
Proofs for “Information Geometry and Minimum

Description Length Networks”

An Approximation of lnN(B,α)

As the value of lnN(B,α) does not depend on the choice of the coordinate
system, we abuse notation and vary η =

(
η(1), . . . , η(dimS)

)
to an ideal coor-

dinate system, where g(η) is everywhere identity. In theory, this is possible
locally. However, for convenience, we assume that such a coordinate system
exists globally. By definition,

lnN(B,α) = ln

(∫
η∈S

m∑
i=1

αi exp (−D(η ‖ηi)) dη

)

= ln

(
m∑
i=1

αi

∫
η∈S

exp (−D(η ‖ηi)) dη

)

≈ ln

(
m∑
i=1

αi

∫
η(1)
· · ·
∫
η(dimS)

exp

(
−1

2
(η − ηi)T g(ηi)(η − ηi)

)

×
√
|g(η)|dη(1) · · · dη(dimS)

)

= ln

(
m∑
i=1

αi

∫
η(1)
· · ·
∫
η(dimS)

exp

(
−1

2
‖η − ηi‖22

)
dη(1) · · · dη(dimS)

)

≈ ln

(
m∑
i=1

αi exp

(
dimS

2
ln(2π)

))
=

dimS
2

ln(2π). (S.1)

The first “≈” is by approximating D to a square distance, which is only accurate
when η and ηi are close enough. The second “≈” is by relaxing the domain of
the integration from S to <dimS . This is a rough approximation for a general S,
to show the order of the term lnN(B,α), and to show its weak dependence to
B and α. More accurate approximations based on specific choices of S can lead
to better implementations of MDL networks and better criteria in accordance
to MDL.
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Proof of E(N , A) ≤ Ê(N , A) (HARDN)

Proof. ∀l, ∀i,
nl+1∑
j=1

αl+1,j exp
(
−D(ηli ‖ηl+1,j)

)
≥ max

j

[
αl+1,j exp

(
−D(ηli ‖ηl+1,j)

)]
. (S.2)

As − ln(x) is monotonically decreasing,

E(N , A) = −
L−1∑
l=0

nl∑
i=1

ln

nl+1∑
j=1

αl+1,j exp
(
−D(ηli ‖ηl+1,j)

)
≤ −

L−1∑
l=0

nl∑
i=1

ln max
j

[
αl+1,j exp

(
−D(ηli ‖ηl+1,j)

)]
= −

L−1∑
l=0

nl∑
i=1

max
j

[
lnαl+1,j −D(ηli ‖ηl+1,j)

]
=

L−1∑
l=0

nl∑
i=1

min
j

[
− lnαl+1,j +D(ηli ‖ηl+1,j)

]
= Ê(N , A). (S.3)

Proof of E(N , A) ≤ Ē(N , A,B) (SOFTN)

Proof. Because of the convexity of − ln(x),

E(N , A) = −
L−1∑
l=0

nl∑
i=1

ln

nl+1∑
j=1

αl+1,j exp
(
−D(ηli ‖ηl+1,j)

)
= −

L−1∑
l=0

nl∑
i=1

ln

nl+1∑
j=1

βjli ·
αl+1,j exp

(
−D(ηli ‖ηl+1,j)

)
βjli


≤
L−1∑
l=0

nl∑
i=1

nl+1∑
j=1

βjli

[
− ln

(
αl+1,j exp

(
−D(ηli ‖ηl+1,j)

)
βjli

)]

=

L−1∑
l=0

nl∑
i=1

nl+1∑
j=1

βjli

(
ln

βjli
αl+1,j

+D(ηli ‖ηl+1,j)

)
= Ē(N , A,B). (S.4)
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Proof of Theorem 3

Proof. Denote the true distribution with the components {ηti} and the weights
{αti} by True(x). By eq. (7), ∀N , ∀A, when n→∞,

E(N , A) = −n
∫
True(x) ln

 n1∑
j=1

α1j exp
(
−D(η(x) ‖η1j)

) dx

−
L−1∑
l=1

nl∑
i=1

ln

nl+1∑
j=1

αl+1,j exp
(
−D(ηli ‖ηl+1,j)

