Supplementary Material

7.1. Proof of Proposition 1

Proof. 1. Any symmetric tensor Q that satisfies the conditions in part 1 of Proposition 1 is dual feasible. The decomposition measure μ^{\star} is primal feasible. We also have

$$
\begin{aligned}
\langle Q, A\rangle & =\sum_{p=1}^{r} \lambda_{p}\left\langle Q, x^{p} \otimes x^{p} \otimes x^{p}\right\rangle \\
& =\sum_{p=1}^{r} \lambda_{p} q\left(x^{p}\right)=\sum_{p=1}^{r} \lambda_{p}=\mu^{\star}\left(\mathbb{S}^{n-1}\right)
\end{aligned}
$$

establishing a zero duality gap at the primal-dual feasible solution pair $\left(\mu^{\star}, Q\right)$. Therefore, μ^{\star} is primal optimal and Q is dual optimal.

For uniqueness, suppose $\hat{\mu}$ is another optimal solution. We then have

$$
\begin{aligned}
\mu^{\star}\left(\mathbb{S}^{n-1}\right) & =\langle Q, A\rangle \\
& =\left\langle Q, \int_{\mathbb{S}^{n-1}} x \otimes x \otimes x d \hat{\mu}\right\rangle \\
& =\sum_{x \in \operatorname{supp}\left(\mu^{\star}\right)} \hat{\mu}(x) q(x) \\
& +\int_{\mathbb{S}^{n-1} / \operatorname{supp}\left(\mu^{\star}\right)} q(x) d \hat{\mu} \\
& <\sum_{x_{p} \in \operatorname{supp}\left(\mu^{\star}\right)} \hat{\lambda}_{p}+\int_{\mathbb{S}^{n-1} / \operatorname{supp}\left(\mu^{\star}\right)} 1 d \hat{\mu} \\
& =\hat{\mu}\left(\mathbb{S}^{n-1}\right)
\end{aligned}
$$

due to condition (14) if $\hat{\mu}\left(\mathbb{S}^{n-1} / \operatorname{supp}\left(\mu^{\star}\right)\right)>0$, contradicting the optimality of $\hat{\mu}$. So all optimal solutions are supported on $\operatorname{supp}\left(\mu^{\star}\right)$. Since the tensors $\left\{x^{p} \otimes x^{p} \otimes x^{p}, p=\right.$ $1, \ldots, r\}$ are linearly independent, the coefficients are also uniquely determined.
2. Denote by p_{0} and d_{0} the optimal values for the primal problem (4) and the dual problem (5), respectively; and denote by p_{1} and d_{1} the optimal values for the primal-dual problems (9) and (12) (or (10)), respectively. We next argue that these four quantities are equal under the conditions in part 2 . First, part 1 establishes $p_{0}=d_{0}$. Second, weak duality and the construction of relaxations (9) and (12) imply that $d_{1} \leq p_{1} \leq p_{0}=d_{0}$. Also the feasible set of (12) projected onto the Q space is a subset of the feasible set of (5). Since the conditions of part 2 state that the optimal dual solution Q of (5) is also feasible to (12), we hence conclude that Q is also an optimal solution of (12) and obtain $d_{1}=d_{0}$. Therefore, $p_{0}=d_{0}=d_{1}=p_{1}$, and the relaxations (9) and (12) are tight.

To show the optimality of y^{\star}, the $2 k$-truncation of the (infinite) moment vector \bar{y}^{\star} corresponding to the measure μ^{\star}. We first note that y^{\star} is feasible to (9). Then zero duality
gap, as verified below

$$
y_{0}^{\star}=\mu^{\star}\left(\mathbb{S}^{n-1}\right)=p_{0}=d_{1}=\langle Q, A\rangle
$$

establishes the optimality of y^{\star}.
3. Denote by $\sigma(x)=\nu_{k}(x)^{\prime} H \nu_{k}(x)$ the SOS polynomial associated with H. Note $\nu_{k}\left(x^{p}\right)^{\prime} H \nu_{k}\left(x^{p}\right)=\sigma\left(x^{p}\right)=1-$ $q\left(x^{p}\right)=0$ for $p=1, \ldots, r$, implying $H \nu_{k}\left(x^{p}\right)=0, p=$ $1, \ldots, r$ due to $H \succcurlyeq 0$. Since $\operatorname{rank}(H)=\left|\mathbb{N}_{k}^{n}\right|-r$ by the assumption, the null space of H is $\operatorname{span}\left\{\nu_{k}\left(x^{p}\right), p=\right.$ $1, \ldots, r\}$.

For any optimal solution \hat{y} of (9), complementary slackness implies that

$$
\left.H M_{k}(\hat{y})\right)=0
$$

So the eigen-space corresponding to the non-zero eigenvalues of $M_{k}(\hat{y})$ is a subspace of $\operatorname{span}\left\{\nu_{k}\left(x^{p}\right), p=1, \ldots, r\right\}$. We hence write

$$
M_{k}(\hat{y})=V D V^{\prime}
$$

where $V=\left[\nu_{k}\left(x^{1}\right) \cdots \nu_{k}\left(x^{r}\right)\right]$ and D is an $r \times r$ semidefinite matrix (not necessarily diagonal at this point). Note that $M_{k}\left(y^{\star}\right)=V \Lambda V^{\prime}$ where $\Lambda=\operatorname{diag}\left(\left[\lambda_{1}, \ldots, \lambda_{r}\right]\right)$. We next argue that $D=\Lambda$.

The moment matrix $M_{k}(\hat{y})$ contains a known submatrix specified by the third order moments in the tensor A, and hence is equal to the corresponding submatrix in $M_{k}\left(y^{\star}\right)$. More precisely, $M_{k}(\hat{y})$ contains the block (at the location indicated by the orange color in Figure 5):

$$
\begin{aligned}
& \int_{\mathbb{S}^{n-1}}\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]\left[\begin{array}{lllll}
x_{1}^{2} & x_{1} x_{2} & \cdots & x_{n-1} x_{n} & x_{n}^{2}
\end{array}\right] d \mu^{\star} \\
= & X \Lambda V_{2}^{\prime}
\end{aligned}
$$

where $X=\left[x^{1} \cdots x^{p}\right]$, and V_{2} is the submatrix of V whose rows correspond to the second-order monomials in $\nu_{k}(x)$. Therefore, we have

$$
\begin{equation*}
X \Lambda V_{2}^{\prime}=X D V_{2}^{\prime} \tag{25}
\end{equation*}
$$

According to Lemma 3.1 (ii) of (De Lathauwer, 2008), $\operatorname{rank}(X)=r$ implies $\operatorname{rank}\left(V_{2}\right)=r$. Multiplying both sides of (25) by the pseudo-inverse matrices X^{\dagger} from the left and $\left(V_{2}^{\prime}\right)^{\dagger}$ from the right yield $D=\Lambda$. So $M_{k}(\hat{y})=$ $M_{k}\left(y^{\star}\right)$, and $\hat{y}=y^{\star}$ is the unique solution of (9).
To see that we can extract the measure μ^{\star} from $M_{k}(\hat{y})=$ $M_{k}\left(y^{\star}\right)$, we note that the matrix $M_{k}\left(y^{\star}\right)=V \Lambda V^{\prime}$ has rank r for all $k \geq 1$. Hence the flat extension condition $\operatorname{rank}\left(M_{k-1}\left(y^{\star}\right)=M_{k}\left(y^{\star}\right)\right)$ is satisfied for all $k \geq 2$. Therefore, according to (Curto \& Fialkow, 1996; Henrion \& Lasserre, 2005), we could recover the measure from the moment matrix $M_{k}\left(y^{\star}\right)$.

Figure 5. The colors encode the degrees of the entries in the moment matrix for an instance with $n=3, k=2$.

7.2. Dual Certificate: the Orthonormal Case

The proof of Theorem 1 is based on a perturbation analysis of the orthogonal case, which is the focus of this and the next sections. Hereafter, the relaxation order is fixed to $k=2$.

When the vectors $\left\{x^{p}, p=1, \ldots, r\right\}$ are orthonormal, we verify that the symmetric tensor

$$
Q=\sum_{p=1}^{r} x^{p} \otimes x^{p} \otimes x^{p}
$$

satisfies the conditions in part 1 of Proposition 1. To see this, note

$$
q\left(x^{p}\right)=\left\langle Q, x^{p} \otimes x^{p} \otimes x^{p}\right\rangle=\sum_{p^{\prime}=1}^{r}\left\langle x^{p^{\prime}}, x^{p}\right\rangle^{3}=1
$$

Moreover, for any fixed $x \in \mathbb{S}^{n-1}$ we have

$$
\begin{aligned}
q(x) & =\langle Q, x \otimes x \otimes x\rangle=\sum_{p=1}^{r}\left\langle x^{p}, x\right\rangle^{3} \\
& \leq \max _{p}\left\langle x^{p}, x\right\rangle \sum_{p=1}^{r}\left\langle x^{p}, x\right\rangle^{2} \\
& \leq\left\|X^{T} x\right\|_{2}^{2}
\end{aligned}
$$

where we used $\max _{p}\left\langle x^{p}, x\right\rangle \leq \max _{p}\left\|x^{p}\right\|\|x\|=1$ for all p. Due to the orthogonality of the columns of $X=$ [$x^{1} \cdots x^{r}$], we clearly have $\left\|X^{T} x\right\|_{2}^{2} \leq\|x\|_{2}^{2}=1$. For $q(x)=1$, all the involved inequalities must be equalities. For $\max _{p}\left\langle x^{p}, x\right\rangle=1$, we need $x=x^{p}$ for some p, which is the only possible case that $q(x)=1$. For all other cases, $q(x)<1$. Therefore, $Q=\sum_{p} x^{p} \otimes x^{p} \otimes x^{p}$ satisfies
the conditions of part 1 in Proposition 1. This argument combined with part 1 of Proposition 1 lead to

Theorem 3. If the vectors in $\operatorname{supp}\left(\mu^{\star}\right)$ are orthonormal, then μ^{\star} is the unique optimal solution to (4).

