Proofs for "Information Geometry and Minimum Description Length Networks"

An Approximation of $\ln N(\mathcal{B}, \boldsymbol{\alpha})$

As the value of $\ln N(\mathcal{B}, \boldsymbol{\alpha})$ does not depend on the choice of the coordinate system, we abuse notation and vary $\boldsymbol{\eta} = (\eta^{(1)}, \dots, \eta^{(\dim \mathcal{S})})$ to an *ideal coordinate system*, where $g(\boldsymbol{\eta})$ is everywhere identity. In theory, this is possible locally. However, for convenience, we assume that such a coordinate system exists globally. By definition,

$$\ln N(\mathcal{B}, \boldsymbol{\alpha}) = \ln \left(\int_{\boldsymbol{\eta} \in \mathcal{S}} \sum_{i=1}^{m} \alpha_{i} \exp\left(-D(\boldsymbol{\eta} \parallel \boldsymbol{\eta}_{i})\right) d\boldsymbol{\eta} \right)$$

$$= \ln \left(\sum_{i=1}^{m} \alpha_{i} \int_{\boldsymbol{\eta} \in \mathcal{S}} \exp\left(-D(\boldsymbol{\eta} \parallel \boldsymbol{\eta}_{i})\right) d\boldsymbol{\eta} \right)$$

$$\approx \ln \left(\sum_{i=1}^{m} \alpha_{i} \int_{\boldsymbol{\eta}^{(1)}} \cdots \int_{\boldsymbol{\eta}^{(\dim \mathcal{S})}} \exp\left(-\frac{1}{2} (\boldsymbol{\eta} - \boldsymbol{\eta}_{i})^{T} g(\boldsymbol{\eta}_{i}) (\boldsymbol{\eta} - \boldsymbol{\eta}_{i})\right) \right)$$

$$\times \sqrt{|g(\boldsymbol{\eta})|} d\boldsymbol{\eta}^{(1)} \cdots d\boldsymbol{\eta}^{(\dim \mathcal{S})} \right)$$

$$= \ln \left(\sum_{i=1}^{m} \alpha_{i} \int_{\boldsymbol{\eta}^{(1)}} \cdots \int_{\boldsymbol{\eta}^{(\dim \mathcal{S})}} \exp\left(-\frac{1}{2} \|\boldsymbol{\eta} - \boldsymbol{\eta}_{i}\|_{2}^{2}\right) d\boldsymbol{\eta}^{(1)} \cdots d\boldsymbol{\eta}^{(\dim \mathcal{S})} \right)$$

$$\approx \ln \left(\sum_{i=1}^{m} \alpha_{i} \exp\left(\frac{\dim \mathcal{S}}{2} \ln(2\pi)\right) \right) = \frac{\dim \mathcal{S}}{2} \ln(2\pi). \tag{S.1}$$

The first " \approx " is by approximating D to a square distance, which is only accurate when η and η_i are close enough. The second " \approx " is by relaxing the domain of the integration from $\mathcal S$ to $\Re^{\dim \mathcal S}$. This is a rough approximation for a general $\mathcal S$, to show the order of the term $\ln N(\mathcal B, \alpha)$, and to show its weak dependence to $\mathcal B$ and α . More accurate approximations based on specific choices of $\mathcal S$ can lead to better implementations of MDL networks and better criteria in accordance to MDL.

Proof of $E(\mathcal{N}, A) \leq \hat{E}(\mathcal{N}, A)$ (HARDN)

Proof. $\forall l, \forall i,$

$$\sum_{i=1}^{n_{l+1}} \alpha_{l+1,j} \exp\left(-D(\boldsymbol{\eta}_{li} \| \boldsymbol{\eta}_{l+1,j})\right) \ge \max_{j} \left[\alpha_{l+1,j} \exp\left(-D(\boldsymbol{\eta}_{li} \| \boldsymbol{\eta}_{l+1,j})\right)\right]. \quad (S.2)$$

