Proofs for "Information Geometry and Minimum Description Length Networks"

An Approximation of $\ln N(\mathcal{B}, \boldsymbol{\alpha})$

As the value of $\ln N(\mathcal{B}, \boldsymbol{\alpha})$ does not depend on the choice of the coordinate system, we abuse notation and vary $\boldsymbol{\eta}=\left(\eta^{(1)}, \ldots, \eta^{(\operatorname{dim} \mathcal{S})}\right)$ to an ideal coordinate system, where $g(\boldsymbol{\eta})$ is everywhere identity. In theory, this is possible locally. However, for convenience, we assume that such a coordinate system exists globally. By definition,

$$
\begin{align*}
\ln N(\mathcal{B}, \boldsymbol{\alpha})= & \ln \left(\int_{\boldsymbol{\eta} \in \mathcal{S}} \sum_{i=1}^{m} \alpha_{i} \exp \left(-D\left(\boldsymbol{\eta} \| \boldsymbol{\eta}_{i}\right)\right) d \boldsymbol{\eta}\right) \\
= & \ln \left(\sum_{i=1}^{m} \alpha_{i} \int_{\boldsymbol{\eta} \in \mathcal{S}} \exp \left(-D\left(\boldsymbol{\eta} \| \boldsymbol{\eta}_{i}\right)\right) d \boldsymbol{\eta}\right) \\
\approx & \ln \left(\sum_{i=1}^{m} \alpha_{i} \int_{\eta^{(1)}} \cdots \int_{\eta^{(\operatorname{dim} \mathcal{S})}} \exp \left(-\frac{1}{2}\left(\boldsymbol{\eta}-\boldsymbol{\eta}_{i}\right)^{T} g\left(\boldsymbol{\eta}_{i}\right)\left(\boldsymbol{\eta}-\boldsymbol{\eta}_{i}\right)\right)\right. \\
& \left.\times \sqrt{|g(\boldsymbol{\eta})|} d \eta^{(1)} \cdots d \eta^{(\operatorname{dim} \mathcal{S})}\right) \\
= & \ln \left(\sum_{i=1}^{m} \alpha_{i} \int_{\eta^{(1)}} \cdots \int_{\eta^{(\operatorname{dim} \mathcal{S})}} \exp \left(-\frac{1}{2}\left\|\boldsymbol{\eta}-\boldsymbol{\eta}_{i}\right\|_{2}^{2}\right) d \eta^{(1)} \cdots d \eta^{(\operatorname{dim} \mathcal{S})}\right) \\
\approx & \ln \left(\sum_{i=1}^{m} \alpha_{i} \exp \left(\frac{\operatorname{dim} \mathcal{S}}{2} \ln (2 \pi)\right)\right)=\frac{\operatorname{dim} \mathcal{S}}{2} \ln (2 \pi) . \tag{S.1}
\end{align*}
$$

The first " \approx " is by approximating D to a square distance, which is only accurate when $\boldsymbol{\eta}$ and $\boldsymbol{\eta}_{i}$ are close enough. The second " \approx " is by relaxing the domain of the integration from \mathcal{S} to $\Re^{\operatorname{dim} \mathcal{S}}$. This is a rough approximation for a general \mathcal{S}, to show the order of the term $\ln N(\mathcal{B}, \boldsymbol{\alpha})$, and to show its weak dependence to \mathcal{B} and $\boldsymbol{\alpha}$. More accurate approximations based on specific choices of \mathcal{S} can lead to better implementations of MDL networks and better criteria in accordance to MDL.

Proof of $E(\mathcal{N}, A) \leq \hat{E}(\mathcal{N}, A)$ (HARDN)

Proof. $\forall l, \forall i$,

$$
\begin{equation*}
\sum_{j=1}^{n_{l+1}} \alpha_{l+1, j} \exp \left(-D\left(\boldsymbol{\eta}_{l i} \| \boldsymbol{\eta}_{l+1, j}\right)\right) \geq \max _{j}\left[\alpha_{l+1, j} \exp \left(-D\left(\boldsymbol{\eta}_{l i} \| \boldsymbol{\eta}_{l+1, j}\right)\right)\right] \tag{S.2}
\end{equation*}
$$