7.3. SOS Dual Certificate: the Orthonormal Case

In the following, we show that for $q(x)=\sum_{p=1}^{r}\left\langle x, x^{p}\right\rangle^{3}$, we can find an SOS $\sigma(x)$ and a polynomial $s(x)$ with degrees 4 and 2 respectively, such that

$$
1-q(x)=\sigma(x)+s(x)\left(\|x\|_{2}^{2}-1\right)
$$

We start with assuming $x^{p}=e_{p}$, the p th canonical basis vector, for $p=1,2, \ldots, r$, in which case $q(x)$ becomes $\sum_{p=1}^{r} x_{p}^{3}$. Later on we will apply a rotation to derive the general case from this special case.

We set
$s(x)=-\frac{3}{2}\left(\sum_{p=1}^{r} x_{p}^{2}\right)-\frac{3}{2}\left(\sum_{p=r+1}^{n} x_{p}^{2}\right)=\nu_{1}(x)^{\prime} G_{0} \nu_{1}(x)$
where

$$
G_{0}:=\left[\begin{array}{ll}
0 & \tag{26}\\
& -\frac{3}{2} I_{n}
\end{array}\right] .
$$

Consider

$$
\begin{align*}
& 1-q(x)-s(x)\left(\|x\|_{2}^{2}-1\right) \\
= & 1-\sum_{p=1}^{r} x_{p}^{3}+\frac{3}{2}\left(\sum_{p=1}^{r} x_{p}^{2}\right)\left(\sum_{p=1}^{n} x_{p}^{2}-1\right) \\
& +\frac{3}{2}\left(\sum_{p=r+1}^{n} x_{p}^{2}\right)\left(\sum_{p=1}^{n} x_{p}^{2}-1\right) \\
= & 1-\frac{3}{2}\left(\sum_{p=1}^{r} x_{p}^{2}\right)-\frac{3}{2}\left(\sum_{p=r+1}^{n} x_{p}^{2}\right)-\sum_{p=1}^{r} x_{p}^{3} \\
& +\frac{3}{2} \sum_{p=1}^{r} x_{p}^{4}+\frac{3}{2} \sum_{p=r+1}^{n} x_{p}^{4} \\
& +3 \sum_{p<p^{\prime}=1}^{r} x_{p}^{2} x_{p^{\prime}}^{2}+3 \sum_{p<p^{\prime}=r+1}^{n} x_{p^{2}}^{2} x_{p^{\prime}}^{2}+3 \sum_{p=1}^{r} \sum_{p^{\prime}=1}^{n} x_{p^{2}}^{2} x_{p^{\prime}}^{2} . \tag{27}
\end{align*}
$$

We show that this polynomial is an $\operatorname{SOS} \sigma(x)$ with Gram matrix H_{0} defined on top of the next page. Here the row partition of H_{0} corresponds to the partition of the Veronese

$$
H_{0}:=\left[\begin{array}{ccccccc}
1 & & & & & & -\mathbf{1}_{r}^{\prime} \tag{28}\\
& \frac{1}{2} I_{r} & & & & & f \mathbf{1}_{n-r}^{\prime} \\
& & a I_{n-r} & & & & -\frac{1}{2} I_{r} \\
\\
& & & I_{C_{2}^{r}} & & & \\
& & & & b I_{r(n-r)} & & \\
\\
& & & & & c I_{C_{2}^{n-r}} & \\
\mathbf{1}_{r} & -\frac{1}{2} I_{r} & & & & & \\
f \mathbf{1}_{n-r} & & & & & & \\
\hline
\end{array}\right]
$$

map $\nu_{2}(x)$ given in the following

$$
\nu_{2}(x):=\left[\begin{array}{l}
\nu_{2}^{0}(x) \\
\nu_{2}^{1}(x) \\
\nu_{2}^{2}(x) \\
\nu_{2}^{3}(x) \\
\nu_{2}^{4}(x) \\
\nu_{2}^{5}(x) \\
\nu_{2}^{6}(x) \\
\nu_{2}^{7}(x)
\end{array}\right]
$$

with

$$
\begin{aligned}
& \nu_{2}^{0}(x)=1 \\
& \nu_{2}^{1}(x)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{r}
\end{array}\right] \\
& \nu_{2}^{2}(x)=\left[\begin{array}{c}
x_{r+1} \\
\vdots \\
x_{n}
\end{array}\right] \\
& \nu_{2}^{3}(x)=\left[\begin{array}{c}
x_{1} x_{2} \\
x_{1} x_{3} \\
\vdots \\
x_{r-1} x_{r}
\end{array}\right] \\
& \nu_{2}^{4}(x)=\left[\begin{array}{c}
x_{1} x_{r+1} \\
\vdots \\
x_{r} x_{n}
\end{array}\right] \\
& \nu_{2}^{5}(x)=\left[\begin{array}{c}
x_{r+1} x_{r+2} \\
\vdots \\
x_{n-1} x_{n}
\end{array}\right] \\
& \nu_{2}^{6}(x)=\left[\begin{array}{c}
x_{1}^{2} \\
\vdots \\
x_{r}^{2}
\end{array}\right] \\
& \nu_{2}^{7}(x)=\left[\begin{array}{c}
x_{r+1}^{2} \\
\vdots \\
x_{n}^{2}
\end{array}\right]
\end{aligned}
$$

and a, b, c, d, e, f are parameters to be determined later.

Since

$$
\begin{aligned}
& \nu_{2}(x)^{\prime} H_{0} \nu_{2}(x) \\
= & 1-\frac{3}{2} \sum_{p=1}^{r} x_{p}^{2}+(a+2 f) \sum_{p=r+1}^{n} x_{p}^{2}-\sum_{p=1}^{r} x_{p}^{3} \\
& +\frac{3}{2} \sum_{p=1}^{r} x_{p}^{4}+\frac{3}{2} \sum_{p=r+1}^{n} x_{p}^{4} \\
& +3 \sum_{p<p^{\prime}=1}^{r} x_{p}^{2} x_{p^{\prime}}^{2}+(c+2 e) \sum_{p<p^{\prime}=r+1}^{n} x_{p}^{2} x_{p^{\prime}}^{2} \\
& +(b+2 d) \sum_{p=1}^{r} \sum_{p^{\prime}=1}^{n} x_{p}^{2} x_{p^{\prime}}^{2}
\end{aligned}
$$

comparison of coefficients with those of $1-q(x)-$ $s(x)\left(\|x\|_{2}^{2}-1\right)$ in (27) gives

$$
\begin{aligned}
a+2 f & =-\frac{3}{2} \\
c+2 e & =3 \\
b+2 d & =3
\end{aligned}
$$

We will judiciously choose the parameters so that H_{0} is PSD. Note that H_{0} must have r zero eigenvalues with eigenvectors $\left\{\nu_{2}\left(e^{p}\right): p=1, \ldots, r\right\}$. For later analysis, we also need H_{0} to have precisely r zero eigenvalues, and the smallest non-zero eigenvalue of H_{0} to be lower bounded by a numerical constant regardless of n and r.

For that purpose, we next find all the eigenvalues of H_{0}. The obvious ones include $a, 1, b$ and c of multiplicities $n-r, C_{2}^{r}, r(n-r)$ and C_{2}^{n-r}, respectively. The rest of eigenvalues are those of E defined as

$$
\left[\begin{array}{cccc}
1 & & -\mathbf{1}_{r}^{\prime} & f \mathbf{1}_{n-r}^{\prime} \\
& \frac{1}{2} I_{r} & -\frac{1}{2} I_{r} & \\
-\mathbf{1}_{r} & -\frac{1}{2} I_{r} & \frac{1}{2} I_{r}+\mathbf{1}_{r} \mathbf{1}_{r}^{\prime} & d \mathbf{1}_{r} \mathbf{1}_{n-r}^{\prime} \\
f \mathbf{1}_{n-r} & & d \mathbf{1}_{n-r} \mathbf{1}_{r}^{\prime} & \left(\frac{3}{2}-e\right) I_{n-r}+e \mathbf{1}_{n-r} \mathbf{1}_{n-r}^{\prime}
\end{array}\right]
$$

We choose $e+a=\frac{3}{2}$ and decompose E as $A+B$ such that A is

$$
\left[\begin{array}{cccc}
1 & & -\mathbf{1}_{r}^{\prime} & f \mathbf{1}_{n-r}^{\prime} \\
& \frac{1}{2 r} \mathbf{1}_{r} \mathbf{1}_{r}^{\prime} & -\frac{1}{2 r} \mathbf{1}_{r} \mathbf{1}_{r}^{\prime} & \\
-\mathbf{1}_{r} & -\frac{1}{2 r} \mathbf{1}_{r} \mathbf{1}_{r}^{\prime} & \left(1+\frac{1}{2 r}\right) \mathbf{1}_{r} \mathbf{1}_{r}^{\prime} & d \mathbf{1}_{r} \mathbf{1}_{n-r}^{\prime} \\
f \mathbf{1}_{n-r} & & d \mathbf{1}_{n-r} \mathbf{1}_{r}^{\prime} & \left(e+\frac{a}{(n-r)}\right) \mathbf{1}_{n-r} \mathbf{1}_{n-r}^{\prime}
\end{array}\right]
$$

and B is

$$
\left[\begin{array}{cccc}
0 & & & \\
& \frac{1}{2}\left(I_{r}-\frac{1}{r} \mathbf{1}_{r} \mathbf{1}_{r}^{\prime}\right) & -\frac{1}{2}\left(I_{r}-\frac{1}{r} \mathbf{1}_{r} \mathbf{1}_{r}^{\prime}\right) & \\
& -\frac{1}{2}\left(I_{r}-\frac{1}{r} \mathbf{1}_{r} \mathbf{1}_{r}^{\prime}\right) & \frac{1}{2}\left(I_{r}-\frac{1}{r} \mathbf{1}_{r} \mathbf{1}_{r}^{\prime}\right) & \\
& & & *
\end{array}\right]
$$

where the bottom-right block of B occupied by $*$ is $a\left(I_{n-r}-\frac{1}{n-r} \mathbf{1}_{n-r} \mathbf{1}_{n-r}^{\prime}\right)$. It is easy to verify that $A B=$ $B A=0$. Hence the eigenvalues of E consist of those of A and B. The eigenvalues of B are 0,1 , and a of multiplicities $r+3, r-1, n-r-1$, respectively.

