
Learning Fast-Mixing Models for Structured Prediction

Jacob Steinhardt JSTEINHARDT@CS.STANFORD.EDU
Percy Liang PLIANG@CS.STANFORD.EDU

Stanford University, 353 Serra Street, Stanford, CA 94305 USA

Abstract
Markov Chain Monte Carlo (MCMC) algorithms
are often used for approximate inference inside
learning, but their slow mixing can be difficult
to diagnose and the resulting approximate gradi-
ents can seriously degrade learning. To alleviate
these issues, we define a new model family us-
ing strong Doeblin Markov chains, whose mixing
times can be precisely controlled by a parameter.
We also develop an algorithm to learn such mod-
els, which involves maximizing the data likeli-
hood under the induced stationary distribution of
these chains. We show empirical improvements
on two inference tasks.

1. Introduction
Conventional wisdom suggests that rich features and
highly-dependent variables necessitate intractable infer-
ence. Indeed, the dominant paradigm is to first define
a joint model, and then use approximate inference (e.g.,
MCMC) to learn that model. While this recipe can gener-
ate good results in practice, it has two notable drawbacks:
(i) diagnosing convergence of Markov chains is extremely
difficult (Gelman & Rubin, 1992; Cowles & Carlin, 1996);
and (ii) approximate inference can be highly suboptimal
in the context of learning (Wainwright, 2006; Kulesza &
Pereira, 2007).

In this paper, we instead use MCMC to define the model
family itself: for a given T , we construct a family of
Markov chains using arbitrary rich features, but whose
mixing time is guaranteed to be at most O(T). The corre-
sponding stationary distributions determine the model fam-
ily, with larger T leading to more expressive model fami-
lies. We can think of our Markov chains as parameteriz-
ing a family of “computationally accessible” distributions,
where the amount of computation is controlled by T .

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

Concretely, suppose we are performing a structured pre-
diction task from an input x to an output y. We construct
Markov chains of the following form, called strong Doe-
blin chains (Doeblin, 1940):

Ãθ(yt | yt−1, x) = (1− ε)Aθ(yt | yt−1, x) + ε uθ(yt | x),
(1)

where ε is a mixture coefficient and θ parameterizesAθ and
uθ. For intuition, think of uθ as a simple tractable model
and Aθ as Gibbs sampling in a complex intractable model.
With probability 1 − ε, we progress according to Aθ, and
with probability ε, we draw a fresh sample from uθ, which
corresponds to an informed random restart. Importantly, uθ
does not depend on the previous state yt−1. When ε = 1,
we are drawing i.i.d. samples from uθ; we therefore mix in
a single step, but our stationary distribution must necessar-
ily be very simple. When ε = 0, the stationary distribution
can be much richer, but we have no guarantees on the mix-
ing time. For intermediate values of ε, we trade off between
representational power and mixing time.

A classic result is that a given strong Doeblin chain mixes
in time at most 1

ε (Doeblin, 1940), and that we can draw an
exact sample from the stationary distribution in expected
time O(1

ε) (Corcoran & Tweedie, 1998). In this work, we
prove new results that help us understand the strong Doe-
blin model families. Let F and F̃ be the family of station-
ary distributions corresponding to Aθ and Ãθ as defined in
(1), respectively. Our first result is that as ε decreases, the
stationary distribution of any Ãθ monotonically approaches
the stationary distribution of Aθ (as measured by either di-
rection of the KL divergence). Our second result is that if
1
ε is much larger than the mixing time of Aθ, then the sta-
tionary distributions of Aθ and Ãθ are close under a certain
Mahalanobis distance. This shows that any member of F
that is computationally accessible via the Markov chain is
well-approximated by its counterpart in F̃ .

F F̃

F0

Learning Fast-Mixing Models for Structured Prediction

The figure above shows F and F̃ , together with the subset
F0 of F whose Markov chains mix quickly. F̃ (approx-
imately) covers F0, and also contains some distributions
outside of F .

In order to learn over F̃ , we show how to maximize the
likelihood of the data under the stationary distribution of
Ãθ. Specifically, we show that we can compute a stochastic
gradient of the log-likelihood in expected timeO(1

ε). Thus,
in a strong sense, our objective function explicitly accounts
for computational constraints.

We also generalize strong Doeblin chains, which are a mix-
ture of two base chains, uθ and Aθ, to staged strong Doe-
blin chains, which allow us to combine more than two base
chains. We introduce an auxiliary variable z representing
the “stage” that the chain is in. We then transition between
stages, using the base chain corresponding to the current
stage z to advance the concrete state y. A common ap-
plication of this generalization is defining a sequence of
increasingly more complex chains, similar in spirit to an-
nealing. This allows sampling to become gradually more
sensitive to the structure of the problem.

We evaluated our methods on two tasks: (i) inferring words
from finger gestures on a touch screen and (ii) inferring
DNF formulas for program verification. Unlike many
structured prediction problems where local potentials pro-
vide a large fraction of the signal, in the two tasks above, lo-
cal potentials offer a very weak signal; reasoning carefully
about the higher-order potentials is necessary to perform
well. On word inference, we show that learning strong
Doeblin chains obtains a 3.6% absolute improvement in
character accuracy over Gibbs sampling while requiring
5x fewer samples. On DNF formula inference, our staged
strong Doeblin chain obtains an order of magnitude speed
improvement over plain Metropolis-Hastings.

