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A. Analysis of QPAC
For the reader’s convenience, we restate the theorem.

Theorem 3. Assume that algorithm QPAC is run with parameters (ε, δ, τ) on a problem with K arms X1, . . . , XK . Then,
with probability at least 1− δ, QPAC outputs an (ε, τ)-optimal arm after drawing

O

(
K∑
k=1

1

(ε ∨∆ε
k)2

log
K

(ε ∨∆ε
k) · δ

)

samples. Consequently, QPAC is an (ε, τ, δ)-quantile learner.

Proof. Throughout the proof, assume that (3) holds for each Q̂X1 , . . . , Q̂XK , every t = 1, 2, . . . , and every 0 ≤ τ ≤ 1, but
with ct(δ) replaced by ct(δ/K). According to Proposition 1, this happens with probability at least 1− δ.

Consider some k ∈ Kε,τ . As it is (ε, τ)-optimal, we have the following:

max
h=1,...,K

Q̂Xht (τ − ct(δ/K)) � max
h=1,...,K

QXh(τ), (8)

� QXk(τ + ε)

� Q̂Xkt (τ + ε+ ct(δ/K)) (9)

It follows that, with high probability, (ε, τ)-optimal arms never get discarded. Thus, with At denoting the set of arms in
the t-th iteration of the while loop, it holds that

(∀t ≥ 1) Kε,τ ⊆ At. (10)

Now, let k be some non-(ε, τ)-optimal arm. According to our assumption, the following holds for any t ≥ 1:

Q̂Xkt (τ + ε− ct(δ/K)) � QXk(τ + ε) ≺ x∗ (11)

On the other hand, because of (10) and our assumption,

x∗ = max
h∈Kε,τ

QXh(τ) � max
h∈At

QXh(τ)

� max
h∈At

Q̂Xht (τ + ct(δ/K)) (12)

for any m. It thus follows that, with high probability, a non-(ε, τ)-optimal arm is never selected to be k̂.

This proves the correctness of the algorithm.

Now, for a non-(ε, τ)-optimal arm k, define t∗k = min{t ≥ 0 : 2ct(δ/K) ≤ ∆ε
k}. Then

Q̂Xkt∗k

(
τ + ε+ ct∗k

(
δ
K

))
� QXk

(
τ + ε+ 2ct∗k

(
δ
K

))
(13)

� QXk(τ + ε+ ∆ε
k)

≺ max
h∈Kε,τ

QXh(τ −∆ε
k)

� max
h∈Kε,τ

QXh
(
τ − 2ct∗k

(
δ
K

))
� max
h∈Kε,τ

Q̂Xht∗k

(
τ − ct∗k

(
δ
K

))
(14)

� max
h∈At∗

k

Q̂Xht∗k

(
τ − ct∗k

(
δ
K

))
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Thus, unless the algorithm terminates earlier, arm k is discarded at the latest in round t∗k.

Finally, with t∗0 = min{t ≥ 0 : ct(δ/K) ≤ ε/2} we obviously have

max
k∈At∗0

Q̂Xkt∗0

(
τ + ct∗0

(
δ
K

))
� max
k∈At∗0

Q̂Xkt∗0

(
τ + ε− ct∗0

(
δ
K

))
.

This implies that the criterion for choosing k̂ (line 12 in Algorithm 1) is satisfied in round t∗0, and thus the algorithm
terminates at the latest in that round.

The sample complexity bound follows by noting that min(t∗k, t
∗
0) ≤ O

(
1

(ε∨∆ε
k)2 log K

(ε∨∆ε
k)·δ )

)
.

A.1. Lower bound

We start by invoking a lower bound result by (Mannor & Tsitsiklis, 2004) for the standard, value-based scenario. It con-
siders the simplest setting: when the rewards come from Bernoulli distributions. This is equivalent to having K coins, and
where the goal is to find the coin with the highest probability of head as the outcome of a coin flip.

More precisely, fix some ε′ > 0 and some m1, . . . ,mK ∈ (0, 1), denote the bias of the k-th coin by µk, and consider the
following hypotheses:

H0 : µk = mk, for k = 1, . . . ,K

and for ` = 1, . . . ,K,

H` : µk = mk, for k = 1, . . . , `− 1, `+ 1, . . . ,K, and µ` = m∗ + ε′

where m∗ = maxk′=1,...,K mk′ , (Mannor & Tsitsiklis, 2004) show that it is not possible to distinguish with high certainty
between these hypotheses based on only a few coin tosses. In particular, fixing some algorithm and denoting by I the
index it recommends at the end of its run and by T the number of coin tosses it used, they show the following result (see
Theorem 5 and its proof).