As $-\ln(x)$ is monotonically decreasing,

$$E(\mathcal{N}, A) = -\sum_{l=0}^{L-1} \sum_{i=1}^{n_l} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1,j} \exp\left(-D(\boldsymbol{\eta}_{li} \parallel \boldsymbol{\eta}_{l+1,j})\right) \right)$$

$$\leq -\sum_{l=0}^{L-1} \sum_{i=1}^{n_l} \ln \max_{j} \left[\alpha_{l+1,j} \exp\left(-D(\boldsymbol{\eta}_{li} \parallel \boldsymbol{\eta}_{l+1,j})\right) \right]$$

$$= -\sum_{l=0}^{L-1} \sum_{i=1}^{n_l} \max_{j} \left[\ln \alpha_{l+1,j} - D(\boldsymbol{\eta}_{li} \parallel \boldsymbol{\eta}_{l+1,j}) \right]$$

$$= \sum_{l=0}^{L-1} \sum_{i=1}^{n_l} \min_{j} \left[-\ln \alpha_{l+1,j} + D(\boldsymbol{\eta}_{li} \parallel \boldsymbol{\eta}_{l+1,j}) \right] = \hat{E}(\mathcal{N}, A). \quad (S.3)$$

Proof of $E(\mathcal{N}, A) \leq \bar{E}(\mathcal{N}, A, B)$ (SOFTN)

Proof. Because of the convexity of $-\ln(x)$,

$$E(\mathcal{N}, A) = -\sum_{l=0}^{L-1} \sum_{i=1}^{n_l} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1,j} \exp\left(-D(\boldsymbol{\eta}_{li} \| \boldsymbol{\eta}_{l+1,j})\right) \right)$$

$$= -\sum_{l=0}^{L-1} \sum_{i=1}^{n_l} \ln \left(\sum_{j=1}^{n_{l+1}} \beta_{li}^j \cdot \frac{\alpha_{l+1,j} \exp\left(-D(\boldsymbol{\eta}_{li} \| \boldsymbol{\eta}_{l+1,j})\right)}{\beta_{li}^j} \right)$$

$$\leq \sum_{l=0}^{L-1} \sum_{i=1}^{n_l} \sum_{j=1}^{n_{l+1}} \beta_{li}^j \left[-\ln \left(\frac{\alpha_{l+1,j} \exp\left(-D(\boldsymbol{\eta}_{li} \| \boldsymbol{\eta}_{l+1,j})\right)}{\beta_{li}^j} \right) \right]$$

$$= \sum_{l=0}^{L-1} \sum_{i=1}^{n_l} \sum_{j=1}^{n_{l+1}} \beta_{li}^j \left(\ln \frac{\beta_{li}^j}{\alpha_{l+1,j}} + D(\boldsymbol{\eta}_{li} \| \boldsymbol{\eta}_{l+1,j}) \right) = \bar{E}(\mathcal{N}, A, B). \quad (S.4)$$

Proof of Theorem 3

Proof. Denote the true distribution with the components $\{\boldsymbol{\eta}_i^t\}$ and the weights $\{\alpha_i^t\}$ by $True(\boldsymbol{x})$. By eq. (7), $\forall \mathcal{N}, \forall A$, when $n \to \infty$,

$$E(\mathcal{N}, A) = -n \int True(\boldsymbol{x}) \ln \left(\sum_{j=1}^{n_1} \alpha_{1j} \exp\left(-D(\boldsymbol{\eta}(\boldsymbol{x}) \parallel \boldsymbol{\eta}_{1j})\right) \right) d\boldsymbol{x}$$

$$- \sum_{l=1}^{L-1} \sum_{i=1}^{n_l} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1,j} \exp\left(-D(\boldsymbol{\eta}_{li} \parallel \boldsymbol{\eta}_{l+1,j})\right) \right)$$

$$= -n \int True(\boldsymbol{x}) \ln \left(\sum_{j=1}^{n_1} \alpha_{1j} p\left(\boldsymbol{x} \mid \boldsymbol{\eta}_{1j}\right) \right) d\boldsymbol{x} + constant$$

$$- \sum_{l=1}^{L-1} \sum_{i=1}^{n_l} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1,j} \exp\left(-D(\boldsymbol{\eta}_{li} \parallel \boldsymbol{\eta}_{l+1,j})\right) \right). \tag{S.5}$$