To summarize, the contributions of this paper are: We for-
mally define a family of MCMC algorithms based on strong
Doeblin chains with guaranteed fast mixing times (Sec-
tion 2). We provide an extensive analysis of the theoretical
properties of this family (Section 3), together with a gener-
alization to a staged version (Section 3.1). We provide an
algorithm for learning the parameters of a strong Doeblin
chain (Section 4). We demonstrate superior experimental
results relative to baseline MCMC samplers on two tasks,
word inference and DNF formula synthesis (Section 5).

2. A Fast-Mixing Family of Markov Chains
Given a Markov chain with transition matrix A(yt | yt−1)
and a distribution u(yt), define a new Markov chain with
transitions given by Ã(yt | yt−1)

def
= (1− ε)A(yt | yt−1) +

εu(yt). (We suppress the dependence on θ and x for now.)

1

2

3

1
3

δ

2
3

2δ

1− δ 1− 2δ
10

−6
10

−4
10

−2
10

0

0.35

0.4

0.45

0.5

ε

p
(1

)

Stationary Probability vs. Restart Probability

Figure 1. Left: A simple 3-state Markov chain. Arcs denote transi-
tion probabilities. Right: plot of the stationary probability of state 1
as a function of restart probability ε, for δ = 10−4; closer to 0.499
(the true probability) is better. Note the two regimes for ε� δ and
ε� δ.

In matrix notation, we can write Ã as

Ã
def
= (1− ε)A+ εu1>. (2)

In other words, with probability ε we restart from u; oth-
erwise, we transition according to A. Intuitively, Ã should
mix quickly because a restart from u renders the past inde-
pendent of the future (we formalize this in Section 3). We
think of u as a simple tractable model that provides cover-
age, and A as a complex model that provides precision.

Simple example. To gain some intuition, we work
through a simple example with the Markov chain A de-
picted in Figure 1. The stationary distribution of this chain
is
[

1
2+3δ

3δ
2+3δ

1
2+3δ

]
, splitting most of the probabil-

ity mass evenly between states 1 and 3. The mixing time
of this chain is approximately 1

δ , since once the chain falls
into either state 1 or state 3, it will take about 1

δ steps for it
to escape back out. If we run this Markov chain for T steps
with T � 1

δ , then our samples will be either almost all in
state 1 or almost all in state 3, and thus will provide a poor
summary of the distribution. If instead we perform ran-
dom restarts with probability ε from a uniform distribution
u over {1, 2, 3}, then the restarts give us the opportunity
to explore both modes of the distribution. After a restart,
however, the chain will more likely fall into state 3 than
state 1 (59 probability vs. 4

9), so for ε � δ the stationary
distribution will be noticeably perturbed by the restarts. If
ε � δ, then there will be enough time for the chain to mix
between restarts, so this bias will vanish. See Figure 1 for
an illustration of this phenomenon.

3. Theoretical Properties
Markov chains that can be expressed according to (2) are
said to have a strong Doeblin parameter ε (Doeblin, 1940).
In this section, we characterize the stationary distribution
and mixing time of Ã, and also relate the stationary distri-
bution of Ã to that of A as a function of ε. Often the easiest

Learning Fast-Mixing Models for Structured Prediction

way to study the mixing time of Ã is via its spectral gap,
which is defined as 1− λ2(Ã), where λ2(Ã) is the second-
largest eigenvalue (in complex norm). A standard result for
Markov chains is that, under mild assumptions, the mix-
ing time of Ã is O

(
1

1−λ2(Ã)

)
. We assume throughout this

section that A is ergodic but not necessarily reversible. See
Section 12.4 of Levin et al. (2008) for more details.

Our first result relates the spectral gap (and hence the mix-
ing time) to ε. This result (as well as the next) are well-
known but we include them for completeness. For most
results in this section, we sketch the proof here and provide
the full details in the supplement.

Proposition 3.1. The spectral gap of Ã is at least ε; that
is, 1− λ2(Ã) ≥ ε. In particular, Ã mixes in time O(1

ε).

The key idea is that all eigenvectors of Ã and A are equal
except for the stationary distribution, and that λk(Ã) =
(1− ε)λk(A) for k > 1.

Having established that Ã mixes quickly, the next step is to
characterize its stationary distribution:

Proposition 3.2. Let π̃ be the stationary distribution of Ã.
Then

π̃ = ε

∞∑
j=0

(1− ε)jAju = ε(I − (1− ε)A)−1u. (3)

This can be directly verified algebraically. The summa-
tion over j shows that we can in fact draw an exact sample
from π̃ by drawing T ∼ Geometric(ε),1 initializing from
u, and transitioning T times according to A. This is intu-
itive, since at a generic point in time we expect the most
recent sample from u to have occurred Geometric(ε) steps
ago. Note that E[T + 1] = 1

ε , which is consistent with the
fact that the mixing time is O(1

ε) (Proposition 3.1).

We would like to relate the stationary distributions π̃ and π
of Ã and A, respectively. The next two results (which are
new) do so.

Let π̃ε denote the stationary distribution of Ã at a particular
value of ε; note that π̃1 = u and π̃0 = π. We will show that
π̃ε approaches π monotonically, for both directions of the
KL divergence. In particular, for any ε < 1, π̃ε is at least as
good as u at approximating π.

To show this, we make use of the following lemma from
Murray & Salakhutdinov (2008):

Lemma 3.3. If B is a transition matrix with stationary
distribution π, then KL (π ‖ Bπ′) ≤ KL (π ‖ π′) and
KL (Bπ′ ‖ π) ≤ KL (π′ ‖ π).