Next we choose the parameters such that the eigenvalues of A are easy to compute. We first ensure that A has rank 3, which, by rank invariance of Gaussian elimination, requires the following matrix,

$$
\left[\begin{array}{cccc}
1 & & & \\
& \frac{1}{2 r} \mathbf{1}_{r} \mathbf{1}_{r}^{\prime} & & \\
& & \mathbf{0}_{r} & (d+f) \mathbf{1}_{r} \mathbf{1}_{n-r}^{\prime} \\
& & (d+f) \mathbf{1}_{n-r} \mathbf{1}_{r}^{\prime} & *
\end{array}\right]
$$

whose bottom-right block is $\left(e+\frac{a}{(n-r)}-f^{2}\right) \mathbf{1}_{n-r} \mathbf{1}_{n-r}^{\prime}$, to have rank 3 , or equivalently, $d+f=0$.
Multiplying A with a vector of the form $v:=\left[\begin{array}{c}\alpha \\ \beta \mathbf{1}_{r} \\ \gamma \mathbf{1}_{r} \\ \delta \mathbf{1}_{n-r}\end{array}\right]$ shows that the eigenvectors of A are of the form v. Consequently, the non-zero eigenvalues of A can be computed by solving a smaller set of eigenvalue equations

$$
\left[\begin{array}{cccc}
1 & 0 & -r & f(n-r) \tag{30}\\
0 & 1 / 2 & -1 / 2 & 0 \\
-1 & -1 / 2 & r+1 / 2 & -f(n-r) \\
f & 0 & -f r & (n-r) e+a
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right]=\lambda\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right]
$$

We already have five equations on a, b, c, d, e, f :

$$
\begin{aligned}
a+2 f & =-\frac{3}{2} \\
c+2 e & =3 \\
b+2 d & =3 \\
e+a & =\frac{3}{2} \\
d+f & =0
\end{aligned}
$$

or,

$$
\begin{aligned}
b & =3-2 d=3-\frac{3}{2}-a=\frac{3}{2}-a \\
c & =3-2 e=2 a \\
d & =\frac{3}{4}+\frac{a}{2} \\
e & =\frac{3}{2}-a \\
f & =-\frac{3}{4}-\frac{a}{2}
\end{aligned}
$$

Plugging these into the matrix in (30) leads to a matrix involving a single parameter a :
$\left[\begin{array}{cccc}1 & 0 & -r & -\left(\frac{3}{4}+\frac{a}{2}\right)(n-r) \\ 0 & 1 / 2 & -1 / 2 & 0 \\ -1 & -1 / 2 & r+1 / 2 & \left(\frac{3}{4}+\frac{a}{2}\right)(n-r) \\ -\left(\frac{3}{4}+\frac{a}{2}\right) & 0 & \left(\frac{3}{4}+\frac{a}{2}\right) r & (n-r)\left(\frac{3}{2}-a\right)+a\end{array}\right]$

Symbolic calculation shows that the non-zero eigenvalues of this matrix are zeros of the polynomial

$$
\begin{aligned}
& h(\lambda ; r, n, a)=(2+r)(15(-n+r) \\
& +4 a(-4+(7+a) n-(7+a) r)) \\
& +2(16+39 n-31 r+15(n-r) r \\
& \left.-4 a^{2}(n-r)(1+r)+4 a((1+r)(8+7 r)-n(11+7 r))\right) \lambda \\
& +16(-4-3 n+2 a(-1+n-r)+r) \lambda^{2}+32 \lambda^{3}
\end{aligned}
$$

We want to make sure $\lambda=a \neq 0$ is one non-zero eigenvalue, which means $h(a ; r, n, a)=0$, or after simplification:

$$
\begin{aligned}
& a^{3}(r-3)+15(r+2)+4 a^{2}(13 r+32)-2 a(29 r+67) \\
& =0
\end{aligned}
$$

We pick the smallest positive root branch $a=a(r)$, which is an increasing function of r with limit $a(+\infty)=\frac{1}{2}$, and $a(1)>0.3387$. We next argue that, after plugging $a=a(r), h(\lambda ; r, n, a(r))$ has two other zeros that are larger than $\frac{1}{2}$ (hence larger than $a(r)$), which means the other two non-zero eigenvalues of A are greater than $a(r) \in(0.3387,0.5)$. The argument is based on median value theorem by showing $h(1 / 2 ; r, n, a(r))>0$, $h(n / 2 ; r, n, a(r))<0$ combined with the obvious fact $\lim _{\lambda \rightarrow \infty} h(\lambda ; r, n, a(r))=+\infty$.

We first show $h(1 / 2 ; r, n, a)>0$ for $1 \leq r \leq n$ and $a \in$ $[0.2,0.5)$. As a function of r with parameters n and a, the function

$$
\begin{aligned}
h(1 / 2 ; r, n, a) & =4-8 a-3 n+20 a n+4 a^{2} n \\
& +\left(3-20 a-4 a^{2}\right) r
\end{aligned}
$$

is linear in r and is decreasing since $3-20 a-4 a^{2}<0$ for
$a \in[0.2,0.5)$. Therefore, we obtain

$$
\begin{aligned}
h(1 / 2 ; r, n, a) & \geq h(1 / 2 ; n, n, a) \\
& =4-8 a \\
& >0
\end{aligned}
$$

Second, we show that $h(n / 2 ; r, n, a)<0$ for $a \in[0.2,0.5)$ and $r \in[0, n]$:

$$
\begin{aligned}
& h(n / 2 ; r, n, a) \\
= & (-2+n)\left(16 a+(7-4 a(9+a)) n+8(-1+a) n^{2}\right) \\
& +(30-8 a(9+a)-46 n+8 a(11+a) n \\
& \left.+(19-4 a(9+a)) n^{2}\right) r+(-1+2 a)(15+2 a)(-1+n) r^{2} \\
\leq & (-2+n)(16 a+(7-4 a(9+a)) n \\
& \left.+8(-1+a) n^{2}\right)+2(1-2 a)(15+2 a)(-1+n) n r \\
& +(-1+2 a)(15+2 a)(-1+n) r^{2} .
\end{aligned}
$$

We used the fact that
$30-8 a(9+a)-46 n+8 a(11+a) n+(19-4 a(9+a)) n^{2}$ $\leq 2(1-2 a)(15+2 a)(n-1) n$
which can be proved by observing that

$$
\begin{aligned}
& 2(1-2 a)(15+2 a)(n-1) n-(30-8 a(9+a)-46 n \\
& \left.+8 a(11+a) n+(19-4 a(9+a)) n^{2}\right) \\
& =-30+8 a(9+a) \\
& +(46-8 a(11+a)-2(1-2 a)(15+2 a)) n \\
& +(-19+4 a(9+a)+2(1-2 a)(15+2 a)) n^{2}
\end{aligned}
$$

is an increasing function of n (since $(46-8 a(11+a)-$ $2(1-2 a)(15+2 a))>0$ for $a \in[0.2,0.5))$, and its value at $n=1$ is $-3+12 a(9+a)-8 a(11+a) \geq 1$.

Now the upper bound on $h(n / 2 ; r, n, a)$ is an increasing function of r for $r \in[1, n]$. We therefore further bound $h(n / 2 ; r, n, a)$ by setting $r=n$ in its upper bound:

$$
\begin{aligned}
h(n / 2 ; r, n, a) & \leq-32 a-14 n+8 a(11+a) n \\
& +8(1-3 a) n^{2}+(7-4 a(5+a)) n^{3} \\
& :=u(n ; a)
\end{aligned}
$$

Since $\frac{d}{d n} u(n ; a)$ is
$-14+8 a(11+a)+16(1-3 a) n+3(7-4 a(5+a)) n^{2}$, which is decreasing for $n \geq 0$ due to $3(7-4 a(5+a))<0$ and $16(1-3 a)<0$ when $a \in(0.3387,0.5)$, we have

$$
\begin{aligned}
\frac{d}{d n} u(n ; a) & \leq \frac{d}{d n} u(8 ; a) \\
& =1458-8 a(517+95 a) \\
& <0
\end{aligned}
$$

for $n \geq 8$ and $a \in(0.3387, .5)$. Therefore, $u(n ; a)$ is
further upper bounded by its value at $n=8$ for $n \geq 8$:
$\begin{aligned} h(n / 2 ; r, n, a) & \leq u(8 ; a)=-16(-249+2 a(347+62 a)) \\ & <0\end{aligned}$
for $a \in(0.3387, .5)$.
To sum, we have showed that $h(\lambda ; r, n, a(r))$, whose zeros are eigenvalues of A, has the property that $\lambda_{1}=$ $a(r) \in(0.3387,1 / 2)$ is a zero, and $h(1 / 2 ; r, n, a(r))>$ $0, h(n / 2 ; r, n, a(r))<0$, and $h(+\infty ; r, n, a)>0$. Therefore, the other two zeros of $h(\lambda ; r, n, a(r))$ are greater than $1 / 2>a(r)$.
Therefore, the matrix H_{0} has rank $\left|\mathbb{N}_{2}^{n}\right|-r$ and the minimal non-zero eigenvalue for H_{0} is

$$
\min \left\{a(r), \frac{3}{2}-a(r), 2 a(r), \frac{1}{2}, 1\right\}=a(r)
$$

since $a(r) \in(0.3387,1 / 2)$. This shows that, when $\left\{x^{p}=\right.$ $\left.e_{p}, p=1, \ldots, r\right\}$, the matrix H_{0} is PSD with rank $\left|\mathbb{N}_{2}^{n}\right|-r$ and the minimal non-zero eigenvalue is greater than $1 / 3$.