Theorem 4. (Mannor & Tsitsiklis, 2004) Fix some m0 ∈ (0, 1/2). Then there exist δ0 > 0 and c1 > 0 such that for every
ε′ ∈ (0, 1/2), every δ ∈ (0, δ0), and everym1, . . . ,mK ∈ [0, 1/2], if some algorithm satisfies P[µI ≥ m∗−ε′|H0] ≥ 1−δ
and P[I = `|H`] ≥ 1− δ for every ` = 1, . . . ,K, then

E[T |H0] ≥ c1

(
|S1|
(ε′)2 +

∑
k∈S2

1
(m∗−mk)2

)
log 1

8δ = c1

( ∑
k∈S1∪S2

1

((m∗ −mk) ∨ ε′)2

)
log 1

8δ

where

S1 =

{
k : m∗ > mk > m∗ − ε′, and mk > m0, and mk ≥ ε′+m∗

1+
√

1/2

}
and

S2 =

{
k : mk ≤ m∗ − ε′, and mk > m0, and mk ≥ ε′+m∗

1+
√

1/2

}
.

This can be used to derive the following lower bound result for the QMAB setting.

Proposition 2. Fix some m0 ∈ (0, 1/2), and let (L,≺) = ([0, 1], <). Then there exist δ0 > 0 and c′1 > 0 such that for
every ε ∈ (0, 1/4), every δ ∈ (0, δ0), and every m1, . . . ,mK ∈ [0, 1/2 − 2ε], then every (ε, 3/4, δ)-quantile learner has
expected sample complexity

E[T |H0] ≥ c′1

(∑
k∈S

1
(∆ε

k∨ε)2

)
log 1

8δ

where S =

{
k : mk > m0, and mk ≥ 2ε+m∗

1+
√

1/2

}
.
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Proof. Pick some ε′ > 0 and m1, . . . ,mK ∈ (0, 1/2 − ε′]. Denote m∗ = maxkmk and assume for simplicity that
m∗ = 1/2− ε′. Consider the following hypotheses:

H ′0 : For k = 1, . . . ,K, P[Xk = 1] = mk
2 , and P[Xk ≤ x] = 1−mk

2 + x
2 for x ∈ [0, 1)

and for ` = 1, . . . ,K,

H ′` : For k = 1, . . . ,K, k 6= `, P[Xk = 1] = mk
2 , and P[Xk ≤ x] = 1−mk

2 + x
2 for x ∈ [0, 1)

and P[X` = 1] = m`+ε
′

2 , and P[X` ≤ x] = 1−m`−ε′
2 + x

2 for x ∈ [0, 1)

This can be interpreted as the same coin tosses as in hypotheses H0, H1, . . . ,HK , with 1 playing the role of having a head,
0 playing the role of having a tail, and with the additional perturbation that with probability 1/2 there is no return. This last
scenario is represented by having the outcome Xk ∈ (0, 1) as, indeed, this provides no useful information because, under
any of the hypotheses, P[X1 ∈ H] = · · · = P[XK ∈ H] for any measurable H ⊆ (0, 1). Consequently, distinguishing
between hypotheses H ′` and H ′`′ implies distinguishing between hypotheses H` and H`′ for any 0 ≤ ` < `′ ≤ K.

Set τ = 1 − (m∗ + ε′)/2 = 3/4 and ε = ε′/2. Then, for any ` = 0, 1, . . . ,K, an arm is (ε, τ)-optimal under hypothesis
H ′` iff it is ε-optimal under hypothesis H`. Indeed, in the H ′` case for ` = 1, . . . ,K, x∗ = 1 and the only (ε, τ)-optimal
arm is `. On the other hand, in the H ′0 case, x∗ = 1 − ε′ and an arm Xk is (ε, τ)-optimal iff 1 − τ − ε ≤ P[Xk � x∗] =
1− (1−mk)/2− x∗/2. The latter is equivalent to m∗/2 + ε′/2− ε ≤ mk/2 + ε′/2, that is, to m∗ ≤ mk + ε′.

To determine ∆ε
k note that, in theH0 scenario, the definition ∆ε

k = sup{∆ > 0 : QXk(τ+ε+∆) < QXk∗ (τ−∆)}, where
k∗ is such that mk∗ = m∗, implies τ + ε+ ∆ε

k −
1−mk

2 = τ −∆ε
k − 1−m∗

2 , and thus ∆ε
k = m∗−mk

4 − ε/2 = m∗−mk−ε′
4 .

It is easy to check that:
∆ε
k ∨ ε ≥

(m∗−mk)∨ε′
6 .

