Supplementary Material

7.1. Proof of Proposition 1

Proof. 1. Any symmetric tensor Q that satisfies the conditions in part 1 of Proposition 1 is dual feasible. The decomposition measure μ^* is primal feasible. We also have

$$\langle Q, A \rangle = \sum_{p=1}^{r} \lambda_p(Q, x^p \otimes x^p \otimes x^p)$$

$$= \sum_{p=1}^{r} \lambda_p(q(x)) = \sum_{p=1}^{r} \lambda_p = \mu^*(S^{n-1}),$$

establishing a zero duality gap at the primal-dual feasible solution pair (μ^*, Q). Therefore, μ^* is primal optimal and Q is dual optimal.

For uniqueness, suppose $\hat{\mu}$ is another optimal solution. We then have

$$\mu^*(S^{n-1}) = \langle Q, A \rangle$$

$$= \sum_{x \in \text{supp}(\mu^*)} \hat{\mu}(x)q(x) + \int_{\mathbb{S}^{n-1}/\text{supp}(\mu^*)} q(x)d\hat{\mu}$$

$$< \sum_{x \in \text{supp}(\mu^*)} \hat{\lambda}_p + \int_{\mathbb{S}^{n-1}/\text{supp}(\mu^*)} 1d\hat{\mu}$$

$$= \hat{\mu}(S^{n-1})$$

due to condition (14) if $\hat{\mu}(S^{n-1}/\text{supp}(\mu^*)) > 0$, contradicting the optimality of $\hat{\mu}$. So all optimal solutions are supported on $\text{supp}(\mu^*)$. Since the tensors $\{x^p \otimes x^p \otimes x^p, p = 1, \ldots, r\}$ are linearly independent, the coefficients are also uniquely determined.

2. Denote by p_0 and d_0 the optimal values for the primal problem (4) and the dual problem (5), respectively; and denote by p_1 and d_1 the optimal values for the primal-dual problems (9) and (12) (or (10)), respectively. We next argue that these four quantities are equal under the conditions in part 2. First, part 1 establishes $p_0 = d_0$. Second, weak duality and the construction of relaxations (9) and (12) imply that $d_1 \leq p_1 \leq p_0 = d_0$. Also the feasible set of (12) projected onto the Q space is a subset of the feasible set of (5). Since the conditions of part 2 state that the optimal dual solution Q of (5) is also feasible to (12), we hence conclude that Q is also an optimal solution of (12) and obtain $d_1 = d_0$. Therefore, $p_0 = d_0 = d_1 = p_1$, and the relaxations (9) and (12) are tight.

To show the optimality of y^*, the $2k$-truncation of the (infinite) moment vector \hat{y}^* corresponding to the measure μ^*. We first note that y^* is feasible to (9). Then zero duality gap, as verified below

$$y_0^* = \mu^*(S^{n-1}) = p_0 = d_1 = \langle Q, A \rangle,$$

establishing the optimality of y^*.

3. Denote by $\sigma(x) = \nu_k(x)^T H \nu_k(x)$ the SOS polynomial associated with H. Note $\nu_k(x^p)^T H \nu_k(x^p) = \sigma(x^p) = 1 - q(x^p) = 0$ for $p = 1, \ldots, r$, implying $H \nu_k(x^p) = 0, p = 1, \ldots, r$ due to $H \succ 0$. Since $\text{rank}(H) = |N^p| - r$ by the assumption, the null space of H is span$\{\nu_k(x^p), p = 1, \ldots, r\}$. For any optimal solution \hat{y} of (9), complementary slackness implies that

$$H M_k(\hat{y}) = 0.$$

So the eigen-space corresponding to the non-zero eigenvalues of $M_k(\hat{y})$ is a subspace of span$\{\nu_k(x^p), p = 1, \ldots, r\}$. We hence write

$$M_k(\hat{y}) = V D V'$$

where $V = \left[\nu_k(x^1) \cdots \nu_k(x^r)\right]$ and D is an $r \times r$ semi-definite matrix (not necessarily diagonal at this point). Note that $M_k(\hat{y}^*) = V A V'$ where $A = \text{diag}(\lambda_1, \ldots, \lambda_r)$. We next argue that $D = \Lambda$.