When $\operatorname{supp}\left(\mu^{\star}\right)$ is orthonormal, but is not a subset of the canonical basis vectors, we augment the matrix $X=$ $\left[\begin{array}{lll}x^{1} & \cdots & x^{r}\end{array}\right]$ to an orthonormal matrix $P=\left[\begin{array}{ll}X & P_{1}\end{array}\right]$ and transform the variable x to $z=P^{\prime} x=P^{-1} x$. Then the tensor $A=\sum_{p} \lambda_{p} x^{p} \otimes x^{p} \otimes x^{p}$ is transformed to $\sum_{p} \lambda_{p} e_{p} \otimes e_{p} \otimes e_{p}$. So the dual polynomial

$$
q_{0}(z)=1-\nu_{2}(z)^{\prime} H_{0} \nu_{2}(z)+\frac{3}{2}\|z\|_{2}^{2}\left(\|z\|_{2}^{2}-1\right)
$$

with H_{0} constructed above satisfies the conditions in Proposition 1, and certifies the optimality of the decomposition $\sum_{p} \lambda_{p} e_{p} \otimes e_{p} \otimes e_{p}$. We transform this polynomial back to the x-domain to obtain

$$
\begin{aligned}
q(x) & :=q_{0}\left(P^{\prime} x\right) \\
& =1-\nu_{2}\left(P^{\prime} x\right)^{\prime} H_{0} \nu_{2}\left(P^{\prime} x\right)+\frac{3}{2}\|x\|_{2}^{2}\left(\|x\|_{2}^{2}-1\right)
\end{aligned}
$$

where we have used $\left\|P^{\prime} x\right\|_{2}^{2}=\|x\|_{2}^{2}$ since P is orthonormal. According to the change of basis formular in Lemma 1, the polynomial

$$
\nu_{2}\left(P^{\prime} x\right) H_{0} \nu_{2}\left(P^{\prime} x\right)=\nu_{2}(x)^{\prime}\left(J^{\prime} H_{0} J\right) \nu_{2}(x)
$$

is an SOS with the Gram matrix $J^{\prime} H_{0} J$, whose smallest eigenvalue is greater than $\frac{1}{2} \times \frac{1}{3}>\frac{1}{6}$. One can verify that $q(x)$ satisfies all the conditions in Proposition 1. As a consequence, we obtain:
Theorem 4. If the vectors in $\operatorname{supp}\left(\mu^{\star}\right)$ are orthonormal, then the SDP relaxation (9) with $k=2$ gives the exact decomposition. Furthermore, the constructed dual polynomial has the form

$$
q(x)=1-\nu_{2}(x)^{\prime} H \nu_{2}(x)+\frac{3}{2}\|x\|_{2}^{2}\left(\|x\|_{2}^{2}-1\right)
$$

where H has rero eigenvalues, and the $(r+1)$ th smallest eigenvalue is greater than $\frac{1}{6}$. When the support is formed
by a subset of the canonical basis vectors, the lower bound on the $(r+1)$ th smallest eigenvalue can be chosen as $\frac{1}{3}$.

The SOS matrix decomposition is verified by Matlab. With $n=7$ and $r=3$, we have the following plot for H_{0} :

Figure 6. H_{0} has $r=4$ zero eigenvalues and the 5 th smallest is $a(4)=0.3789$.

7.4. Dual Certificate: The Non-Orthonormal Case

We now proceed to apply a perturbation analysis to construct a dual polynomial for the non-orthonormal case.
Suppose the measure $\mu^{\star}=\sum_{k=1}^{r} \lambda_{k} \delta\left(x-x^{k}\right)$ where $\left\{x^{k}, k=1, \ldots, r\right\}$ are not orthogonal. Define $X=$ [x^{1}, \cdots, x^{r}] and find $P_{1} \in \mathbb{R}^{n \times(n-r)}$ which has orthonormal columns and is orthogonal to X. Further define $P=$ [$\left.\begin{array}{ll}X & P_{1}\end{array}\right]$. Then the transformation $x \mapsto z=P^{-1} x$ maps x^{k} to the k th canonical basis vector e_{k}. The unit sphere is mapped to an ellipsoid $E^{n-1}=\left\{z: z^{\prime} P^{\prime} P z=1\right\}$.
If we could construct a polynomial $q(z)=\langle Q, z \otimes z \otimes z\rangle$ with symmetric Q such that

$$
\begin{align*}
& q\left(e_{k}\right)=1, k=1, \ldots, r \tag{31}\\
& |q(z)|<1, z \in E^{n-1}, z \neq e_{k} \tag{32}
\end{align*}
$$

then the polynomial $q_{1}(x):=q\left(P^{-1} x\right)=\left\langle Q, P^{-1} x \otimes\right.$ $\left.P^{-1} x \otimes P^{-1} x\right\rangle$ would satisfy

$$
\begin{aligned}
& q_{1}\left(x^{k}\right)=q\left(e_{k}\right)=1, k=1, \ldots, r \\
& \left|q_{1}(x)\right|=\left|q\left(P^{-1} x\right)\right|<1, x \in \mathbb{S}^{n-1}, x \neq x^{k}
\end{aligned}
$$

The desired $q(z)$ must satisfy that $q\left(e_{k}\right)=1$ and $q(z)$ achieves maximum at $z=e_{k}$ for $k=1, \ldots, r$. Denote $L(z ; \nu)=q(z)-\nu\left(z^{\prime} P^{\prime} P z-1\right)$ as the Lagrangian. A necessary condition for $q(z)$ to achieve maximum at e_{k} is
given by the KKT condition:

$$
\begin{aligned}
\left.\frac{\partial L(z)}{\partial z}\right|_{z=e_{k}} & =\left.\frac{\partial q(z)}{\partial z}\right|_{z=e_{k}}-\left.\nu \frac{\partial}{\partial z}\left(z^{\prime} P^{\prime} P z-1\right)\right|_{z=e_{k}} \\
& =3 \sum_{i=1}^{n}\left\langle Q, e_{k} \otimes e_{k} \otimes e_{i}\right\rangle e_{i}-2 \nu P^{\prime} P e_{k} \\
& =0
\end{aligned}
$$

Taking inner product with e_{k} yields

$$
3 q\left(e_{k}\right)=3\left\langle Q, e_{k} \otimes e_{k} \otimes e_{k}\right\rangle=2 \nu e_{k}^{\prime} P^{\prime} P e_{k}=3
$$

implying $\nu=\frac{3}{2}$. Therefore, the symmetric tensor Q must satisfy

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle Q, e_{k} \otimes e_{k} \otimes e_{i}\right\rangle e_{i}=P^{\prime} P e_{k}, k=1, \ldots, r \tag{33}
\end{equation*}
$$

Note the condition (31) is a consequence of (33). We pick

$$
\begin{aligned}
Q & =\sum_{k=1}^{r} e_{k} \otimes e_{k} \otimes P^{\prime} P e_{k}+\sum_{k=1}^{r} e_{k} \otimes P^{\prime} P e_{k} \otimes e_{k} \\
& +\sum_{k=1}^{r} P^{\prime} P e_{k} \otimes e_{k} \otimes e_{k}-2 \sum_{k=1}^{r} e_{k} \otimes e_{k} \otimes e_{k}
\end{aligned}
$$

which actually has minimal energy among all symmetric Qs that satisfy (33). The dual polynomial is then given by

$$
\begin{aligned}
q(z) & =\langle Q, z \otimes z \otimes z\rangle \\
& =\sum_{k=1}^{r}\left[3 z_{k}^{2}\left(z^{\prime} P^{\prime} P e_{k}\right)-2 z_{k}^{3}\right] \\
& =\sum_{k=1}^{r}\left[3\left(z^{\prime} P^{\prime} P e_{k}\right)-2 z_{k}\right] z_{k}^{2} .
\end{aligned}
$$

Clearly, $q(z)$ satisfies the interpolation condition (31). In the following, we show that $q(z)$ also satisfies the condition (32). The argument is based on partitioning the ellipsoid E^{n-1} into a region that is far from any e_{k} and a region that is near to some e_{k}.

First note

$$
q(z) \leq \max _{k}\left[3\left(z^{\prime} P^{\prime} P e_{k}\right)-2 z_{k}\right] \sum_{k=1}^{r} z_{k}^{2}
$$

When $z \in E^{n-1}$, due to $\left\|P^{\prime} P-I\right\| \leq \epsilon$, we have $-\epsilon z^{\prime} z \leq$ $1-z^{\prime} z \leq \epsilon z^{\prime} z$, implying

$$
\frac{1}{1+\epsilon} \leq \quad z^{\prime} z \quad \leq \frac{1}{1-\epsilon}
$$

Therefore, we can further upper bound $q(z)$ as

$$
\begin{aligned}
q(z) & \leq \max _{k}\left[3\left(z^{\prime} P^{\prime} P e_{k}\right)-2 z_{k}\right] \sum_{k=1}^{r} z_{k}^{2} \\
& \leq \frac{1}{1-\epsilon} \max _{k}\left[3\left(z^{\prime} P^{\prime} P e_{k}\right)-2 z_{k}\right]
\end{aligned}
$$

So, if

$$
\max _{k}\left[3\left(z^{\prime} P^{\prime} P e_{k}\right)-2 z_{k}\right]<1-\epsilon
$$

then $q(z)<1$. Therefore, we have showed that $q(z)<1$ in the "far-away" region.

Define $N_{k}=\left\{z: 3\left(z^{\prime} P^{\prime} P e_{k}\right)-2 z_{k} \geq 1-\epsilon, z^{\prime} P^{\prime} P z=\right.$ $1\}$. When $P^{\prime} P \approx I$, this is saying $z_{k} \geq 1-\epsilon$, so $z \in N_{k}$ is close to e_{k}. The union of $N_{k} \mathrm{~s}$ defines the "near region".