As $-\ln (x)$ is monotonically decreasing,

$$
\begin{align*}
E(\mathcal{N}, A) & =-\sum_{l=0}^{L-1} \sum_{i=1}^{n_{l}} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1, j} \exp \left(-D\left(\boldsymbol{\eta}_{l i} \| \boldsymbol{\eta}_{l+1, j}\right)\right)\right) \\
& \leq-\sum_{l=0}^{L-1} \sum_{i=1}^{n_{l}} \ln \max _{j}\left[\alpha_{l+1, j} \exp \left(-D\left(\boldsymbol{\eta}_{l i} \| \boldsymbol{\eta}_{l+1, j}\right)\right)\right] \\
& =-\sum_{l=0}^{L-1} \sum_{i=1}^{n_{l}} \max _{j}\left[\ln \alpha_{l+1, j}-D\left(\boldsymbol{\eta}_{l i} \| \boldsymbol{\eta}_{l+1, j}\right)\right] \\
& =\sum_{l=0}^{L-1} \sum_{i=1}^{n_{l}} \min _{j}\left[-\ln \alpha_{l+1, j}+D\left(\boldsymbol{\eta}_{l i} \| \boldsymbol{\eta}_{l+1, j}\right)\right]=\hat{E}(\mathcal{N}, A) . \tag{S.3}
\end{align*}
$$

Proof of $E(\mathcal{N}, A) \leq \bar{E}(\mathcal{N}, A, B)$ (SOFTN)
Proof. Because of the convexity of $-\ln (x)$,

$$
\begin{align*}
E(\mathcal{N}, A) & =-\sum_{l=0}^{L-1} \sum_{i=1}^{n_{l}} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1, j} \exp \left(-D\left(\boldsymbol{\eta}_{l i} \| \boldsymbol{\eta}_{l+1, j}\right)\right)\right) \\
& =-\sum_{l=0}^{L-1} \sum_{i=1}^{n_{l}} \ln \left(\sum_{j=1}^{n_{l+1}} \beta_{l i}^{j} \cdot \frac{\alpha_{l+1, j} \exp \left(-D\left(\boldsymbol{\eta}_{l i} \| \boldsymbol{\eta}_{l+1, j}\right)\right)}{\beta_{l i}^{j}}\right) \\
& \leq \sum_{l=0}^{L-1} \sum_{i=1}^{n_{l}} \sum_{j=1}^{n_{l+1}} \beta_{l i}^{j}\left[-\ln \left(\frac{\alpha_{l+1, j} \exp \left(-D\left(\boldsymbol{\eta}_{l i} \| \boldsymbol{\eta}_{l+1, j}\right)\right)}{\beta_{l i}^{j}}\right)\right] \\
& =\sum_{l=0}^{L-1} \sum_{i=1}^{n_{l}} \sum_{j=1}^{n_{l+1}} \beta_{l i}^{j}\left(\ln \frac{\beta_{l i}^{j}}{\alpha_{l+1, j}}+D\left(\boldsymbol{\eta}_{l i} \| \boldsymbol{\eta}_{l+1, j}\right)\right)=\bar{E}(\mathcal{N}, A, B) . \tag{S.4}
\end{align*}
$$

Proof of Theorem 3

Proof. Denote the true distribution with the components $\left\{\boldsymbol{\eta}_{i}^{t}\right\}$ and the weights $\left\{\alpha_{i}^{t}\right\}$ by $\operatorname{True}(\boldsymbol{x})$. By eq. (7), $\forall \mathcal{N}, \forall A$, when $n \rightarrow \infty$,

$$
\begin{align*}
E(\mathcal{N}, A)= & -n \int \operatorname{True}(\boldsymbol{x}) \ln \left(\sum_{j=1}^{n_{1}} \alpha_{1 j} \exp \left(-D\left(\boldsymbol{\eta}(\boldsymbol{x}) \| \boldsymbol{\eta}_{1 j}\right)\right)\right) d \boldsymbol{x} \\
& -\sum_{l=1}^{L-1} \sum_{i=1}^{n_{l}} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1, j} \exp \left(-D\left(\boldsymbol{\eta}_{l i} \| \boldsymbol{\eta}_{l+1, j}\right)\right)\right) \\
= & -n \int \operatorname{True}(\boldsymbol{x}) \ln \left(\sum_{j=1}^{n_{1}} \alpha_{1 j} p\left(\boldsymbol{x} \mid \boldsymbol{\eta}_{1 j}\right)\right) d \boldsymbol{x}+\text { constant } \\
& -\sum_{l=1}^{L-1} \sum_{i=1}^{n_{l}} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1, j} \exp \left(-D\left(\boldsymbol{\eta}_{l i} \| \boldsymbol{\eta}_{l+1, j}\right)\right)\right) \tag{S.5}
\end{align*}
$$