The result now follows from Theorem 4.

Remark 3. One can derive similar bounds for finite L as well, however the analysis becomes more cumbersome.

B. Analysis of QUCB
For the reader’s convenience, we restate the results.

We start with the proof of Lemma 1.

Lemma 2 (Restatement of Lemma 1). If P[Xk 6∈ Lτ ] < τ for some 1 ≤ k ≤ K then (inf Lτ ) ∈ Lτ , mink′ P[Xk′ ≺
inf Lτ ] < τ and mink′ P[Xk′ � inf Lτ ] > τ . Additionally, QXk(τ) = x∗.

Proof. By definition, if x′ � x′′ for every x′′ ∈ Lτ , then x′ � inf Lτ . Thus, for every x′ � inf Lτ , there must exist
some τ ′ > τ such that x′ � x∗(τ ′), and so FXk(x′) = P[Xk � x′] ≥ P[Xk ≺ x′] ≥ P[Xk � x∗(τ ′)] ≥ τ ′ > τ .
Therefore, and because a CDF is right-continuous, P[Xk 6∈ (Lτ \ inf Lτ )] = FXk(inf Lτ ) = infx�inf Lτ F

Xk(x) ≥ τ .
Thus P[Xk 6∈ Lτ ] < τ implies (inf Lτ ) ∈ Lτ and P[Xk ≺ inf Lτ ] = P[Xk 6∈ inf Lτ ] < τ . All this also implies
QXk(τ) = inf Lτ = x∗.

Additionally, (inf Lτ ) ∈ Lτ implies that (inf Lτ ) � x∗(τ1) for some τ1 > τ , which further implies that

min
k′

P[Xk′ � inf Lτ ] ≥ min
k′

P[Xk′ � x∗(τ1)]

= min
k′

P[Xk′ � max
k′′

QXk′′ (τ1)]

≥ min
k′

P[Xk′ � QXk′ (τ1)]

= min
k′

FX
′
k(QXk′ (τ1))

≥ τ1 (15)
> τ.

where (15) holds because, as a CDF is right-continuous, FX
′
k(QXk′ (τ1)) = infx�QXk′ (τ1) F

X′k(x) ≥ τ1.
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We continue with the proof of Theorem 2.

Theorem 5 (Restatement of Theorem 2). The expected cumulative regret of QUCB in round t is Rt =

O
(∑

k:∆k>0
ρk

(∆k)2 log t
)
.

Proof. The structure of the proof follows closely the analysis of UCB1 (Auer et al., 2002).

First of all, similarly as in the proof of Proposition 1, for every k = 1, . . . ,K, every m = 1, 2, . . .

P
[
(Q̂Xkm (τ ′ − c) � QXk(τ ′)) or (QXk(τ ′) � Q̂Xkm (τ ′ + c)) for some τ ′ ∈ (0, 1)

]
≤ 2 exp(−2mc2) (16)

Additionally, (1) also implies that for every k = 1, . . . ,K and every m = 1, 2, . . .

P[‖pXk − pXkm ‖∞ > c] ≤ 2 exp(−2mc2) (17)

Define for k = 1, . . . ,K

Ek(t, s, sk) =
{

(Q̂Xk∗s (τ + c(t, s)) ≺ Q̂Xksk (τ + c(t, sk)))∨(
(Q̂Xk∗s (τ + c(t, s)) = Q̂Xksk (τ + c(t, sk)) = x̂t) ∧ (p̂Xk∗s (x̂t)− c(t, s) ≥ p̂Xksk (x̂t)− c(t, sk))

)}
Let ` be some positive integer specified later. Then

Tt(k) = 1+

t∑
t′=K+1

I {kt′ = k}

≤ `+
t∑

t′=K+1

I {kt′ = k, Tt′−1(k) ≥ `}

≤ `+
t∑

t′=K+1

I {Ek(t′, Tt′−1(k∗), Tt′−1(k)), Tt′−1(k) ≥ `} (18)

≤ `+
t∑

t′=K+1

t−1∑
s=1

t−1∑
sk=`

I {Ek(t′, s, sk)} (19)

where (18) is true because p̂XkTt′ (k)(x̂t′) − c(t, Tt′(k)) > τ ≥ mink′=1,...,K

(
p̂
Xk′
Tt′ (k

′)(x̂t′)− c(t
′, Tt(k

′))
)

whenever

Q̂XkTt′ (k)(τ + c(t, Tt′(k))) ≺ x̂t′ .