1If T ∼ Geometric(ε), we have P[T = j] = ε(1 − ε)j for
j ≥ 0.

u A1 A2

1 ε1

1− ε1

ε2

1− ε2

u A
1− ε

ε

ε

1− ε

Figure 2. Markov chains over (a) two stages (strong Doeblin
chains); and (b) three stages (restart from u followed by transi-
tions from A1 and then from A2).

Using this lemma, we can prove the following monotonic-
ity result:

Proposition 3.4. Both KL (π̃ε ‖ π) and KL (π ‖ π̃ε) are
monotonic functions of ε.

The idea is to construct a transition matrix B that maps
π̃ε1 to π̃ε2 for given ε2 < ε1, then show that its stationary
distribution is π and apply Lemma 3.3.

With Proposition 3.4 in hand, a natural next question is how
small ε must be before π̃ is reasonably close to π. Propo-
sition 3.5 provides one such bound: π̃ is close to π if ε is
small compared to the spectral gap 1− λ2(A).

Proposition 3.5. Suppose that A satisfies detailed balance
with respect to π. Let π̃ be the stationary distribution of Ã.

Define dπ(π′)
def
= ‖π−π′‖diag(π)−1 =

√
−1 +

∑
y
π′(y)2

π(y) ,

where ‖v‖M is the Mahalonobis distance
√
v>Mv. Then

dπ(π̃) ≤ ε
1−λ2(A) · dπ(u). (In particular, dπ(π̃) � 1 if

ε� (1− λ2(A))/dπ(u).)

The proof is somewhat involved though based on classi-
cal arguments (for instance, Chapter 12 of Levin et al.
(2008)). The key step is to establish that dπ(π′) is con-
vex in π′ and contractive with respect toA (more precisely,
that dπ(Aπ′) ≤ λ2(A)dπ(π′)).

Proposition 3.5 says that if A mixes quickly (in particular,
in time much smaller than 1

ε), then Ã and A will have sim-
ilar stationary distributions. This serves as a sanity check:
if A already mixes quickly, then π̃ is a good approxima-
tion to π; otherwise, the Doeblin construction ensures that
we are at least converging to some distribution, which by
Proposition 3.4 approximates π at least as well as u does.

3.1. Staged strong Doeblin chains

Recall that to run a strong Doeblin chain Ã, we first sam-
ple from u, and then transition according to A for approx-
imately 1

ε steps. The intuition is that sampling from the
crude distribution u faciliates global exploration of the state
space, while the refined transition A hones in on a mode.
However, for complex problems, there might be a consider-
able gap between what is possible with exact inference (u)

Learning Fast-Mixing Models for Structured Prediction

and what is needed for accurate modeling (A). This moti-
vates using multiple stages of MCMC to bridge the gap.

To do this, we introduce an auxiliary variable z ∈ Z denot-
ing which stage of MCMC we are currently in. For each
stage z, we have a Markov chain Az(yt | yt−1) over the
original state space. We also define a Markov chain C(zt |
zt−1) over the stages. To transition from (yt−1, zt−1) to
(yt, zt), we first sample zt from C(zt | zt−1) and then
yt from Azt(yt | yt−1). If there is a special state z∗ for
which Az∗(yt | yt−1) = u(yt) (i.e., Az∗ does not depend
on yt−1), then we call the resulting chain a staged strong
Doeblin chain.

For example, if z ∈ {0, 1} and we transition from 0 to
1 with probability 1 − ε and from 1 to 0 with probabil-
ity ε, then we recover strong Doeblin chains assuming
z∗ = 0 (Figure 2(a)). As another example (Figure 2(b)),
let z ∈ {0, 1, 2}. When z = z∗ = 0, we transition accord-
ing to a restart distribution u1>; when z = 1, we transition
according to a simple chain A1; and when z = 2, we tran-
sition according to a more complex chain A2. If we transi-
tion from z = 0 to z = 1 with probability 1, from z = 1 to
z = 2 with probability ε1, and from z = 2 to z = 0 with
probability ε2, then we will on average draw 1 sample from
u, 1

ε1
samples from A1, and 1

ε2
samples from A2.

We now show that staged strong Doeblin chains mix
quickly as long as we visit z∗ reasonably often. In par-
ticular, the following theorem provides guarantees on the
mixing time that depend only on z∗ and on the structure of
C(zt | zt−1), analogous to the dependence only on ε for
non-staged chains. The condition of the theorem asks for
times a and b such that the first time after a that we hit z∗ is
almost independent of the starting state z0, and is less than
b with high probability.

Theorem 3.6. Let M be a staged strong Doeblin chain on
Z × Y . Let τa be the earliest time s ≥ a for which zs =

z∗. Let βa,s = minz∈Z P[τa = s | z0 = z] and γa,b
def
=∑b

s=a βa,s. Then M b has strong Doeblin parameter γa,b,
and the spectral gap ofM is at least γa,bb . (Setting a = b =
1 recovers Proposition 3.1.)

The key idea is that, conditioned on τa, (yb, zb) is indepen-
dent of (y0, z0) for all b ≥ τa. For the special case that the
stages form a cycle as in Figure 2, we have the following
corollary:

Corollary 3.7. Let C be a transition matrix on {0, . . . , k−
1} such that C(zt = i | zt−1 = i) = 1 − δi and C(zt =
(i + 1) mod k | zt−1 = i) = δi. Suppose that δk−1 ≤

1
max(2,k−1) min{δ0, . . . , δk−2}. Then the spectral gap of

the joint Markov chain is at least δk−1

78 .