We construct an MDL network \mathcal{N}^{t}, where \mathcal{L}_{1}^{t} is given by $\left\{\boldsymbol{\eta}_{1 i}^{t}=\boldsymbol{\eta}_{i}^{t}\right\}$ with the weights $\left\{\alpha_{1 i}^{t}=\alpha_{i}^{t}\right\}$. The rest of the cells $\left\{\boldsymbol{\eta}_{l i}^{t}\right\}$ in higher levels, including their weights $\left\{\alpha_{l i}^{t}\right\}$ are given by the sub-optimal solution which minimizes the above eq. (S.5) with \mathcal{L}_{1}^{t} and its weights fixed. Given that \mathcal{L}_{0} is fixed by infinite samples corresponding to the truth, $\forall \mathcal{N}, \forall A$,

$$
\begin{align*}
E(\mathcal{N}, A)-E\left(\mathcal{N}^{t}, A^{t}\right)= & n \int \operatorname{True}(\boldsymbol{x}) \ln \frac{\operatorname{True}(\boldsymbol{x})}{\sum_{j=1}^{n_{1}} \alpha_{1 j} p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\eta}_{1 j}\right)} d \boldsymbol{x} \\
& -\sum_{l=1}^{L-1} \sum_{i=1}^{n_{l}} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1, j} \exp \left(-D\left(\boldsymbol{\eta}_{l i} \| \boldsymbol{\eta}_{l+1, j}\right)\right)\right) \\
& +\sum_{l=1}^{L-1} \sum_{i=1}^{n_{l}} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1, j}^{t} \exp \left(-D\left(\boldsymbol{\eta}_{l i}^{t} \| \boldsymbol{\eta}_{l+1, j}^{t}\right)\right)\right) \tag{S.6}
\end{align*}
$$

If $\left\{\boldsymbol{\eta}_{1 j}\right\}$ in \mathcal{N} or $\left\{\alpha_{1 j}\right\}$ in A does not correspond to $\operatorname{True}(\boldsymbol{x})$, the first term on the right-hand-side of eq. (S.6) will go to $+\infty$ as $n \rightarrow \infty$. The second term is always non-negative, because of the non-negativity of D. Because of the sub-optimality discussed earlier, the third term is lower-bounded, as in

$$
\begin{equation*}
\sum_{l=1}^{L-1} \sum_{i=1}^{n_{l}} \ln \left(\sum_{j=1}^{n_{l+1}} \alpha_{l+1, j}^{t} \exp \left(-D\left(\boldsymbol{\eta}_{l i}^{t} \| \boldsymbol{\eta}_{l+1, j}^{t}\right)\right)\right) \geq-\sum_{i=1}^{n_{1}} D\left(\boldsymbol{\eta}_{i}^{t} \| \tilde{\boldsymbol{\eta}}\right) \tag{S.7}
\end{equation*}
$$

where $\tilde{\boldsymbol{\eta}}$ can be any distribution, e.g., the right-handed Bregman centroid $\left\{\boldsymbol{\eta}_{i}^{t}\right\}$. The right-hand-side of eq. (S.7) is the negative cost of a simple structure (one cell in \mathcal{L}_{2}) to represent \mathcal{L}_{1}^{t}, which is upper-bounded by the sub-optimal negative cost on the left-hand-side. Integrating all the three terms on the right-hand-of eq. (S.6), $E(\mathcal{N}, A)>E\left(\mathcal{N}^{t}, A^{t}\right)$. Hence, in the optimal solution, \mathcal{L}_{1} must be exactly $\left\{\boldsymbol{\eta}_{i}^{t}\right\}$ and the weights must be exactly $\left\{\alpha_{i}^{t}\right\}$.

Proof of Theorem 4

Proof. By the definition of $D\left(\boldsymbol{\eta}_{1} \| \boldsymbol{\eta}_{2}\right)$ in section 2.3 as a Bregman divergence, $\forall \boldsymbol{\theta}(\boldsymbol{\eta})$, we have

$$
\begin{align*}
\operatorname{gain}(\boldsymbol{\eta})= & D\left(\boldsymbol{\eta}_{1} \| \boldsymbol{\eta}_{2}\right)-D\left(\boldsymbol{\eta}_{1} \| \boldsymbol{\eta}\right)-D\left(\boldsymbol{\eta} \| \boldsymbol{\eta}_{2}\right) \\
= & +\left(\psi^{\star}\left(\boldsymbol{\eta}_{1}\right)-\psi^{\star}\left(\boldsymbol{\eta}_{2}\right)-\boldsymbol{\theta}_{2}^{T}\left(\boldsymbol{\eta}_{1}-\boldsymbol{\eta}_{2}\right)\right) \\
& -\left(\psi^{\star}\left(\boldsymbol{\eta}_{1}\right)-\psi^{\star}(\boldsymbol{\eta})-\boldsymbol{\theta}^{T}\left(\boldsymbol{\eta}_{1}-\boldsymbol{\eta}\right)\right) \\
& -\left(\psi^{\star}(\boldsymbol{\eta})-\psi^{\star}\left(\boldsymbol{\eta}_{2}\right)-\boldsymbol{\theta}_{2}^{T}\left(\boldsymbol{\eta}-\boldsymbol{\eta}_{2}\right)\right) \\
= & \left(\boldsymbol{\theta}_{2}-\boldsymbol{\theta}\right)^{T}\left(\boldsymbol{\eta}-\boldsymbol{\eta}_{1}\right) . \tag{S.8}
\end{align*}
$$