We want to make sure that $q(z)$ is strictly less than 1 in each N_{k} except when $z=e_{k} \in N_{k}$. For that purpose, we perform a Taylor expansion of the Lagrangian $L(z):=$ $L(z ; 3 / 2)$ in N_{k} around $z=e_{k}$

$$
\begin{aligned}
L(z) & =q(z)-\frac{3}{2}\left(z^{\prime} P^{\prime} P z-1\right) \\
& =L\left(e_{k}\right)+\left.\left(z-e_{k}\right)^{\prime} \frac{\partial L}{\partial z}\right|_{z=e_{k}} \\
& +\frac{1}{2}\left(z-e_{k}\right)^{\prime} H\left(\xi_{z}\right)\left(z-e_{k}\right) \\
& =1+\frac{1}{2}\left(z-e_{k}\right)^{\prime} H\left(\xi_{z}\right)\left(z-e_{k}\right)
\end{aligned}
$$

where $H\left(\xi_{z}\right)$ is the Hessian of $L(z)$ evaluated at ξ_{z} and $\xi_{z} \in L_{k, z}=\left\{t z+(1-t) e_{k}: t \in(0,1)\right\}$, the line segment connecting e_{k} and z.
Since $q(z)=L(z)$ on the ellipsoid E^{n-1}, it suffices to show $\frac{1}{2}\left(z-e_{k}\right)^{\prime} H\left(\xi_{z}\right)\left(z-e_{k}\right)<0$ for $z \in N_{k} /\left\{e_{k}\right\}$. For this purpose, we compute the Hessian matrix $H(\xi)$:

$$
\begin{aligned}
H(\xi) & =\left.\frac{\partial}{\partial z}\left[3 \sum_{i=1}^{n}\left\langle Q, z \otimes z \otimes e_{i}\right\rangle e_{i}-3 P^{\prime} P z\right]\right|_{z=\xi} \\
& =6 \sum_{i, j=1}^{n}\left\langle Q, \xi \otimes e_{j} \otimes e_{i}\right\rangle e_{i} \otimes e_{j}-3 P^{\prime} P
\end{aligned}
$$

Plugging in the expression of Q, we get that the Hessian $H(\xi)$ equals

$$
\begin{aligned}
& 6 \sum_{i, j=1}^{n}\left[\xi_{j} e_{i}^{\prime} P^{\prime} P e_{j}+\xi_{i} e_{j}^{\prime} P^{\prime} P e_{i}\right] e_{i} \otimes e_{j} \\
& \quad+6 \sum_{i=1}^{n}\left[\left(\xi^{\prime} P^{\prime} P e_{i}\right)-2 \xi_{i}\right] e_{i} \otimes e_{i}-3 P^{\prime} P
\end{aligned}
$$

To get a sense why this Hessian guarantees a negative second order term in the Taylor expansion, we set $\xi=e_{k}$ to
get

$$
\begin{aligned}
H\left(e_{k}\right) & =6 \sum_{i, j=1}^{n}\left[e_{k}(j) e_{i}^{\prime} P^{\prime} P e_{j}+e_{k}(i) e_{j}^{\prime} P^{\prime} P e_{i}\right] e_{i} \otimes e_{j} \\
& +6 \sum_{i=1}^{n}\left[\left(e_{k}^{\prime} P^{\prime} P e_{i}\right)-2 e_{k}(i)\right] e_{i} \otimes e_{i}-3 P^{\prime} P \\
& =6\left[\sum_{i}\left(e_{i}^{\prime} P^{\prime} P e_{k}\right) e_{i} \otimes e_{k}+\sum_{j}\left(e_{j}^{\prime} P^{\prime} P e_{k}\right) e_{k} \otimes e_{j}\right] \\
& +6 \sum_{i=1}^{n}\left[\left(e_{k}^{\prime} P^{\prime} P e_{i}\right)-2 e_{k}(i)\right] e_{i} \otimes e_{i}-3 P^{\prime} P
\end{aligned}
$$

When $P^{\prime} P \approx I$,

$$
\begin{aligned}
H\left(e_{k}\right) & \approx 12 e_{k} \otimes e_{k}-6 e_{k} \otimes e_{k}-3 I \\
& =6 e_{k} \otimes e_{k}-3 I
\end{aligned}
$$

which is PSD except in the direction e_{k}, which is orthogonal to the tangent space of $E^{n-1} \approx S^{n-1}$ at $z=e_{k}$. Therefore, the Hessian projected onto the tangent space is negative definite, as desired.

Returning to the non-orthogonal case, we bound

$$
\begin{aligned}
H(\xi) & =6 \sum_{i, j=1}^{n}\left[\xi_{j} e_{i}^{\prime} P^{\prime} P e_{j}+\xi_{i} e_{j}^{\prime} P^{\prime} P e_{i}\right] e_{i} \otimes e_{j} \\
& +6 \sum_{i=1}^{n}\left[\left(\xi^{\prime} P^{\prime} P e_{i}\right)-2 \xi_{i}\right] e_{i} \otimes e_{i}-3 P^{\prime} P
\end{aligned}
$$

for $\xi \in L_{k, z}$ with $z \in N_{k}$, where
$N_{k}=\left\{z: 3\left(z^{\prime} P^{\prime} P e_{k}\right)-2 z_{k} \geq 1-\epsilon, z^{\prime} P^{\prime} P z=1\right\}$.
The simplifications

$$
\begin{aligned}
\sum_{i, j=1}^{n}\left(\xi_{j} e_{i}^{\prime} P^{\prime} P e_{j}\right) e_{i} \otimes e_{j} & =P^{\prime} P \operatorname{diag}(\xi) \\
\sum_{i, j=1}^{n}\left(\xi_{i} e_{j}^{\prime} P^{\prime} P e_{i}\right) e_{i} \otimes e_{j} & =\operatorname{diag}(\xi) P^{\prime} P \\
\sum_{i=1}^{n}\left(\xi^{\prime} P^{\prime} P e_{i}\right) e_{i} \otimes e_{i} & =\operatorname{diag}\left(P^{\prime} P \xi\right) \\
\sum_{i=1}^{n} \xi_{i} e_{i} \otimes e_{i} & =\operatorname{diag}(\xi)
\end{aligned}
$$

lead to the following compact expression for the Hessian matrix $H(\xi)$:

$$
\begin{aligned}
& 6\left(P^{\prime} P \operatorname{diag}(\xi)+\operatorname{diag}(\xi) P^{\prime} P+\operatorname{diag}\left(P^{\prime} P \xi\right)-2 \operatorname{diag}(\xi)\right) \\
& \quad-3 P^{\prime} P
\end{aligned}
$$

We want to show that

$$
\left(z-e_{k}\right)^{\prime} H(\xi)\left(z-e_{k}\right)<0, \forall \xi \in L_{k, z}, z \in N_{k}
$$

We first argue that $z \in N_{k}=\left\{z: 3\left(z^{\prime} P^{\prime} P e_{k}\right)-2 z_{k} \geq 1-\right.$
$\left.\epsilon, z^{\prime} P^{\prime} P z=1\right\}$ imposes certain restrictions on the size of z, and implies that z is close to e_{k}. Indeed, $\left\|I-P^{\prime} P\right\| \leq \epsilon$ and $z^{\prime} P^{\prime} P z=1$ imply that

$$
\frac{1}{1+\epsilon} \leq \frac{1}{\lambda_{\max }\left(P^{\prime} P\right)} \leq\|z\|_{2}^{2} \leq \frac{1}{\lambda_{\min }\left(P^{\prime} P\right)} \leq \frac{1}{1-\epsilon}
$$

To show the closeness of z and e_{k}, we observe that

$$
\begin{aligned}
3 z^{\prime} P^{\prime} P e_{k}-2 z_{k} & =3 z^{\prime}\left(P^{\prime} P-I\right) e_{k}+3 z^{\prime} e_{k}-2 z_{k} \\
& =z_{k}+3 z^{\prime}\left(P^{\prime} P-I\right) e_{k}
\end{aligned}
$$

Since $\left|3 z^{\prime}\left(P^{\prime} P-I\right) e_{k}\right| \leq 3\|z\|_{2}\left\|P^{\prime} P-I\right\| \leq \frac{3 \epsilon}{\sqrt{1-\epsilon}}, z_{k}$ is bounded from below as follows:

$$
\begin{aligned}
z_{k} & \geq 1-\epsilon-3 z^{\prime}\left(P^{\prime} P-I\right) e_{k} \\
& \geq 1-\epsilon-\frac{3 \epsilon}{\sqrt{1-\epsilon}}
\end{aligned}
$$

On the other hand, $z_{k} \leq\|z\|_{2} \leq \frac{1}{\sqrt{1-\epsilon}}$.
A consequence of the sizes of z and z_{k} is that

$$
\begin{aligned}
\left\|z-z_{k} e_{k}\right\|_{2}^{2} & =\sum_{j \neq k} z_{j}^{2} \\
& =\|z\|_{2}^{2}-z_{k}^{2} \\
& \leq \frac{1}{1-\epsilon}-\left(1-\epsilon-\frac{3 \epsilon}{\sqrt{1-\epsilon}}\right)^{2}
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \left\|z-e_{k}\right\|_{\infty} \\
\leq & \max \left\{\epsilon+\frac{3 \epsilon}{\sqrt{1-\epsilon}}, \frac{1}{\sqrt{1-\epsilon}}-1,\right. \\
& \left.\sqrt{\frac{1}{1-\epsilon}-\left(1-\epsilon-\frac{3 \epsilon}{\sqrt{1-\epsilon}}\right)^{2}}\right\} \\
:= & c_{1}(\epsilon) \\
= & O(\epsilon)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|z-e_{k}\right\|_{2}^{2} \\
= & \sum_{j \neq k} z_{j}^{2}+\left(z_{k}-1\right)^{2} \leq\left\|z-z_{k} e_{k}\right\|_{2}^{2} \\
& \quad+\max \left\{\epsilon+\frac{3 \epsilon}{\sqrt{1-\epsilon}}, \frac{1}{\sqrt{1-\epsilon}}-1\right\}^{2} \\
= & \frac{1}{1-\epsilon}-\left(1-\epsilon-\frac{3 \epsilon}{\sqrt{1-\epsilon}}\right)^{2} \\
& \quad+\max \left\{\epsilon+\frac{3 \epsilon}{\sqrt{1-\epsilon}}, \frac{1}{\sqrt{1-\epsilon}}-1\right\}^{2} \\
= & c_{2}(\epsilon)
\end{aligned}
$$