We construct an MDL network \mathcal{N}^t , where \mathcal{L}_1^t is given by $\{\boldsymbol{\eta}_{1i}^t = \boldsymbol{\eta}_i^t\}$ with the weights $\{\alpha_{1i}^t = \alpha_i^t\}$. The rest of the cells $\{\boldsymbol{\eta}_{li}^t\}$ in higher levels, including their weights $\{\alpha_{li}^t\}$ are given by the sub-optimal solution which minimizes the above eq. (S.5) with \mathcal{L}_1^t and its weights fixed. Given that \mathcal{L}_0 is fixed by infinite samples corresponding to the truth, $\forall \mathcal{N}, \forall A$,

$$E(\mathcal{N}, A) - E(\mathcal{N}^{t}, A^{t}) = n \int True(\boldsymbol{x}) \ln \frac{True(\boldsymbol{x})}{\sum_{j=1}^{n_{1}} \alpha_{1j} p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\eta}_{1j}\right)} d\boldsymbol{x}$$

$$- \sum_{l=1}^{L-1} \sum_{i=1}^{n_{l}} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1,j} \exp\left(-D(\boldsymbol{\eta}_{li} \parallel \boldsymbol{\eta}_{l+1,j})\right) \right)$$

$$+ \sum_{l=1}^{L-1} \sum_{i=1}^{n_{l}} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1,j}^{t} \exp\left(-D(\boldsymbol{\eta}_{li}^{t} \parallel \boldsymbol{\eta}_{l+1,j}^{t})\right) \right).$$
(S.6)

If $\{\eta_{1j}\}$ in \mathcal{N} or $\{\alpha_{1j}\}$ in A does not correspond to $True(\boldsymbol{x})$, the first term on the right-hand-side of eq. (S.6) will go to $+\infty$ as $n \to \infty$. The second term is always non-negative, because of the non-negativity of D. Because of the sub-optimality discussed earlier, the third term is lower-bounded, as in

$$\sum_{l=1}^{L-1} \sum_{i=1}^{n_l} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1,j}^t \exp \left(-D(\boldsymbol{\eta}_{li}^t \| \boldsymbol{\eta}_{l+1,j}^t) \right) \right) \ge -\sum_{i=1}^{n_1} D(\boldsymbol{\eta}_i^t \| \tilde{\boldsymbol{\eta}}), \quad (S.7)$$

where $\tilde{\boldsymbol{\eta}}$ can be any distribution, e.g., the right-handed Bregman centroid $\{\boldsymbol{\eta}_i^t\}$. The right-hand-side of eq. (S.7) is the negative cost of a simple structure (one cell in \mathcal{L}_2) to represent \mathcal{L}_1^t , which is upper-bounded by the sub-optimal negative cost on the left-hand-side. Integrating all the three terms on the right-hand-of eq. (S.6), $E(\mathcal{N}, A) > E(\mathcal{N}^t, A^t)$. Hence, in the optimal solution, \mathcal{L}_1 must be exactly $\{\boldsymbol{\eta}_i^t\}$ and the weights must be exactly $\{\alpha_i^t\}$.

Proof of Theorem 4

Proof. By the definition of $D(\eta_1 || \eta_2)$ in section 2.3 as a Bregman divergence, $\forall \theta(\eta)$, we have

$$gain(\boldsymbol{\eta}) = D(\boldsymbol{\eta}_1 || \boldsymbol{\eta}_2) - D(\boldsymbol{\eta}_1 || \boldsymbol{\eta}) - D(\boldsymbol{\eta} || \boldsymbol{\eta}_2)$$

$$= + \left(\psi^*(\boldsymbol{\eta}_1) - \psi^*(\boldsymbol{\eta}_2) - \boldsymbol{\theta}_2^T(\boldsymbol{\eta}_1 - \boldsymbol{\eta}_2)\right)$$

$$- \left(\psi^*(\boldsymbol{\eta}_1) - \psi^*(\boldsymbol{\eta}) - \boldsymbol{\theta}^T(\boldsymbol{\eta}_1 - \boldsymbol{\eta})\right)$$

$$- \left(\psi^*(\boldsymbol{\eta}) - \psi^*(\boldsymbol{\eta}_2) - \boldsymbol{\theta}_2^T(\boldsymbol{\eta} - \boldsymbol{\eta}_2)\right)$$

$$= (\boldsymbol{\theta}_2 - \boldsymbol{\theta})^T(\boldsymbol{\eta} - \boldsymbol{\eta}_1). \tag{S.8}$$