Let $\boldsymbol{\theta}_{l c}=\left(\boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2}\right) / 2$ be the left-handed Bregman centroid of $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{2}$, then $\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{l c}=\boldsymbol{\theta}_{l c}-\boldsymbol{\theta}_{1}$. Therefore,

$$
\begin{equation*}
\operatorname{gain}\left(\boldsymbol{\eta}_{l c}\right)=\left(\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{l c}\right)^{T}\left(\boldsymbol{\eta}_{l c}-\boldsymbol{\eta}_{1}\right)=\left(\boldsymbol{\theta}_{l c}-\boldsymbol{\theta}_{1}\right)^{T}\left(\boldsymbol{\eta}_{l c}-\boldsymbol{\eta}_{1}\right) . \tag{S.9}
\end{equation*}
$$

On the other hand, $\forall \boldsymbol{\eta}_{a}, \boldsymbol{\eta}_{b} \in \mathcal{S}, \boldsymbol{\eta}_{a} \neq \boldsymbol{\eta}_{b}$,

$$
\begin{align*}
D\left(\boldsymbol{\eta}_{a} \| \boldsymbol{\eta}_{b}\right)+D\left(\boldsymbol{\eta}_{b} \| \boldsymbol{\eta}_{a}\right)= & +\left(\psi^{\star}\left(\boldsymbol{\eta}_{a}\right)-\psi^{\star}\left(\boldsymbol{\eta}_{b}\right)-\boldsymbol{\theta}_{b}^{T}\left(\boldsymbol{\eta}_{a}-\boldsymbol{\eta}_{b}\right)\right) \\
& +\left(\psi^{\star}\left(\boldsymbol{\eta}_{b}\right)-\psi^{\star}\left(\boldsymbol{\eta}_{a}\right)-\boldsymbol{\theta}_{a}^{T}\left(\boldsymbol{\eta}_{b}-\boldsymbol{\eta}_{a}\right)\right) \\
= & \left(\boldsymbol{\theta}_{a}-\boldsymbol{\theta}_{b}\right)^{T}\left(\boldsymbol{\eta}_{a}-\boldsymbol{\eta}_{b}\right)>0 . \tag{S.10}
\end{align*}
$$

By eqs. (S.9) and (S.10),

$$
\begin{equation*}
\left.\operatorname{gain}\left(\boldsymbol{\eta}_{l c}\right)=D\left(\boldsymbol{\eta}_{l c} \| \boldsymbol{\eta}_{1}\right)+D\left(\boldsymbol{\eta}_{1} \| \boldsymbol{\eta}_{l c}\right)>0 \quad \text { (which proves (1) }\right) . \tag{S.11}
\end{equation*}
$$

Similarly, we let $\boldsymbol{\eta}_{r c}=\left(\boldsymbol{\eta}_{1}+\boldsymbol{\eta}_{2}\right) / 2$ be the righted-handed Bregman centroid, then

$$
\begin{align*}
\operatorname{gain}\left(\boldsymbol{\eta}_{r c}\right) & =\left(\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{r c}\right)^{T}\left(\boldsymbol{\eta}_{r c}-\boldsymbol{\eta}_{1}\right)=\left(\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{r c}\right)^{T}\left(\boldsymbol{\eta}_{2}-\boldsymbol{\eta}_{r c}\right) \\
& =D\left(\boldsymbol{\eta}_{2} \| \boldsymbol{\eta}_{r c}\right)+D\left(\boldsymbol{\eta}_{r c} \| \boldsymbol{\eta}_{2}\right) . \tag{S.12}
\end{align*}
$$

By eqs. (S.11) and (S.12), $\exists \boldsymbol{\eta} \in \mathcal{S}$ satisfying

$$
\begin{equation*}
\operatorname{gain}(\boldsymbol{\eta}) \geq \max \left\{D\left(\boldsymbol{\eta}_{l c} \| \boldsymbol{\eta}_{1}\right)+D\left(\boldsymbol{\eta}_{1} \| \boldsymbol{\eta}_{l c}\right), D\left(\boldsymbol{\eta}_{2} \| \boldsymbol{\eta}_{r c}\right)+D\left(\boldsymbol{\eta}_{r c} \| \boldsymbol{\eta}_{2}\right)\right\} . \tag{S.13}
\end{equation*}
$$