Consider some arm Xk with P[Xk 6∈ Lτ ] > τ . Then

I {Ek(t′, s, sk)} ≤I
{
Q̂Xk∗s (τ + c(t′, s)) � Q̂Xksk (τ + c(t′, sk))

}
≤I
{
Q̂Xk∗s (τ + c(t′, s)) � QXk(τ + ∆k − c(t′, sk))

}
(20)

+ I
{
QXk(τ + ∆k − c(t′, sk)) � Q̂Xksk (τ + ∆k − 2c(t′, sk)))

}
(21)

+ I {∆k ≤ 3c(t′, sk)} (22)

Note that (20) is upper bounded by I
{
Q̂Xk∗s (τ + c(t′, s)) ≺ QXk∗ (τ)

}
. Furthermore, (16) entails high probability upper

bound on this and (21), whereas (22) is 0 for sk big enough to satisfy ∆k > 3c(t′, sk). Thus, setting ` = 9 · 2
(∆k)2 ln(t− 1)

one obtains the following bound

E[Tt(k)] ≤ 9 · 2
(∆k)2 ln(t− 1) + 2

t∑
t′=K+1

t−1∑
s=1

t−1∑
sk=`

(t′)−4 ≤ 9 · 2
(∆k)2 ln(t− 1) + π2/3.
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Consider now some arm Xk with P[Xk 6∈ Lτ ] ≤ τ . In case P[Xk 6∈ Lτ ] = P[Xk∗ 6∈ Lτ ], Xk is also optimal, it
is thus only interesting to upper bound Tk(t) in case ρk = P[Xk 6∈ Lτ ] − P[Xk∗ 6∈ Lτ ] > 0. However, in that case
P[Xk∗ 6∈ Lτ ] < τ , and Lemma 1 applies, and so ∆0 , mink′ P[Xk′ � inf Lτ ]− τ > 0. Then,

I {Ek(t, s, sk)}

≤I
{
Q̂Xk∗s (τ + c(t, s)) ≺ QXk∗ (τ)

}
(23)

+ I
{
QXk(τ) ≺ Q̂Xksk (τ + c(t, sk))

}
(24)

I
{(
Q̂Xksk (τ + c(t, sk)) = Q̂Xk∗s (τ + c(t, s)) = x∗(τ)

)
∧
(
p̂Xksk (x∗(τ))− c(t, sk) ≤ p̂Xk∗s (x∗(τ))− c(t, s)

)}
(25)

≤I
{
Q̂Xk∗s (τ + c(t, s)) ≺ QXk∗ (τ)

}
(26)

+ I
{
QXk(τ + ∆0 − c(t, sk)) ≺ Q̂Xksk (τ + ∆0 − 2c(t, sk))

}
+ I {∆0 ≤ 3c(t, sk)} (27)

+ I
{
p̂Xksk (x∗(τ))− c(t, sk) ≤ pXk(x∗(τ))− 2c(t, sk)

}
(28)

+ I
{
pXk(x∗(τ))− 2c(t, sk) ≤ pXk∗ (x∗(τ))

}
(29)

+ I
{
pXk∗ (x∗(τ)) ≤ p̂Xk∗s (x∗(τ))− c(t, s)

}
(30)

In (23)-(25) we used that QXk(τ) = QXk∗ (τ) = x∗ by Lemma 1. (27) follows because QXk(τ) � QXk(τ + ∆0 − c) for
every c > 0 by the definition of ∆0. The rest follows similarly as in the previous case: for (26), (28), (30), and the first
term in (27) one can give high confidence upper bounds based on (16) and (B), whereas (29) and the second term in (27) is
0 for sk big enough to satisfy ρk ≥ 2c(t, sk) and ∆0 ≥ 3c(t, sk) (by Lemma 1 again, pXk∗ (x∗(τ)) = P[Xk∗ 6∈ Lτ ]).

B.1. Lower bounds

The ∆k parameters represent the hardness of distinguishing a non-optimal arm Xk from the optimal Xk∗ . On the other
hand, ρk represents the actual immediate expected regret. In the classical settings these two parameters coincide, but in the
qualitative setting they are more separated. This is represented in the regret bound of QUCB and, as we show, it is also
reflected in the lower bounds below.

B.1.1. ∆k = ρk CASE

First we show lower bounds for some scenario when ∆k = ρk. Let X1, . . . , XK have Bernoulli distributions with param-
eters m1, . . . ,mK ∈ (1/2, 3/4) respectively and set τ = 1/2. Then x∗ = 1, Lτ = {x∗}, and for each k = 1, . . . ,K,
P[Xk 6∈ Lτ ] = P[Xk 6= 1] < τ , consequently ∆0 = 1 − τ = 1/2 and ∆k = ρk = P[Xk∗ = 1] − P[Xk = 1] ≤ 1/4.
Consequently, the qualitative setting coincides with the classical one in this case. Therefore, the expected cumulative regret
is asymptotically Ω

(∑
k:ρk>0

1
ρk

log t
)

= Ω
(∑

k:ρk>0
ρk

(∆k)2 log t
)

.