The key idea is that, when restricting to the time interval
[2/δk−1, 3/δk−1], the time of first transition from k − 1 to

0 is approximately Geometric(δk−1)-distributed (indepen-
dent of the initial state), which allows us to invoke Theo-
rem 3.6. We expect the optimal constant to be much smaller
than 78.

4. Learning strong Doeblin chains
Section 3 covered properties of strong Doeblin chains (1−
ε)Aθ + εuθ1

> for a fixed parameter vector θ. Now we turn
to the problem of learning θ from data. We will focus on the
discriminative learning setting where we are given a dataset
{(x(i), y(i))}ni=1 and want to maximize the conditional log-
likelihood:

O(θ) =
1

n

n∑
i=1

log pθ(y
(i) | x(i)), (4)

where now pθ is the stationary distribution of Ãθ = (1 −
ε)Aθ + εuθ1

>. We assume for simplicity that the chains
Aθ and uθ are given by conditional exponential families:

Aθ(y | y′, x)
def
= exp

(
θ>φ(x, y′, y)− logZ(θ;x, y)

)
,

uθ(y | x)
def
= exp

(
θ>φ(x, y)− logZ(θ;x)

)
, (5)

where each φ outputs a feature vector and the Z are parti-
tion functions. By Proposition 3.1, Ãθ mixes quickly for all
θ. On the other hand, the parameterization ofAθ captures a
rich family of transition kernels, including Gibbs sampling.

At a high level, our learning algorithm performs stochas-
tic gradient descent on the negative log-likelihood. How-
ever, the negative log-likelihood is only defined implicitly
in terms of the stationary distribution of a Markov chain,
so the main challenge is to show that it can be computed
efficiently. To start, we assume that we can operate on the
base chains uθ and Aθ for one step efficiently:
Assumption 4.1. We can efficiently sample y from uθ(· |
x) and Aθ(· | y′, x), as well as compute ∂ log uθ(y|x)

∂θ and
∂ logAθ(y|y′,x)

∂θ .

Under Asssumption 4.1, we will show how to efficiently
compute the gradient of log pθ(y

(i) | x(i)) with respect to
θ. The impatient reader may skip ahead to the final pseu-
docode, which is given in Algorithm 1.

For convenience, we will suppress the dependence on x and
i and just refer to pθ(y) instead of pθ(y(i) | x(i)). Comput-
ing the gradient of log pθ(y) is non-trivial, since the for-
mula for pθ is somewhat involved (see Proposition 3.2):

pθ(y) = ε

∞∑
j=0

(1− ε)j [Ajθuθ](y). (6)

It is useful to invoke the following generic identity on gra-
dients of conditional log-probabilities, proved in the sup-
plement.

Learning Fast-Mixing Models for Structured Prediction

Lemma 4.2. Let z have distribution pθ(z) parameterized
by a vector θ. Let S be any measurable set. Then

∂ log pθ(z ∈ S)

∂θ
= Ez∼pθ

[
∂ log pθ(z)

∂θ

∣∣∣∣z ∈ S] . (7)

We can utilize Lemma 4.2 by interpreting y | θ as the out-
put of the following generative process, which by Proposi-
tion 3.2 yields the stationary distribution of Ãθ:

• Sample y0 from uθ and yt+1 | yt from Aθ for t =
0, 1,

• Sample T ∼ Geometric(ε) and let y = yT .

We then invoke Lemma 4.2 with z = (T, y0:T) and S en-
coding the event that yT = y. As long as we can sample
from the posterior distribution of (T, y0:T) conditioned on
yT = y, we can compute an estimate of ∂

∂θ log pθ(y) as
follows:

• Sample (T, y0:T) | yT = y.

• Return ∂ log pθ(T,y0:T)
∂θ = ∂ log uθ(y0)

∂θ

+
∑T
t=1

∂ logAθ(yt|yt−1)
∂θ .

4.1. Sampling schemes for (T, y0:T)

By the preceding discussion, it suffices to construct a sam-
pler for (T, y0:T) | yT = y. A natural approach is to use
importance sampling: sample (T, y0:T−1), then weight by
p(yT = y | yT−1). However, this throws away a lot of
work — we make T MCMC transitions but obtain only one
sample (T, y0:T) with which to estimate the gradient.

We would like to ideally make use of all the MCMC transi-
tions when constructing our estimate of (T, y0:T) | yT = y.
For any t ≤ T , the pair (t, y0:t) would itself have been
a valid sample under different randomness, and we would
like to exploit this. Suppose that we sample T from some
distribution F and let q(t) be the probability that T ≥ t
under F . Then we can use the following scheme:

• Sample T from F , then sample y0:T−1.

• For t = 0, . . . , T , weight (t, y0:t−1) by ε(1−ε)t
q(t) ×

p(yt = y | yt−1).

For any q, this yields unbiased (although unnormalized)
weights (see Section B in the supplement). Typically we
will choose q(t) = (1 − ε)t, e.g. F is a geometric distri-
bution. If the yt are perfectly correlated, this will not be
any more effective than vanilla importance sampling, but
in practice this method should perform substantially bet-
ter. Even though we obtain weights on all of y0:T , these
weights will typically be highly correlated, so we should
still repeat the sampling procedure multiple times to min-
imize the bias from estimating the normalization constant.
The full procedure is given as pseudocode in Algorithm 1.

Algorithm 1 Algorithm for computing an estimate of
∂
∂θ log pθ(y | x). This estimate is asymptotically unbiased
as the number of samples k → ∞, but will be biased for a
finite number of samples due to variance in the estimate of
the normalization constant.