)
= −n

∫
True(x) ln

 n1∑
j=1

α1jp
(
x |η1j

) dx+ constant

−
L−1∑
l=1

nl∑
i=1

ln

nl+1∑
j=1

αl+1,j exp
(
−D(ηli ‖ηl+1,j)

) . (S.5)

We construct an MDL network N t, where Lt1 is given by {ηt1i = ηti} with
the weights {αt1i = αti}. The rest of the cells {ηtli} in higher levels, including
their weights {αtli} are given by the sub-optimal solution which minimizes the
above eq. (S.5) with Lt1 and its weights fixed. Given that L0 is fixed by infinite
samples corresponding to the truth, ∀N , ∀A,

E(N , A)− E(N t, At) =n

∫
True(x) ln

True(x)∑n1

j=1 α1jp
(
xi |η1j

)dx
−
L−1∑
l=1

nl∑
i=1

ln

nl+1∑
j=1

αl+1,j exp
(
−D(ηli ‖ηl+1,j)

)
+

L−1∑
l=1

nl∑
i=1

ln

nl+1∑
j=1

αtl+1,j exp
(
−D(ηtli ‖ηtl+1,j)

) .

(S.6)

If {η1j} in N or {α1j} in A does not correspond to True(x), the first term on
the right-hand-side of eq. (S.6) will go to +∞ as n → ∞. The second term
is always non-negative, because of the non-negativity of D. Because of the
sub-optimality discussed earlier, the third term is lower-bounded, as in

L−1∑
l=1

nl∑
i=1

ln

nl+1∑
j=1

αtl+1,j exp
(
−D(ηtli ‖ηtl+1,j)

) ≥ − n1∑
i=1

D(ηti ‖ η̃), (S.7)

where η̃ can be any distribution, e.g., the right-handed Bregman centroid {ηti}.
The right-hand-side of eq. (S.7) is the negative cost of a simple structure (one
cell in L2) to represent Lt1, which is upper-bounded by the sub-optimal negative
cost on the left-hand-side. Integrating all the three terms on the right-hand-of
eq. (S.6), E(N , A) > E(N t, At). Hence, in the optimal solution, L1 must be
exactly {ηti} and the weights must be exactly {αti}.
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Proof of Theorem 4

Proof. By the definition of D(η1 ‖η2) in section 2.3 as a Bregman divergence,
∀θ(η), we have

gain(η) = D(η1 ‖η2)−D(η1 ‖η)−D(η ‖η2)

= +
(
ψ?(η1)− ψ?(η2)− θT2 (η1 − η2)

)
−
(
ψ?(η1)− ψ?(η)− θT (η1 − η)

)
−
(
ψ?(η)− ψ?(η2)− θT2 (η − η2)

)
= (θ2 − θ)T (η − η1). (S.8)

Let θlc = (θ1 + θ2)/2 be the left-handed Bregman centroid of θ1 and θ2,
then θ2 − θlc = θlc − θ1. Therefore,

gain(ηlc) = (θ2 − θlc)T (ηlc − η1) = (θlc − θ1)T (ηlc − η1). (S.9)

On the other hand, ∀ηa,ηb ∈ S, ηa 6= ηb,

D(ηa ‖ηb) +D(ηb ‖ηa) = +
(
ψ?(ηa)− ψ?(ηb)− θ

T
b (ηa − ηb)

)
+
(
ψ?(ηb)− ψ?(ηa)− θTa (ηb − ηa)

)
=(θa − θb)T (ηa − ηb) > 0. (S.10)

By eqs. (S.9) and (S.10),

gain(ηlc) = D(ηlc ‖η1) +D(η1 ‖ηlc) > 0 (which proves ¬). (S.11)

Similarly, we let ηrc = (η1 + η2)/2 be the righted-handed Bregman centroid,
then

gain(ηrc) = (θ2 − θrc)T (ηrc − η1) = (θ2 − θrc)T (η2 − ηrc)
= D(η2 ‖ηrc) +D(ηrc ‖η2). (S.12)

By eqs. (S.11) and (S.12), ∃η ∈ S satisfying

gain(η) ≥ max{D(ηlc ‖η1) +D(η1 ‖ηlc), D(η2 ‖ηrc) +D(ηrc ‖η2)}. (S.13)
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