Since $\xi_{z} \in L_{k, z}$, we have $\xi_{z}=t z+(1-t) e_{k}$ for some $t \in$ $(0,1)$. As consequence, we obtain the following estimates
for ξ_{z} :

$$
\begin{aligned}
\left\|\xi_{z}-e_{k}\right\|_{\infty} & \leq t\left\|z-e_{k}\right\|_{\infty} \leq c_{1}(\epsilon) \\
\left\|\xi_{z}-e_{k}\right\|_{2}^{2} & \leq t^{2}\left\|z-e_{k}\right\|_{2}^{2} \leq c_{2}(\epsilon) \\
\left\|\xi_{z}\right\|_{2} & \leq t\|z\|_{2}+(1-t)\left\|e_{k}\right\|_{2} \leq \frac{1}{\sqrt{1-\epsilon}}
\end{aligned}
$$

For notational simplicity, in the following we ignore the subscript z in ξ_{z}. We show that each term in

$$
P^{\prime} P \operatorname{diag}(\xi)+\operatorname{diag}(\xi) P^{\prime} P+\operatorname{diag}\left(P^{\prime} P \xi\right)-2 \operatorname{diag}(\xi)
$$

is close to $e_{k} e_{k}^{\prime}$, except the last term which is close to $2 e_{k} e_{k}^{\prime}$. The first term is bounded as follows:

$$
\begin{aligned}
& \left\|P^{\prime} P \operatorname{diag}(\xi)-e_{k} e_{k}^{\prime}\right\| \\
\leq & \left\|P^{\prime} P \operatorname{diag}(\xi)-P^{\prime} P e_{k} e_{k}^{\prime}\right\|+\left\|P^{\prime} P e_{k} e_{k}^{\prime}-e_{k} e_{k}^{\prime}\right\| \\
\leq & \left\|P^{\prime} P\right\|\left\|\xi-e_{k}\right\|_{\infty}+\left\|P^{\prime} P-I\right\| \\
\leq & (1+\epsilon) c_{1}(\epsilon)+\epsilon
\end{aligned}
$$

Similar bounds hold for the term $\operatorname{diag}(\xi) P^{\prime} P$:

$$
\begin{aligned}
& \left\|\operatorname{diag}\left(P^{\prime} P \xi\right)-e_{k} e_{k}^{\prime}\right\| \\
= & \left\|P^{\prime} P \xi-e_{k}\right\|_{\infty} \\
\leq & \left\|P^{\prime} P \xi-\xi\right\|_{\infty}+\left\|\xi-e_{k}\right\|_{\infty} \\
\leq & \left\|P^{\prime} P-I\right\|\|\xi\|_{2}+c_{1}(\epsilon) \\
\leq & \frac{\epsilon}{\sqrt{1-\epsilon}}+c_{1}(\epsilon)
\end{aligned}
$$

and the term $\operatorname{diag}(\xi)$:

$$
\left\|\operatorname{diag}(\xi)-e_{k} e_{k}^{\prime}\right\| \leq\left\|\xi-e_{k}\right\|_{\infty} \leq c_{1}(\epsilon)
$$

These bounds imply that

$$
\begin{aligned}
& \| P^{\prime} P \operatorname{diag}(\xi)+\operatorname{diag}(\xi) P^{\prime} P+\operatorname{diag}\left(P^{\prime} P \xi\right)-2 \operatorname{diag}(\xi) \\
\leq & 2(1+\epsilon) c_{1}(\epsilon)+2 \epsilon+\frac{\epsilon}{\sqrt{1-\epsilon}}+c_{k} e_{k}^{\prime} \| \\
:= & c_{3}(\epsilon)+c_{1}(\epsilon) \\
= & O(\epsilon)
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
& \left\|P^{\prime} P e_{k} e_{k}^{\prime} P^{\prime} P-e_{k} e_{k}\right\| \\
= & \left\|P^{\prime} P e_{k} e_{k}^{\prime} P^{\prime} P-P^{\prime} P e_{k} e_{k}^{\prime}+P^{\prime} P e_{k} e_{k}^{\prime}-e_{k} e_{k}^{\prime}\right\| \\
\leq & \left\|P^{\prime} P\right\|\left\|e_{k} e_{k}^{\prime}\right\|\left\|P^{\prime} P-I\right\|+\left\|P^{\prime} P-I\right\|\left\|e_{k} e_{k}^{\prime}\right\| \\
\leq & (1+\epsilon) \epsilon+\epsilon \\
= & O(\epsilon) .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
& \left\|H(\xi)-\left(6 P^{\prime} P e_{k} e_{k}^{\prime} P^{\prime} P-3 P^{\prime} P\right)\right\| \\
\leq & 6 c_{3}(\epsilon)+6 \epsilon(2+\epsilon) \\
:= & c_{4}(\epsilon) \\
= & O(\epsilon)
\end{aligned}
$$

For any $z \in N_{k}$, we next show that $\left(z-e_{k}\right)^{\prime} P^{\prime} P e_{k}$ is small
due to the fact that both z and e_{k} lie on E^{n-1} :

$$
\begin{aligned}
1 & =z^{\prime} P^{\prime} P z \\
& =e_{k}^{\prime} P^{\prime} P e_{k}+2\left(z-e_{k}\right)^{\prime} P^{\prime} P e_{k}+\left(z-e_{k}\right)^{\prime} P^{\prime} P\left(z-e_{k}\right) \\
& =1+2\left(z-e_{k}\right)^{\prime} P^{\prime} P e_{k}+\left(z-e_{k}\right)^{\prime} P^{\prime} P\left(z-e_{k}\right)
\end{aligned}
$$

implying

$$
\begin{aligned}
\left|\left(z-e_{k}\right)^{\prime} P^{\prime} P e_{k}\right| & =\frac{1}{2}\left(z-e_{k}\right) P^{\prime} P\left(z-e_{k}\right) \\
& \leq \frac{1}{2}\left\|P^{\prime} P\right\|\left\|z-e_{k}\right\|_{2}^{2} \\
& \leq \frac{1}{2}(1+\epsilon)\left\|z-e_{k}\right\|_{2}^{2}
\end{aligned}
$$

The following chain of inequalities

$$
\begin{aligned}
& \left(z-e_{k}\right)^{\prime} H(\xi)\left(z-e_{k}\right) \\
\leq & \left(z-e_{k}\right)^{\prime}\left(6 P^{\prime} P e_{k} e_{k}^{\prime} P^{\prime} P-3 P^{\prime} P\right)\left(z-e_{k}\right) \\
& +\left\|z-e_{k}\right\|_{2}^{2} c_{4}(\epsilon) \\
= & 6\left[\left(z-e_{k}\right)^{\prime} P^{\prime} P e_{k}\right]^{2}-3\left(z-e_{k}\right)^{\prime} P^{\prime} P\left(z-e_{k}\right) \\
& +\left\|z-e_{k}\right\|_{2}^{2} c_{4}(\epsilon) \\
= & \frac{3}{2}(1+\epsilon)^{2}\left\|z-e_{k}\right\|_{2}^{4}-3\left(z-e_{k}\right)^{\prime} P^{\prime} P\left(z-e_{k}\right) \\
& +\left\|z-e_{k}\right\|_{2}^{2} c_{4}(\epsilon) \\
\leq & \frac{3}{2}(1+\epsilon)^{2}\left\|z-e_{k}\right\|_{2}^{4}-3(1-\epsilon)\left\|z-e_{k}\right\|_{2}^{2} \\
& +\left\|z-e_{k}\right\|_{2}^{2} c_{4}(\epsilon) \\
= & \frac{3}{2}(1+\epsilon)^{2}\left\|z-e_{k}\right\|_{2}^{4}-\left(3-3 \epsilon-c_{4}(\epsilon)\right)\left\|z-e_{k}\right\|_{2}^{2}
\end{aligned}
$$

show that the second order term is negative if

$$
\frac{3}{2}(1+\epsilon)^{2}\left\|z-e_{k}\right\|_{2}^{2}<3-3 \epsilon-c_{4}(\epsilon)
$$

So it suffices to require

$$
c_{2}(\epsilon) \frac{3}{2}(1+\epsilon)^{2}<3-3 \epsilon-c_{4}(\epsilon)
$$

Numerical computation shows that the above inequality holds if

$$
\epsilon \leqslant 0.0016
$$

We summarize the above argument into a theorem:

Theorem 5. For a symmetric tensor $A=\sum_{p=1}^{r} \lambda_{p} x^{p} \otimes$ $x^{p} \otimes x^{p}$, if the vectors $\left\{x^{p}\right\}$ are near orthogonal, that is, the matrix $X=\left[x^{1} x^{2} \cdots x^{r}\right]$ satisfies

$$
\left\|X^{\prime} X-I_{r}\right\| \leq 0.0016
$$

then there exists a dual symmetric tensor Q such that the dual polynomial $q(x)=\langle Q, x \otimes x \otimes x\rangle$ satisfies the conditions in part 1 of Proposition 1. Thus, $A=\sum_{p=1}^{r} \lambda_{p} x^{p} \otimes$ $x^{p} \otimes x^{p}$ is the unique decomposition that achieves the tensor nuclear norm, and can be found by solving (4).