SampleGradient(x, y, θ, ε, k)
� k is the number of samples to take
Z ← 0; g ← 0 � Z is the total importance mass of all
samples, gZ is the gradient
for i = 1 to k do

Sample T ∼ Geometric(ε)
Sample y0 from uθ(· | x)
For 1 ≤ t ≤ T−1: sample yt fromAθ(· |yt−1, x)
w0 ← ε · uθ(y)
For 1 ≤ t ≤ T : wt ← ε ·Aθ(y | yt−1, x)

Z ← Z +
∑T
t=0 wt

g←g + w0
∂ log uθ(y|x)

∂θ

+
∑T
t=1 wt

(
∂ log uθ(y0|x)

∂θ

+
∑t−1
s=1

∂ logAθ(ys|ys−1,x)
∂θ + ∂ logAθ(y|yt−1,x)

∂θ

)
.

end for
Output g

Z

4.2. Implementation

With the theory above in place, we now describe some im-
portant implementation details of our learning algorithm.
At a high level, we can just use Algorithm 1 to compute
estimates of the gradient and then apply an online learning
algorithm such as ADAGRAD (Duchi et al., 2010) to iden-
tify a good choice of θ. Since the log-likelihood is a non-
convex function of θ, the initialization is important. We
make the following (weak) assumption:

Assumption 4.3. The chains uθ and Aθ are controlled by
disjoint coordinates of θ, and for any setting of uθ there is
a corresponding choice of Aθ that leaves uθ invariant (i.e.,
Aθuθ = uθ).

In practice, Assumption 4.3 is easy to satisfy. For in-
stance, suppose that φ : Y → Rd is a feature func-
tion, θ = [θ0 θ1] ∈ Rd0+d are the features controlling
u and A, and uθ0 is made tractable by zeroing some fea-
tures out: uθ0(y) ∝ exp([θ0 ~0d−d0]>φ(y)). Also sup-
pose that Aθ1 is a Gibbs sampler that uses all the features:
Aθ1(y | y′) ∝ exp(θ>1 φ(yi, y

′
¬i)), where i is a randomly

chosen coordinate of y. Then, we can satisfy Assump-
tion 4.3 by setting θ1 = [θ0 ~0d−d0].

Under Assumption 4.3, we can initialize θ by first training
u in isolation (which is a convex problem since uθ param-
eterizes an exponential family), then initializing A to leave
u invariant; this guarantees that the initial log-likelihood is
what we would have obtained by just using u by itself. We

Learning Fast-Mixing Models for Structured Prediction

Figure 3. Generated sequence of keyboard gestures for the word
banana. The input x is a sequence of characters (the recorded key
presses), and the output y is the intended word. Most characters
in x are incidental and do not correspond to any character in y;
this is reflected by the (unobserved) alignment z.

found this to work well empirically.

As another note, Algorithm 1 naı̈vely looks like it takes
O(T 2) time to compute the gradient for each sample, due
to the nested sum. However, most terms are of the form
wt

∂ logAθ(ys|ys−1,x)
∂θ ; by grouping them for a fixed s we

can compute the sum in O(T) time, leading to expected
runtime O

(
k
ε

)
for Algorithm 1 (since E[T + 1] = 1

ε).

5. Experiments
We validated our method on two non-trivial inference tasks.
These tasks are difficult due to the importance of high-arity
factors; local information is insufficient to even identify
high-probability regions of the space.

Inferring Words from Keyboard Gestures. We first
considered the task of inferring words from keyboard ges-
tures. We generated the data by sampling words from the
New York Times corpus (Sandhaus, 2008). For each word,
we used a time series model to synthetically generate fin-
ger gestures for the word. A typical instantiation of this
process is given in Figure 3. The learning task is to dis-
criminatively infer the intended word y given the sequence
of keys x that the finger was over (for instance, predicting
banana from bdsadbnnnfaassjjj). In our model,
we posit a latent alignment z between key presses and in-
tended letter. Given an input x of length l, the alignment z
also has length l; each zi is either ‘c’ (xi starts an output
letter c), ‘-c’ (xi continues an output letter c), or ‘#’ (xi is
unaligned); see Figure 3 for an example. Note that y is a
deterministic function of z.

The base model uθ consists of indicator features on (xi, zi),
(xi, zi−1, zi), and (xi, xi−1, zi). The full Aθ is a Gibbs
sampler in a model where we include the following features
in addition to those above:

• Indicator features on (xi, yi, yi−1)

• Indicator of y being in the dictionary, as well as log of

word frequency (conditioned on being in the dictionary)
• For each i, indicator of y1:i matching a prefix of a word

in the dictionary

We compared three approaches:

• Our approach (Doeblin sampling)
• Regular Gibbs sampling, initialized by setting zi = xi

for all i (basic-Gibbs)
• Gibbs sampling initialized from uθ (uθ-Gibbs)

At test time, all three of these methods are computationally
almost identical: they all initialize from some distribution,
then make a certain number of Gibbs samples. For basic-
Gibbs and uθ-Gibbs, this is always a fixed number of steps
T , while for Doeblin sampling, the number of steps is a
geometric distribution with mean T .

