partial derivatives of K with respect to the pa-
rameters.

For binomial diffusion, the discrete state space makes gra-
dient ascent with frozen noise impossible. We instead
choose the forward diffusion schedule �

1···T to erase a con-
stant fraction 1

T

of the original signal per diffusion step,
yielding a diffusion rate of �

t

= (T � t+ 1)

�1.

2.5. Multiplying Distributions, and Computing

Posteriors

Tasks such as computing a posterior in order to do signal
denoising or inference of missing values requires multipli-

2Recent experiments suggest that it is just as effective to in-
stead use the same fixed �t schedule as for binomial diffusion.
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(a) (b) (c)

Figure 4. The proposed framework trained on dead leaf images (Jeulin, 1997; Lee et al., 2001). (a) Example training image. (b) A sample
from the previous state of the art natural image model (Theis et al., 2012) trained on identical data, reproduced here with permission.
(c) A sample generated by the diffusion model. Note that it demonstrates fairly consistent occlusion relationships, displays a multiscale
distribution over object sizes, and produces circle-like objects, especially at smaller scales. As shown in Table 2, the diffusion model has
the highest log likelihood on the test set.

cation of the model distribution p
�
x

(0)

�
with a second dis-

tribution, or bounded positive function, r
�
x

(0)

�
, producing

a new distribution p̃
�
x

(0)

�
/ p

�
x

(0)

�
r
�
x

(0)

�
.

Multiplying distributions is costly and difficult for many
techniques, including variational autoencoders, GSNs,
NADEs, and most graphical models. However, under a dif-
fusion model it is straightforward, since the second distri-
bution can be treated either as a small perturbation to each
step in the diffusion process, or often exactly multiplied
into each diffusion step. Figure 5 demonstrates the use of
a diffusion model to perform inpainting of a natural image.
The following sections describe how to multiply distribu-
tions in the context of diffusion probabilistic models.

2.5.1. MODIFIED MARGINAL DISTRIBUTIONS

First, in order to compute p̃
�
x

(0)

�
, we multiply each of

the intermediate distributions by a corresponding function
r
�
x

(t)

�
. We use a tilde above a distribution or Markov

transition to denote that it belongs to a trajectory that has
been modified in this way. q̃

�
x

(0···T )

�
is the modified for-

ward trajectory, which starts at the distribution q̃
�
x

(0)

�
=

1

˜

Z0
q
�
x

(0)

�
r
�
x

(0)

�
and proceeds through the sequence of

intermediate distributions

q̃
⇣
x

(t)

⌘
=

1

˜Z
t

q
⇣
x

(t)

⌘
r
⇣
x

(t)

⌘
, (16)

where ˜Z
t

is the normalizing constant for the tth intermedi-
ate distribution.

2.5.2. MODIFIED CONDITIONAL DISTRIBUTIONS

Next, writing the relationship between the forward and re-
verse conditional distributions demonstrates how multiply-
ing each intermediate distribution by r

�
x

(t)

�
changes the

Markov diffusion chain. By Bayes’ rule the forward chain

presented in Section 2.1 satisfies

q
⇣
x

(t+1)|x(t)

⌘
q
⇣
x

(t)

⌘
= q

⇣
x

(t)|x(t+1)

⌘
q
⇣
x

(t+1)

⌘
.

(17)

The new chain must instead satisfy

q̃
⇣
x

(t+1)|x(t)

⌘
q̃
⇣
x

(t)

⌘
= q̃

⇣
x

(t)|x(t+1)

⌘
q̃
⇣
x

(t+1)

⌘
.

(18)

As derived in Appendix C, one way to choose a new
Markov chain which satisfies Equation 18 is to set

q̃
⇣
x

(t+1)|x(t)

⌘
/ q

⇣
x

(t+1)|x(t)

⌘
r
⇣
x

(t+1)

⌘
, (19)

q̃
⇣
x

(t)|x(t+1)

⌘
/ q

⇣
x

(t)|x(t+1)

⌘
r
⇣
x

(t)

⌘
. (20)

So that p̃
�
x

(t)|x(t+1)

�
corresponds to q̃

�
x

(t)|x(t+1)

�
,

p
�
x

(t)|x(t+1)

�
is modified in the corresponding fashion,

p̃
⇣
x

(t)|x(t+1)

⌘
/ p

⇣
x

(t)|x(t+1)

⌘
r
⇣
x

(t)

⌘
. (21)

2.5.3. APPLYING r
�
x

(t)

�

If r
�
x

(t)

�
is sufficiently smooth, then it can be treated

as a small perturbation to the reverse diffusion kernel
p
�
x

(t)|x(t+1)

�
. In this case p̃

�
x

(t)|x(t+1)

�
will have an

identical functional form to p
�
x

(t)|x(t+1)

�
, but with per-

turbed mean and covariance for the Gaussian kernel, or
with perturbed flip rate for the binomial kernel. The per-
turbed diffusion kernels are given in Table C.1.