7.5. SOS Dual Certificate: The Non-Orthonormal Case

After rotating to the canonical basis vectors, the dual polynomial we constructed for the orthogonal case is

$$
q_{0}(z)=\sum_{k=1}^{r} z_{k}^{3}
$$

while the one for the non-orthogonal case is

$$
q(z)=\sum_{k=1}^{r}\left[3\left(z^{\prime} P^{\prime} P e_{k}\right)-2 z_{k}\right] z_{k}^{2}
$$

We first show that $1-q(z)$ is an SOS modulo the ellipsoid E^{n-1}. We know that $q_{0}(z)$ is an SOS modulo the sphere, that is, there exist symmetric matrices $H \succcurlyeq 0$ and $G \in$ $\mathbb{R}^{(n+1) \times(n+1)}$ such that

$$
1-q_{0}(z)=\nu_{2}(z)^{\prime} H \nu_{2}(z)+\nu_{1}(z)^{\prime} G \nu_{1}(z)\left(\|z\|_{2}^{2}-1\right)
$$

In Section 7.3, we constructed $G=G_{0}$ in (26) and $H=$ H_{0} in (28). So $\left(H_{0}, G_{0}\right)$ is in the feasible set of the following two constraints:
$\nu_{2}(z)^{\prime} H \nu_{2}(z)+\nu_{1}(z)^{\prime} G \nu_{1}(z)\left(\|z\|_{2}^{2}-1\right)=1-q_{0}(z), \forall z$ $H \succcurlyeq 0$.

Note that any feasible H must satisfy $\nu_{2}\left(e_{i}\right)^{\prime} H \nu_{2}\left(e_{i}\right)=0$ for $i=1,2, \ldots, r$, implying that $\left\{\nu_{2}\left(e_{i}\right): i=1,2, \ldots, r\right\}$ spans a subspace of the null space of H.
Define matrices B_{α} and C_{α}^{0} that satisfy

$$
\begin{aligned}
\nu_{2}(z) \nu_{2}(z)^{\prime} & =\sum_{|\alpha| \leq 4} B_{\alpha} z^{\alpha} \\
\nu_{1}(z) \nu_{1}(z)^{\prime}\left(\|z\|_{2}^{2}-1\right) & =\sum_{|\alpha| \leq 4} C_{\alpha}^{0} z^{\alpha}
\end{aligned}
$$

These notations allow us to write

$$
\nu_{2}(z)^{\prime} H \nu_{2}(z)=\left\langle\nu_{2}(z) \nu_{2}(z)^{\prime}, H\right\rangle=\sum_{|\alpha| \leq 4}\left\langle B_{\alpha}, H\right\rangle z^{\alpha}
$$

and

$$
\begin{aligned}
\nu_{1}(z)^{\prime} G \nu_{1}(z)\left(\|z\|_{2}^{2}-1\right) & =\left\langle\nu_{1}(z) \nu_{1}(z)^{\prime}\left(\|z\|_{2}^{2}-1\right), G\right\rangle \\
& =\sum_{|\alpha| \leq 4}\left\langle C_{\alpha}^{0}, G\right\rangle z^{\alpha}
\end{aligned}
$$

Denote by b_{α}^{0} the coefficient for z^{α} in $1-q_{0}(z)$. We write the polynomial equation $\nu_{2}(z)^{\prime} H \nu_{2}(z)+$ $\nu_{1}(z)^{\prime} G \nu_{1}(z)\left(\|z\|_{2}^{2}-1\right)=1-q_{0}(z)$ equivalently as

$$
\left\langle B_{\alpha}, H\right\rangle+\left\langle C_{\alpha}^{0}, G\right\rangle=b_{\alpha}^{0},|\alpha| \leq 4
$$

Therefore, we obtain the SDP formulation of (34)

$$
\begin{align*}
& \text { find } G, H \\
& \text { subject to }\left\langle B_{\alpha}, H\right\rangle+\left\langle C_{\alpha}^{0}, G\right\rangle=b_{\alpha}^{0},|\alpha| \leq 4 \\
& H \succcurlyeq 0 \tag{35}
\end{align*}
$$

As aforementioned, G_{0} and H_{0} defined respectively in (26) and (28) form a feasible point for (35).

Now we switch to the non-orthogonal case, and we would like to show that

$$
q(z)=\sum_{k=1}^{r}\left[3\left(z^{\prime} P^{\prime} P e_{k}\right)-2 z_{k}\right] z_{k}^{2}
$$

is an SOS module the ellipsoid E^{n-1}. That is, we want to solve the feasibility problem
find G and H
subject to
$\nu_{2}(z)^{\prime} H \nu_{2}(z)+\nu_{1}(z)^{\prime} G \nu_{1}(z)\left(z^{\prime} P^{\prime} P z-1\right)=1-q(z)$
$H \succcurlyeq 0$.
or equivalently in SDP
find G and H
subject to

$$
\begin{align*}
& \left\langle B_{\alpha}, H\right\rangle+\left\langle C_{\alpha}, G\right\rangle=b_{\alpha},|\alpha| \leq 4 \\
& H \succcurlyeq 0 \tag{37}
\end{align*}
$$

Here B_{α} is defined as before, while b_{α} is the coefficient for z^{α} in $1-q(z)$ for $|\alpha| \leq 4$ and C_{α} is defined via

$$
\nu_{1}(z) \nu_{1}(z)^{\prime}\left(z^{\prime} P^{\prime} P z-1\right)=\sum_{|\alpha| \leq 4} C_{\alpha} z^{\alpha}
$$

We again note that any feasible H must satisfy $\nu_{2}\left(e_{i}\right)^{\prime} H \nu_{2}\left(e_{i}\right)=0$ for $i=1,2, \ldots, r$, implying that $\left\{\nu_{2}\left(e_{i}\right): i=1,2, \ldots, r\right\}$ spans a subspace of the null space of H.
When $\left\|P^{\prime} P-I\right\| \leq \epsilon$ with ϵ small, C_{α} is close to C_{α}^{0} and b_{α} is close to b_{α}^{0}. We claim that, when ϵ is sufficiently small, we can always take $G_{1}=G_{0}$ and H_{1} in the neighborhood of H_{0} that form a feasible point of (37). Denote $\Delta H=$ $H_{1}-H_{0}$ and $e_{\alpha}=\left(b_{\alpha}-b_{\alpha}^{0}\right)-\left(\left\langle C_{\alpha}, G_{0}\right\rangle-\left\langle C_{\alpha}^{0}, G_{0}\right\rangle\right)$, then ΔH must satisfy

$$
\left\langle B_{\alpha}, \Delta H\right\rangle=e_{\alpha},|\alpha| \leq 4
$$

These set of equality constraints, which are equivalent to

$$
\begin{aligned}
& \nu_{2}(z)^{\prime} \Delta H \nu_{2}(z)=\sum_{|\alpha| \leq 4} e_{\alpha} z^{\alpha} \\
& =q(z)-q_{0}(z)-\nu_{1}(z)^{\prime} G_{0} \nu_{1}(z)\left(z^{\prime} P^{\prime} P z-z^{\prime} z\right)
\end{aligned}
$$

also implies that $\nu_{2}\left(e_{i}\right)^{\prime} \Delta H \nu_{2}\left(e_{i}\right)=0, i=1, \ldots, r$. Therefore, $\left\{\nu_{2}\left(e_{i}\right): i=1,2, \ldots, r\right\}$ spans a subspace of the null spaces of H_{0}, H_{1} and ΔH. Since the null space of H_{0} is exactly $\operatorname{span}\left(\left\{\nu_{2}\left(e_{i}\right): i=1,2, \ldots, r\right\}\right)$, and the minimal non-zero eigenvalue of H_{0} is strictly greater than $1 / 3$ according to Theorem 4 , it suffices to find a symmetric ΔH that satisfies

$$
\left\langle B_{\alpha}, \Delta H\right\rangle=e_{\alpha},|\alpha| \leq 4
$$

and $\|\Delta H\|$ is very small, much smaller than $\frac{1}{3}$.
In the following, we will complete the argument by show-
ing that the solution $\Delta \hat{H}$ to

$$
\begin{align*}
& \text { minimize }\|\Delta H\|_{F} \\
& \text { subject to }\left\langle B_{\alpha}, \Delta H\right\rangle=e_{\alpha},|\alpha| \leq 4 \tag{38}
\end{align*}
$$

satisfies $\|\Delta H\|_{F} \leq 0.0048$ under the conditions of $\| P^{\prime} P-$ $I \| \leq 0.0016$, implying that $\Delta \bar{H}=\frac{1}{2}\left(\Delta \hat{H}+\Delta \hat{H}^{\prime}\right)$ is the desired ΔH.
We first estimate $\|e\|_{\infty}$. Note

$$
\begin{aligned}
q(z)-q_{0}(z) & =\sum_{k=1}^{r}\left[3\left(z^{\prime} P^{\prime} P e_{k}\right)-2 z_{k}\right] z_{k}^{2}-\sum_{k=1}^{r} z_{k}^{3} \\
& =3 \sum_{k=1}^{r}\left[\left(z^{\prime} P^{\prime} P e_{k}\right)-z_{k}\right] z_{k}^{2}
\end{aligned}
$$

which involves only third order monomials in sets $\left\{z_{k}^{3}\right.$: $k=1, \ldots, r\},\left\{z_{k}^{2} z_{j}: k=1, \ldots, r ; j=r+1, \ldots, n\right\}$, and $\left\{z_{k}^{2} z_{j}: j \neq k=1, \ldots, r\right\}$. The coefficient for z_{k}^{3} is $3\left(1-e_{k}^{\prime} P^{\prime} P e_{k}\right)=0$, and the coefficient for $z_{k}^{2} z_{j}$ is $-3 e_{j}^{\prime} P^{\prime} P e_{k}$. When $k=1, \ldots, r ; j=r+1, \ldots, n$, we have $-3 e_{j}^{\prime} P^{\prime} P e_{k}=0$ due to the construction of P; when $j \neq k=1, \ldots, r$, the quantity $-3 e_{j}^{\prime} P^{\prime} P e_{k}$ is non-zero. Therefore, we get

$$
\left\|b-b^{0}\right\|_{\infty} \leq 3 \max _{1 \leq j \neq k \leq r}\left|e_{j}^{\prime} P^{\prime} P e_{k}\right| \leq 3 \epsilon
$$