The main difference is in how the methods are trained. Our
method is trained using the ideas in Section 4; for the other
two methods, we train by approximating the gradient:

∇ log pθ(y | x) = Eẑ∼pθ(z|x,y)[φ(y, ẑ, x)]

− Eŷ,ẑ∼pθ(y,z|x)[φ(ŷ, ẑ, x)],

where φ(y, z, x) is the feature function and pθ is the sta-
tionary distribution of Aθ. For the second term, we use
MCMC samples from Aθ to approximate pθ(y, z | x).
For the first term, we could take the subset of samples
where ŷ = y, but this is problematic if no such samples
exist. Instead, we reweight all samples with ŷ 6= y by
exp(−(D+1)), whereD is the edit distance between y and
ŷ. We use the same reweighting approach for the Doeblin
sampler, using this as the importance weight rather than us-
ing Aθ(y | yt−1) as in Algorithm 1.

To provide a fair comparison of the methods, we set ε in the
Doeblin sampler to the inverse of the number of transitions
T , so that the expected number of transitions of all algo-
rithms is the same. We also devoted the first half of each
chain to burn-in.

All algorithms are trained with AdaGrad (Duchi et al.,
2010) with 16 independent chains for each example. We
measure word-level accuracy by computing the fraction of
(non-burn-in) samples whose output y is correct.

The results are reported in Figure 4. Overall, our Doe-
blin sampler outperforms uθ-Gibbs by a significant mar-
gin, which in turn outperforms basic-Gibbs. Interestingly,
while the accuracy of our method continues to improve
with more training time, uθ-Gibbs quickly asymptotes and
then slightly decreases, even for training accuracy.

What is happening to uθ-Gibbs? Since the inference prob-
lem in this task is hard, the samples provide a poor gradient
approximation. As a result, optimization methods that take
the approximation at face value may not converge to even a

Learning Fast-Mixing Models for Structured Prediction

0.0 0.2 0.4 0.6 0.8 1.00.00

0.05

0.10

0.15

0.20

0.25

0.30

ac
cu

ra
cy

Train

5 10 15
training passes

Doeblin (20)
uµ-Gibbs (20)
basic (20)

5 10 15
training passes

Doeblin (20)
Doeblin (50)
Doeblin (100)

5 10 15
training passes

uµ-Gibbs (20)
uµ-Gibbs (50)
uµ-Gibbs (100)

0.0 0.2 0.4 0.6 0.8 1.00.00

0.05

0.10

0.15

0.20

0.25

0.30

ac
cu

ra
cy

Test

5 10 15
training passes

Doeblin (20)
uµ-Gibbs (20)
basic (20)

5 10 15
training passes

Doeblin (20)
Doeblin (50)
Doeblin (100)

5 10 15
training passes

uµ-Gibbs (20)
uµ-Gibbs (50)
uµ-Gibbs (100)

Figure 4. Plots of word-level (left) and character-level (right) accuracy. The first panel gives the performance of all 3 methods (Doeblin
sampling, uθ-Gibbs, and basic-Gibbs) for a computational budget of 20 transitions per example. The second and third panels show the
accuracy of Doeblin sampling and uθ-Gibbs, respectively, for increasing computational budgets (20, 50, and 100 transitions).

local optimum. This phenomenon has already been studied
in other contexts, for instance by Kulesza & Pereira (2007)
and Huang et al. (2012).

In contrast, our method directly optimizes the log-
likelihood of the data under the distribution π̃θ, so that ac-
curacy continues to increase with more passes through the
training data. This demonstrates that the MCMC samples
do provide enough signal to train from, but that naı̈vely
plugging them into a method designed for exact inference
will fail to exploit that signal.

Inferring DNF Formulas. Next, we study the use of our
staged Doeblin chain construction as a tool for hierarchical
initialization. We ignore learning for now, instead treat-
ing MCMC as a stochastic search algorithm. Our task of
interest is to infer a DNF formula f from its input-output
behavior. This is an important subroutine in loop invari-
ant synthesis, where MCMC methods have recently shown
great promise (Gulwani & Jojic, 2007; Sharma & Aiken,
2014).

Concretely, we are given the output of an unknown DNF
formula f for various inputs x = (x1, x2, x3); for instance:

f(1, 2, 3) = True f(1, 4, 4) = True

f(0, 1, 0) = False f(0, 2, 2) = True

et cetera.

Our task is to induce f ; in this case, f(x1, x2, x3) = [x1 6=
0] ∨ [x2 = x3]. In general, we avoid trivial solutions that
overfit the data by imposing limits on the size of f .

More formally, we consider DNF formulae with linear in-
equalities: f(x) =

∨n
i=1

∧m
j=1[a>ijx ≤ bij], where aij , x ∈

Zd and bij ∈ Z. The formula f maps input vectors x to

{True, False}. Given a collection of example inputs and
outputs, our goal is to find an f consistent with all exam-
ples. Our evaluation metric is the time to find such a for-
mula.

The search space for this problem is extremely large. Even
if we set n = m = 3 and restrict our search to aij ∈
{−1, 0, 1}5, b ∈ {−1, 0, 1}, the total number of candidate
formulae is still

(
36
)3×3 ≈ 5.8× 1025.

We consider three MCMC methods: no restarts (0-stage),
uniformly random restarts (1-stage), and a staged method
(2-stage) as in Section 3.1. All base chains perform
Metropolis-Hastings using proposals that edit individual
atoms (e.g., [a>ijx ≤ bij]), either by changing a single entry
of [aij bij] or by changing all entries of [aij bij] at once.
For the staged method, we initialize f uniformly at ran-
dom, take Geometric(0.04) transitions based on a simpli-
fied cost function, then take Geometric(0.0002) steps with
the full cost (this is the staged Doeblin chain in Figure 2).