If r
�
x

(t)

�
can be multiplied with a Gaussian (or binomial)

distribution in closed form, then it can be directly multi-
plied with the reverse diffusion kernel p

�
x

(t)|x(t+1)

�
in

closed form, and need not be treated as a perturbation. This
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Dataset K K � L
null

Swiss Roll 2.35 bits 6.45 bits
Binary Heartbeat -2.414 bits/seq. 12.024 bits/seq.
Bark -0.55 bits/pixel 1.5 bits/pixel
Dead Leaves 1.489 bits/pixel 3.536 bits/pixel
CIFAR-10 11.895 bits/pixel 18.037 bits/pixel
MNIST See table 2

Table 1. The lower bound K on the log likelihood, computed on a
holdout set, for each of the trained models. See Equation 12. The
right column is the improvement relative to an isotropic Gaussian
or independent binomial distribution. Lnull is the log likelihood
of ⇡

⇣
x

(0)
⌘

.

applies in the case where r
�
x

(t)

�
consists of a delta func-

tion for some subset of coordinates, as in the inpainting
example in Figure 5.

2.5.4. CHOOSING r
�
x

(t)

�

Typically, r
�
x

(t)

�
should be chosen to change slowly over

the course of the trajectory. For the experiments in this
paper we chose it to be constant,

r
⇣
x

(t)

⌘
= r

⇣
x

(0)

⌘
. (22)

Another convenient choice is r
�
x

(t)

�
= r

�
x

(0)

�T�t
T . Un-

der this second choice r
�
x

(t)

�
makes no contribution to the

starting distribution for the reverse trajectory. This guaran-
tees that drawing the initial sample from p̃

�
x

(T )

�
for the

reverse trajectory remains straightforward.

2.6. Entropy of Reverse Process

Since the forward process is known, it is possible to place
upper and lower bounds on the entropy of each step in the
reverse trajectory. These bounds can be used to constrain
the learned reverse transitions p

�
x

(t�1)|x(t)

�
. The bounds

on the conditional entropy of a step in the reverse trajectory
are

H
q

⇣
X

(t)|X(t�1)

⌘
+H

q

⇣
X

(t�1)|X(0)

⌘
�H

q

⇣
X

(t)|X(0)

⌘

 H
q

⇣
X

(t�1)|X(t)

⌘
 H

q

⇣
X

(t)|X(t�1)

⌘
,

(23)

where both the upper and lower bounds depend only on
the conditional forward trajectory q

�
x

(1···T )|x(0)

�
, and can

be analytically computed. The derivation is provided in
Appendix A.

3. Experiments

We train diffusion probabilistic models on a variety of con-
tinuous datasets, and a binary dataset. We then demonstrate

Model Log Likelihood

Dead Leaves
MCGSM 1.244 bits/pixel
Diffusion 1.489 bits/pixel

MNIST
Stacked CAE 121± 1.6 bits
DBN 138± 2 bits
Deep GSN 214± 1.1 bits
Diffusion 220± 1.9 bits

Adversarial net 225± 2 bits

Table 2. Log likelihood comparisons to other algorithms. Dead
leaves images were evaluated using identical training and test data
as in (Theis et al., 2012). MNIST log likelihoods were estimated
using the Parzen-window code from (Goodfellow et al., 2014),
and show that our performance is comparable to other recent tech-
niques.

sampling from the trained model and inpainting of miss-
ing data, and compare model performance against other
techniques. In all cases the objective function and gradi-
ent were computed using Theano (Bergstra & Breuleux,
2010), and model training was with SFO (Sohl-Dickstein
et al., 2014). The lower bound on the log likelihood
provided by our model is reported for all datasets in Ta-
ble 1. A reference implementation of the algorithm uti-
lizing Blocks (van Merriënboer et al., 2015) is avail-
able at https://github.com/Sohl-Dickstein/
Diffusion-Probabilistic-Models.