We next bound

$$
\begin{aligned}
\left|\left\langle C_{\alpha}, G_{0}\right\rangle-\left\langle C_{\alpha}^{0}, G_{0}\right\rangle\right| & =\left|\left\langle C_{\alpha}-C_{\alpha}^{0}, G_{0}\right\rangle\right| \\
& =\frac{3}{2}\left|\operatorname{trace}\left(C_{\alpha}-C_{\alpha}\right)\right|
\end{aligned}
$$

To control trace $\left(C_{\alpha}-C_{\alpha}^{0}\right)$, we write

$$
\sum_{|\alpha| \leq 4}\left(C_{\alpha}-C_{\alpha}^{0}\right) z^{\alpha}=\nu_{1}(z) \nu_{1}(z)^{\prime}\left[z^{\prime}\left(P^{\prime} P-I\right) z\right]
$$

Taking trace on both sides gives

$$
\begin{aligned}
& \sum_{|\alpha| \leq 4} \operatorname{trace}\left(C_{\alpha}-C_{\alpha}^{0}\right) z^{\alpha} \\
= & \operatorname{trace}\left(\nu_{1}(z) \nu_{1}(z)^{\prime}\right)\left[z^{\prime}\left(P^{\prime} P-I\right) z\right] \\
= & \left(1+\sum_{i=1}^{r} z_{i}^{2}\right)\left[z^{\prime}\left(P^{\prime} P-I\right) z\right] \\
= & \left(1+\sum_{i=1}^{r} z_{i}^{2}\right) \sum_{1 \leq j \neq k \leq r}\left(P^{\prime} P-I\right)_{j k} z_{j} z_{k}
\end{aligned}
$$

Since the diagonal of $P^{\prime} P-I$ constitutes of zeros, the only monomials that have non-zero coefficients are in the sets $\left\{z_{i}^{2} z_{j} z_{k}: 1 \leq i \leq r, 1 \leq j \neq k \leq r\right\}$, and $\left\{z_{j} z_{k}: 1 \leq\right.$ $j \neq k \leq r\}$. To compute the coefficients for $z_{i}^{2} z_{j} z_{k}$, we consider two separate cases. When $j=i$, the coefficient for the term $z_{i}^{3} z_{k}$ is $\left(P^{\prime} P-I\right)_{i k}+\left(P^{\prime} P-I\right)_{k i}$. When $j \neq i$ and $k \neq i$, the coefficient for the term $z_{i}^{2} z_{j} z_{k}$ is $\left(P^{\prime} P-I\right)_{j k}+\left(P^{\prime} P-I\right)_{k j}$. In both cases, we can bound
the absolute value of the coefficient by

$$
\max _{j \neq k}\left|\left(P^{\prime} P-I\right)_{j k}+\left(P^{\prime} P-I\right)_{k j}\right| \leq 2 \epsilon
$$

A similar argument shows that the coefficients for $z_{j} z_{k}$ with $1 \leq j \neq k \leq r$ are also bounded by 2ϵ. Hence, we get

$$
\max _{|\alpha| \leq 4}\left|\operatorname{trace}\left(C_{\alpha}-C_{\alpha}^{0}\right)\right| \leq 2 \epsilon
$$

Since the components of $b_{\alpha}-b_{\alpha}^{0}$ and $\left\langle C_{\alpha}-C_{\alpha}^{0}, G_{0}\right\rangle$ attain non-zero at different αs, we conclude that

$$
\|e\|_{\infty} \leq 3 \epsilon
$$

Denote by $S \in \mathbb{R}^{\left|\mathbb{N}_{4}^{n}\right| \times\left|\mathbb{N}_{2}^{n}\right|^{2}}$ the matrix whose α th row is $\operatorname{vec}\left(B_{\alpha}\right)^{T}$ for $|\alpha| \leq 4$. The solution to (38) is given by $\operatorname{vec}(\Delta H)=S^{\dagger} e$ where we used \dagger to represent pseudoinverse.

We want to control

$$
\left\|S^{\dagger}\right\|_{\infty, 2}=\max _{\alpha}\left\|\left[S^{\dagger}\right]_{\alpha}\right\|_{2}
$$

where $\left[S^{\dagger}\right]_{\alpha}$ is the α th row of S^{\dagger}. Note S has orthogonal rows, and each $\operatorname{vec}\left(B_{\alpha}\right)$ is composed of zeros and ones, and the ones indicate where the monomial z^{α} locates in $\nu_{2}(z) \nu_{2}(z)^{\prime}$. As a consequence, the matrix $S S^{\prime}$ is diagonal with the diagonal element d_{α} counts the number of appearances of z^{α} in $\nu_{2}(z) \nu_{2}(z)^{\prime}$, which is always greater than or equal to 1 . Therefore, we get

$$
\begin{aligned}
\left\|S^{\dagger}\right\|_{\infty, 2} & =\left\|S^{\prime}\left(S S^{\prime}\right)^{-1}\right\|_{\infty, 2} \\
& \leq \max _{\beta}\left\|\left[S^{\prime}\right]_{\beta} \operatorname{diag}\left(d^{-1}\right)\right\|_{2} \\
& \leq \max _{\beta}\left\|S^{\beta}\right\|_{2}
\end{aligned}
$$

where S^{β} represents that β th column of S. The index β indexes the rows and columns of $\nu_{2}(z) \nu_{2}(z)^{\prime}$. Each column of S consists of zeros and a single one, with the latter representing which z^{α} is at the entry of $\nu_{2}(z) \nu_{2}(z)^{\prime}$ specified by the column index β. Therefore, we obtain

$$
\left\|S^{\dagger}\right\|_{\infty, 2} \leq \max _{\beta}\left\|S^{\beta}\right\|_{2} \leq 1
$$

We conclude that

$$
\begin{aligned}
\|\Delta \bar{H}\|_{F} & \leq\|\Delta \hat{H}\|_{F} \\
& =\left\|S^{\dagger} e\right\|_{2} \leq\left\|S^{\dagger}\right\|_{\infty, 2}\|e\|_{\infty} \\
& \leq 3 \epsilon \\
& \leq 0.0048
\end{aligned}
$$

for $\epsilon \leq 0.0016$. Therefore, the minimal non-zero eigenvalue of the Gram matrix $H_{1}=H_{0}+\Delta \bar{H}$ is lower bounded by $1 / 3-0.0048>0$.
So far we have showed that $q(z)$ is an SOS modulo the ellipsoid $\left\{z: z^{\prime} P^{\prime} P z=1\right\}$. To prove Theorem 1, we need to map z back to x, and make sure that after the mapping,
the new Gram matrix still have rank $\left|\mathbb{N}_{2}^{n}\right|-r$. It suffices to show that the change of basis transformation on \mathbb{R}^{n} that maps x to z induces a well-conditioned transformation between $\nu_{2}(x)$ and $\nu_{2}(z)$. This is given in Lemma 1 developed in the next section. Therefore, we have completed the proof of Theorem 1.

7.6. Change of Basis Formular

Consider two n-dimensional variables x and z linked by a change of basis transformation $x=P z$ or $z=P^{-1} x$. We aim at finding the matrix J that expresses $\nu_{2}(z)$ in terms of $\nu_{2}(x)$, i.e.,

$$
\nu_{2}(z)=\nu_{2}\left(P^{-1} x\right)=J \nu_{2}(x)
$$

The transform J is well defined since a polynomial of degree k in z is always transformed into a polynomial of degree k in x under $z=P^{-1} x$. It's easy to see J has the form:

$$
J=\left[\begin{array}{lll}
1 & & \\
& P^{-1} & \\
& & J_{2}
\end{array}\right]
$$

where J_{2} expresses all quadratic monomials of z in terms of quadratic monomials of x. To find J_{2}, we rewrite the relationship $z z^{\prime}=P^{-1} x x^{\prime} P^{-1^{\prime}}$ as

$$
\operatorname{vec}\left(z z^{\prime}\right)=P^{-1} \otimes_{K} P^{-1} \operatorname{vec}\left(x x^{\prime}\right)
$$

where the subscript in the Kronecker product notation \otimes_{K} is used to distinguish it from the tensor product notation θ, and $\operatorname{vec}(\cdot)$ vectorizes a matrix column-wise. Denote by $\bar{\nu}_{2}(x)$ all unique quadratic monomials in x, and write $\bar{\nu}_{2}(x)=\Pi \operatorname{vec}\left(x x^{\prime}\right)$, where Π is the matrix that picks and averages the duplicated quadratic monomials of x in $\operatorname{vec}\left(x x^{\prime}\right)$. One can verify that $\operatorname{vec}\left(x x^{\prime}\right)=\Pi^{\dagger} \bar{\nu}_{2}(x)$, and the smallest and largest singular values of Π are $\frac{1}{\sqrt{2}}$ and 1 respectively. Consequently, we have

$$
\bar{\nu}_{2}(z)=\Pi \operatorname{vec}\left(z z^{\prime}\right)=\Pi\left(P^{-1} \otimes_{K} P^{-1}\right) \Pi^{\dagger} \bar{\nu}_{2}(x)
$$

or equivalently $J_{2}=\Pi P^{-1} \otimes_{K} P^{-1} \Pi^{\dagger}$. So if $\left\|P P^{\prime}-I\right\| \leq$ ϵ, the singular values of J_{2} are lower bounded and upper bounded by $\frac{1}{\sqrt{2}} \frac{1}{1+\epsilon}$ and $\frac{\sqrt{2}}{1-\epsilon}$ respectively. The same holds for J. We summarize these results in the following lemma.
Lemma 1. The change of basis transformation $x=P z$ induces a linear transformation between $\nu_{2}(z)$ and $\nu_{2}(x)$
$\nu_{2}(z)=J \nu_{2}(x)=\left[\begin{array}{lll}1 & & \\ & P^{-1} & \\ & & \Pi\left(P^{-1} \otimes_{K} P^{-1}\right) \Pi^{\dagger}\end{array}\right] \nu_{2}(x)$
such that the singular values of J fall into the interval $\left[\frac{1}{\sqrt{2}} \frac{1}{1+\epsilon}, \frac{\sqrt{2}}{1-\epsilon}\right]$.