The full cost function is I(f), the number of examples f
errs on. We stop the Markov chain when it finds a formula
with I(f) = 0. The simplified cost function decomposes
over the disjuncts: for each disjunct d(x), if f(x) = False

while d(x) = True, we incur a large cost (since in order for
f(x) to be false, all disjuncts comprising f(x) must also be
false). If f(x) = True while d(x) = False, then we incur
a smaller cost. If f(x) = d(x) then we incur no cost.

We used all three methods as a subroutine in verifying
properties of C programs; each such verification requires
solving many instances of DNF formula inference. Using
the staged method we are able to obtain a 30% speedup
over uniformly random restarts and a 50x improvement
over no restarts, as shown in Table 1.

Learning Fast-Mixing Models for Structured Prediction

Table 1. Comparison of 3 different MCMC algorithms. 0-stage uses no restarts, 1-stage uses random restarts, and 2-stage uses random
restarts followed by a short period of MH with a simplified cost function. The table gives mean time and standard error (in seconds) taken
to verify 5 different C programs, averaged over 1000 trials. Each verification requires inferring many DNF formulae as a sub-routine.

Task fig1 cegar2 nested tacas06 hard
0-stage 2.6± 1.0 320± 9.3 120± 7.0 ≥ 600 ≥ 600
1-stage 0.074± 0.001 0.41± 0.01 2.4± 0.10 6.8± 0.15 52± 1.5
2-stage 0.055± 0.005 0.33± 0.007 2.3± 0.12 4.6± 0.12 31± 0.90

6. Discussion
We have proposed a model family based on strong Doe-
blin Markov chains, which guarantee fast mixing. Our
construction allows us to simultaneously leverage a sim-
ple, tractable model (uθ) that provides coverage together
with a complex, accurate model (Aθ) that provides preci-
sion. As such, we sidestep a typical dilemma—whether to
use a simple model with exact inference, or to deal with the
consequences of approximate inference in a more complex
model.

While our approach works well in practice, there are still
some outstanding issues. One is the non-convexity of the
learning objective, which makes the procedure dependent
on initialization. Another issue is that the gradients re-
turned by Algorithm 1 can be large, heterogeneous, and
high-variance. The adaptive nature of ADAGRAD allevi-
ates this somewhat, but ideally we would like a sampling
procedure that has lower variance than Algorithm 1.

Though Gibbs sampling is the de facto method for many
practitioners, there are also many more sophisticated ap-
proaches to MCMC (Green, 1995; Earl & Deem, 2005).
Since our framework is orthogonal to the particular choice
of transition kernel, it would be interesting to apply our
method in these contexts.

Finally, we would like to further explore the staged con-
struction from Section 3.1. As the initial results on DNF
formula synthesis are encouraging, it would be interest-
ing to apply the construction to high-dimensional feature
spaces as well as rich, multi-level hierarchies. We believe
this might be a promising approach for extremely rich mod-
els in which a single level of re-initialization is insufficient
to capture the complexity of the cost landscape.

Related Work. Our learning algorithm is reminiscent of
policy gradient algorithms in reinforcement learning (Sut-
ton et al., 1999), as well as Searn, which tries to learn an op-
timal search policy for structured prediction (Daume et al.,
2009). Shi et al. (2015) applied reinforcement learning to
choose which variable to update next in a Gibbs sampler.
Our staged construction is also similar in spirit to path sam-
pling (Gelman & Meng, 1998), which uses a multi-stage
approach to smoothly transition from a very simple to a

very complex distribution.

Our staged Doeblin construction belongs to the family of
coarse-to-fine inference methods, which operate on pro-
gressively more complex models (Viola & Jones, 2004;
Shen et al., 2004; Collins & Koo, 2005; Gu et al., 2009;
Weiss et al., 2010; Sapp et al., 2010; Petrov & Klein, 2007;
Yadollahpour et al., 2013).

On the theoretical front, we make use of the well-developed
theory of strong Doeblin chains, often also referred to
with the terms minorization or regeneration time (Doeblin,
1940; Roberts & Tweedie, 1999; Meyn & Tweedie, 1994;
Athreya & Ney, 1978). The strong Doeblin property is
typically used to study convergence of continuous-space
Markov chains, but Rosenthal (1995) has used it to analyze
Gibbs sampling, and several authors have provided algo-
rithms for sampling exactly from arbitrary strong Doeblin
chains (Propp & Wilson, 1996; Corcoran & Tweedie, 1998;
Murdoch & Green, 1998). We are the first to use strong
Doeblin properties to construct model families and learn
them from data.

At a high level, our idea is to identify a family of
models for which an approximate inference algorithm is
known to work well, thereby constructing a computation-
ally tractable model family that is nevertheless more ex-
pressive than typical tractable families such as low-tree-
width graphical models. We believe this general research
program is very interesting, and could be applied to other
inference algorithms as well, thus solidfying the link be-
tween statistical theory and practical reality.

Acknowledgments. The first author was supported by a
Fannie & John Hertz Fellowship as well as an NSF Grad-
uate Fellowship. The second author was supported by a
Microsoft Research Faculty Fellowship. We also thank the
anonymous referees for their helpful comments.

Reproducibility. Code, data, and experiments for
this paper are available on the CodaLab platform at
https://www.codalab.org/worksheets/
0xc6edf0c9bec643ac9e74418bd6ad4136/.

https://www.codalab.org/worksheets/0xc6edf0c9bec643ac9e74418bd6ad4136/
https://www.codalab.org/worksheets/0xc6edf0c9bec643ac9e74418bd6ad4136/

Learning Fast-Mixing Models for Structured Prediction

References
Athreya, K. B. and Ney, P. A new approach to the limit

theory of recurrent Markov chains. Transactions of the
American Mathematical Society, 245:493–501, 1978.