B.1.2. ∆k < ρk CASE

This is the case when P[Xk 6∈ Lτ ] > τ or when P[Xk 6∈ Lτ ] ≤ τ but ∆0 < ρk. For this case we only show some
significantly weaker results. Our analysis is based on Theorem 10 of (Mannor & Tsitsiklis, 2004), and considers only
two-armed bandits taken from Example 3 (a) and (c).

Fix some ∆ ∈ (0, 1/4), and consider the following two hypothesis

H0 : P[X1 = x1] = P[X1 = x3] = 1/2 P[X2 = x2] = 1

and
H1 : P[X1 = x1] = 1/2−∆, P[X1 = x3] = 1/2 + ∆, P[X2 = x2] = 1

Here we assume that x1 ≺ x2 and x2 ≺ x3. Then, if τ = 1/2 −∆/2, then distinguishing between H0 and H1 resembles
the situation when one had to distinguish between cases (a) and (c) in Example 3. In case of H0, x∗ = x2, k∗ = 2,
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Lτ = {x2, x3}, ρ1 = 1/2, ∆1 = P[X1 6∈ Lτ ] = 1/2− τ = ∆/2, ∆0 = P[X1 � 1]− τ = ∆/2. In case of H1, x∗ = x3,
k∗ = 1, Lτ = {x3}, ∆0 = 1− τ = 1/2, ρ2 = 1/2, ∆2 = 1− τ = 1/2.

Now, as in the proof of Theorem 10 in (Mannor & Tsitsiklis, 2004), if P[Tt(2) ≥ t/2|H0] < 3/4, then E[Rt|H0] ≥
ρ1t/8 = t/16, which is much more than the desired regret in case of H0. Otherwise, as they show, by Lemma 4 in
(Mannor & Tsitsiklis, 2004), P[Tt(2) ≥ t/2|H1] ≥ δ1, where δ1 is the number satisfying E[Tt(1)|H0] = 1

100∆2 log 1
4δ1

.
If now δ1 ≥ 1/

√
t, then E[Rt|H1] ≥ tρ2/

√
t =
√
t/2 which is, again, larger then desired. If, however, δ1 < 1/

√
t, then

E[Tt(1)|H0] ≥ 1
200∆2 log t

16 , and thus

E[Rt|H0] ≥ ρ1
200∆2 log t

16 = 1
400∆2 log t

16 .

B.2. Distribution independent analysis

Following the proof of Theorem 10 in (Mannor & Tsitsiklis, 2004) more closer then in Section B.1.2, one can show that
max (E[Rt|H0],E[Rt|H1]) ≥ min

(
c1t, c2

1
∆2 log t

)
. However, as ∆ > 0 can be arbitrarily small, this implies that no

sublinear distribution independent upper bound exists. This is the consequence of the phenomenon that was discussed at
the beginning of Section B.1.

C. Estimating quantiles using the Chernoff-Hoeffding bound
First, we derive the concentration bounds for the empirical estimate of the quantiles, based on the Chernoff-Hoeffding
bounds.

Lemma 3. For any random variable X over L, any m ≥ 1 and any τ, c ∈ (0, 1),

P[QX(τ) ≺ Q̂Xm(τ − c)] ≤ e−c
2m/2 (31)

and
P[QX(τ) � Q̂Xm(τ + c)] ≤ e−c

2m/2 (32)

Proof. Let x0 = QX(τ). Then, by definition, τ ≤ FX(x0). Therefore, FX(x0) ≤ F̂Xm (x0) + c implies x0 ∈ {x ∈ L :

τ ≤ F̂Xm (x) + c}, and thus

QX(τ) = x0 � inf{x ∈ L : τ ≤ F̂Xm (x) + c} = Q̂Xm(τ − c)

Combining this with the Chernoff-Hoeffding bound P[FX(x0) > F̂Xm (x0) + c] ≤ e−c2m/2 proves (31).

Showing (32) goes similarly, by switching the roles of QX and Q̂Xm, and changing the parameters appropriately.

Finally, note that this lemma can be directly applied in the proof of Theorem 1 to upper bound the probability that (8), (9),
(11), (12), (13), (14) hold. Similarly, it can be directly applied in the proof of Theorem 2 to bound (26) and the first term in
(27), whereas for (28), (30) one can directly apply the Chernoff-Hoeffding bound.