Let $\theta_{lc} = (\theta_1 + \theta_2)/2$ be the left-handed Bregman centroid of θ_1 and θ_2 , then $\theta_2 - \theta_{lc} = \theta_{lc} - \theta_1$. Therefore,

$$gain(\boldsymbol{\eta}_{lc}) = (\boldsymbol{\theta}_2 - \boldsymbol{\theta}_{lc})^T (\boldsymbol{\eta}_{lc} - \boldsymbol{\eta}_1) = (\boldsymbol{\theta}_{lc} - \boldsymbol{\theta}_1)^T (\boldsymbol{\eta}_{lc} - \boldsymbol{\eta}_1).$$
 (S.9)

On the other hand, $\forall \eta_a, \eta_b \in \mathcal{S}, \eta_a \neq \eta_b$,

$$D(\boldsymbol{\eta}_{a} \parallel \boldsymbol{\eta}_{b}) + D(\boldsymbol{\eta}_{b} \parallel \boldsymbol{\eta}_{a}) = + \left(\psi^{\star}(\boldsymbol{\eta}_{a}) - \psi^{\star}(\boldsymbol{\eta}_{b}) - \boldsymbol{\theta}_{b}^{T}(\boldsymbol{\eta}_{a} - \boldsymbol{\eta}_{b}) \right)$$
$$+ \left(\psi^{\star}(\boldsymbol{\eta}_{b}) - \psi^{\star}(\boldsymbol{\eta}_{a}) - \boldsymbol{\theta}_{a}^{T}(\boldsymbol{\eta}_{b} - \boldsymbol{\eta}_{a}) \right)$$
$$= (\boldsymbol{\theta}_{a} - \boldsymbol{\theta}_{b})^{T}(\boldsymbol{\eta}_{a} - \boldsymbol{\eta}_{b}) > 0.$$
 (S.10)

By eqs. (S.9) and (S.10),

$$gain(\boldsymbol{\eta}_{lc}) = D(\boldsymbol{\eta}_{lc} \| \boldsymbol{\eta}_1) + D(\boldsymbol{\eta}_1 \| \boldsymbol{\eta}_{lc}) > 0 \quad \text{(which proves } \mathbb{O}\text{)}.$$
 (S.11)

Similarly, we let $\eta_{rc}=(\eta_1+\eta_2)/2$ be the righted-handed Bregman centroid, then

$$gain(\boldsymbol{\eta}_{rc}) = (\boldsymbol{\theta}_2 - \boldsymbol{\theta}_{rc})^T (\boldsymbol{\eta}_{rc} - \boldsymbol{\eta}_1) = (\boldsymbol{\theta}_2 - \boldsymbol{\theta}_{rc})^T (\boldsymbol{\eta}_2 - \boldsymbol{\eta}_{rc})$$
$$= D(\boldsymbol{\eta}_2 \parallel \boldsymbol{\eta}_{rc}) + D(\boldsymbol{\eta}_{rc} \parallel \boldsymbol{\eta}_2). \tag{S.12}$$

By eqs. (S.11) and (S.12), $\exists \eta \in \mathcal{S}$ satisfying

$$gain(\boldsymbol{\eta}) \ge \max\{D(\boldsymbol{\eta}_{lc} \parallel \boldsymbol{\eta}_1) + D(\boldsymbol{\eta}_1 \parallel \boldsymbol{\eta}_{lc}), D(\boldsymbol{\eta}_2 \parallel \boldsymbol{\eta}_{rc}) + D(\boldsymbol{\eta}_{rc} \parallel \boldsymbol{\eta}_2)\}. \quad (S.13)$$