Collins, M. and Koo, T. Discriminative reranking for natu-
ral language parsing. Computational Linguistics, 31(1):
25–70, 2005.

Corcoran, J. and Tweedie, R. Perfect sampling of Harris
recurrent Markov chains. preprint, 1998.

Cowles, M. K. and Carlin, B. P. Markov chain Monte Carlo
convergence diagnostics: a comparative review. Journal
of the American Statistical Association (JASA), 91(434):
883–904, 1996.

Daume, H., Langford, J., and Marcu, D. Search-based
structured prediction. Machine Learning, 75:297–325,
2009.

Doeblin, W. Elements d’une theorie generale des chaines
simples constantes de markoff. In Annales scientifiques
de l’École Normale Supérieure, volume 57, pp. 61–111,
1940.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
In Conference on Learning Theory (COLT), 2010.

Earl, D. J. and Deem, M. W. Parallel tempering: Theory,
applications, and new perspectives. Physical Chemistry
Chemical Physics, 7(23):3910–3916, 2005.

Gelman, A. and Meng, X. Simulating normalizing con-
stants: From importance sampling to bridge sampling to
path sampling. Statistical science, 13(2):163–185, 1998.

Gelman, A. and Rubin, D. B. A single series from
the Gibbs sampler provides a false sense of security.
Bayesian statistics, 4:625–631, 1992.

Green, P. Reversible jump Markov chain Monte Carlo com-
putation and Bayesian model determination. Biometrika,
82(4):711–732, 1995.

Gu, C., Lim, J. J., Arbeláez, P., and Malik, J. Recognition
using regions. In Computer Vision and Pattern Recogni-
tion (CVPR), pp. 1030–1037, 2009.

Gulwani, S. and Jojic, N. Program verification as proba-
bilistic inference. ACM SIGPLAN Notices, 42(1):277–
289, 2007.

Huang, L., Fayong, S., and Guo, Y. Structured Perceptron
with inexact search. In Association for Computational
Linguistics (ACL), pp. 142–151, 2012.

Kulesza, A. and Pereira, F. Structured learning with ap-
proximate inference. In Advances in Neural Information
Processing Systems (NIPS), pp. 785–792, 2007.

Levin, D., Peres, Y., and Wilmer, E. Markov Chains and
Mixing Times. American Mathematical Society, 2008.

Meyn, S. and Tweedie, R. Computable bounds for geomet-
ric convergence rates of Markov chains. The Annals of
Applied Probability, 4(4):981–1011, 1994.

Murdoch, D. J. and Green, P. J. Exact sampling from a con-
tinuous state space. Scandinavian Journal of Statistics,
25(3):483–502, 1998.

Murray, I. and Salakhutdinov, R. Notes on the KL-
divergence between a Markov chain and its equilibrium
distribution. preprint, 2008.

Petrov, S. and Klein, D. Learning and inference for hierar-
chically split PCFGs. In Human Language Technology
and North American Association for Computational Lin-
guistics (HLT/NAACL), pp. 404–411, 2007.

Propp, J. and Wilson, D. Exact sampling with coupled
Markov chains and applications to statistical mechanics.
Random structures and Algorithms, 9:223–252, 1996.

Roberts, G. and Tweedie, R. Bounds on regeneration times
and convergence rates for Markov chains. Stochastic
Processes and their applications, 80(2):211–229, 1999.

Rosenthal, J. S. Minorization conditions and convergence
rates for Markov chain Monte Carlo. Journal of the
American Statistical Association (JASA), 90(430):558–
566, 1995.

Sandhaus, E. The New York Times annotated corpus, 2008.

Sapp, B., Toshev, A., and Taskar, B. Cascaded models for
articulated pose estimation. In European Conference on
Computer Vision (ECCV), pp. 406–420, 2010.

Sharma, R. and Aiken, A. From invariant checking to in-
variant inference using randomized search. In Computer
Aided Verification (CAV), pp. 88–105, 2014.

Shen, L., Sarkar, A., and Och, F. J. Discriminative rerank-
ing for machine translation. In North American Associ-
ation for Computational Linguistics (NAACL), pp. 177–
184, 2004.

Shi, T., Steinhardt, J., and Liang, P. Learning where to
sample in structured prediction. In Artificial Intelligence
and Statistics (AISTATS), pp. 875–884, 2015.

Sutton, R., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. In Advances in Neural Informa-
tion Processing Systems (NIPS), 1999.

Learning Fast-Mixing Models for Structured Prediction

Viola, P. and Jones, M. J. Robust real-time face detec-
tion. International Journal of Computer Vision, 57(2):
137–154, 2004.

Wainwright, M. Estimating the “wrong” graphical model:
Benefits in the computation-limited setting. Journal
of Machine Learning Research (JMLR), 7:1829–1859,
2006.

Weiss, D., Sapp, B., and Taskar, B. Sidestepping in-
tractable inference with structured ensemble cascades.
In Advances in Neural Information Processing Systems
(NIPS), pp. 2415–2423, 2010.

Yadollahpour, P., Batra, D., and Shakhnarovich, G. Dis-
criminative re-ranking of diverse segmentations. In
Computer Vision and Pattern Recognition (CVPR), pp.
1923–1930, 2013.