3.1. Toy Problems

3.1.1. SWISS ROLL

A diffusion probabilistic model was built of a two dimen-
sional swiss roll distribution, using a radial basis function
network to generate f

µ

�
x

(t), t
�

and f

⌃

�
x

(t), t
�
. As illus-

trated in Figure 1, the swiss roll distribution was success-
fully learned. See Appendix Section D.1.1 for more details.

3.1.2. BINARY HEARTBEAT DISTRIBUTION

A diffusion probabilistic model was trained on simple bi-
nary sequences of length 20, where a 1 occurs every 5th
time bin, and the remainder of the bins are 0, using a multi-
layer perceptron to generate the Bernoulli rates f

b

�
x

(t), t
�

of the reverse trajectory. The log likelihood under the true
distribution is log

2

�
1

5

�
= �2.322 bits per sequence. As

can be seen in Figure 2 and Table 1 learning was nearly
perfect. See Appendix Section D.1.2 for more details.

3.2. Images

We trained Gaussian diffusion probabilistic models on sev-
eral image datasets. The multi-scale convolutional archi-
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(a) (b) (c)

Figure 5. Inpainting. (a) A bark image from (Lazebnik et al., 2005). (b) The same image with the central 100⇥100 pixel region replaced
with isotropic Gaussian noise. This is the initialization p̃

⇣
x

(T )
⌘

for the reverse trajectory. (c) The central 100⇥100 region has been
inpainted using a diffusion probabilistic model trained on images of bark, by sampling from the posterior distribution over the missing
region conditioned on the rest of the image. Note the long-range spatial structure, for instance in the crack entering on the left side of the
inpainted region. The sample from the posterior was generated as described in Section 2.5, where r

⇣
x

(0)
⌘

was set to a delta function
for known data, and a constant for missing data.

tecture shared by these experiments is described in Ap-
pendix Section D.2.1, and illustrated in Figure D.1.

3.2.1. DATASETS

MNIST In order to allow a direct comparison against
previous work on a simple dataset, we trained on MNIST
digits (LeCun & Cortes, 1998). The relative log likeli-
hoods are given in Table 2 to a variety of techniques (Ben-
gio et al., 2012; Bengio & Thibodeau-Laufer, 2013; Good-
fellow et al., 2014). Samples from the MNIST model are
given in Figure App.1 in the Appendix. Our training algo-
rithm provides an asymptotically exact lower bound on the
log likelihood. However, most previous reported results
on MNIST log likelihood rely on Parzen-window based
estimates computed from model samples. For this com-
parison we therefore estimate MNIST log likelihood using
the Parzen-window code released with (Goodfellow et al.,
2014).

CIFAR-10 A probabilistic model was fit to the training
images for the CIFAR-10 challenge dataset (Krizhevsky &
Hinton, 2009). Samples from the trained model are pro-
vided in Figure 3.

Dead Leaf Images Dead leaf images (Jeulin, 1997; Lee
et al., 2001) consist of layered occluding circles, drawn
from a power law distribution over scales. They have an an-
alytically tractable structure, but capture many of the statis-
tical complexities of natural images, and therefore provide
a compelling test case for natural image models. As illus-
trated in Table 2 and Figure 4, we achieve state of the art
performance on the dead leaves dataset.

Bark Texture Images A probabilistic model was trained
on bark texture images (T01-T04) from (Lazebnik et al.,
2005). For this dataset we demonstrate that it is straightfor-
ward to evaluate or generate from a posterior distribution,
by inpainting a large region of missing data using a sample
from the model posterior in Figure 5.

4. Conclusion

We have introduced a novel algorithm for modeling proba-
bility distributions that enables exact sampling and evalua-
tion of probabilities and demonstrated its effectiveness on a
variety of toy and real datasets, including challenging natu-
ral image datasets. For each of these tests we used a similar
basic algorithm, showing that our method can accurately
model a wide variety of distributions. Most existing den-
sity estimation techniques must sacrifice modeling power
in order to stay tractable and efficient, and sampling or
evaluation are often extremely expensive. The core of our
algorithm consists of estimating the reversal of a Markov
diffusion chain which maps data to a noise distribution; as
the number of steps is made large, the reversal distribution
of each diffusion step becomes simple and easy to estimate.
The result is an algorithm that can learn a fit to any data dis-
tribution, but which remains tractable to train, exactly sam-
ple from, and evaluate, and under which it is straightfor-
ward to manipulate conditional and posterior distributions.
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