The moment matrix $M_k(\hat{y})$ contains a known submatrix specified by the third order moments in the tensor A, and hence is equal to the corresponding submatrix in $M_k(\hat{y}^*)$. More precisely, $M_k(\hat{y})$ contains the block (at the location indicated by the orange color in Figure 5):

$$\int_{\mathbb{S}^{n-1}} \left[x_1^2 \ x_1 x_2 \ \cdots \ x_{n-1} x_n \ x_n^2 \right] d\mu^*$$

$$= X A V_2'$$

where $X = \left[x^1 \cdots x^p \right]$, and V_2 is the submatrix of V whose rows correspond to the second-order monomials in $\nu_k(x)$. Therefore, we have

$$X A V_2' = X D V_2'$$

(25)

According to Lemma 3.1 (ii) of (De Lathauwer, 2008), $\text{rank}(X) = r$ implies $\text{rank}(V_2) = r$. Multiplying both sides of (25) by the pseudo-inverse matrices X' from the left and $(V_2')'$ from the right yields $D = \Lambda$. So $M_k(\hat{y}) = M_k(\hat{y}^*)$, and $\hat{y} = y^*$ is the unique solution of (9).

To see that we can extract the measure μ^* from $M_k(\hat{y}) = M_k(y^*)$, we note that the matrix $M_k(\hat{y}^*) = V A V'$ has rank r for all $k \geq 1$. Hence the flat extension condition $\text{rank}(M_{k-1}(y^*)) = M_k(y^*))$ is satisfied for all $k \geq 2$. Therefore, according to (Curto & Fialkow, 1996; Henrion & Lasserre, 2005), we could recover the measure from the moment matrix $M_k(y^*)$. □
For all where we used Moreover, for any fixed this, note satisfies the conditions in part 1 of Proposition verify that the symmetric tensor of the orthogonal case, which is the focus of this and the next sections. Hereafter, the relaxation order is fixed to k = 2.

When the vectors \{x^p, p = 1, \ldots, r\} are orthonormal, we verify that the symmetric tensor satisfies the conditions in part 1 of Proposition 1. To see this, note

\[q(x^p) = (Q, x^p \otimes x^p \otimes x^p) = \sum_{p=1}^{r} \langle x^p, x^p \rangle^3 = 1. \]

Moreover, for any fixed \(x \in \mathbb{S}^{n-1}\) we have

\[q(x) = (Q, x \otimes x \otimes x) = \sum_{p=1}^{r} \langle x^p, x^p \rangle^3 \leq \max_p \|x^p\|^3 \leq \|X^T x\|^2 \]

where we used \(\max_p \|x^p\| = 1\) for all \(p\). Due to the orthogonality of the columns of \(X = [x^1 \cdots x^r]\), we clearly have \(\|X^T x\|^2 \leq \|x\|^2 = 1\). For \(q(x) = 1\), all the involved inequalities must be equalities. For \(\max_p (x^p, x) = 1\), we need \(x = x^p\) for some \(p\), which is the only possible case that \(q(x) = 1\). For all other cases, \(q(x) < 1\). Therefore, \(Q = \sum_p x^p \otimes x^p \otimes x^p\) satisfies the conditions of part 1 in Proposition 1. This argument combined with part 1 of Proposition 1 lead to

Theorem 3. If the vectors in \(\text{supp}(\mu^*)\) are orthonormal, then \(\mu^*\) is the unique optimal solution to (4).

7.3. SOS Dual Certificate: the Orthonormal Case

In the following, we show that for \(q(x) = \sum_{p=1}^{r} \langle x, x^p \rangle^3\), we can find an SOS \(\sigma(x)\) and a polynomial \(s(x)\) with degrees 4 and 2 respectively, such that

\[1 - q(x) = \sigma(x) + s(x)(\|x\|^2 - 1). \]

We start with assuming \(x^p = e_p\), the \(p\)th canonical basis vector, for \(p = 1, 2, \ldots, r\), in which case \(q(x)\) becomes \(\sum_{p=1}^{r} x^p\). Later on we will apply a rotation to derive the general case from this special case.

We set

\[s(x) = \frac{3}{2} \left(\sum_{p=1}^{r} x^2_p \right) - \frac{3}{2} \left(\sum_{p=r+1}^{n} x^2_p \right) = \nu_1(x)' G_0 \nu_1(x) \]

where

\[G_0 := \begin{bmatrix} 0 & -\frac{3}{2} I_n \end{bmatrix}. \]

Consider

\[1 - q(x) - s(x)(\|x\|^2 - 1) \]

\[= 1 - \sum_{p=1}^{r} x^3_p + \frac{3}{2} \left(\sum_{p=1}^{r} x^2_p \right) \left(\sum_{p=1}^{n} x^2_p - 1 \right) \]

\[+ \frac{3}{2} \left(\sum_{p=r+1}^{n} x^2_p \right) \left(\sum_{p=1}^{n} x^2_p - 1 \right) \]

\[= 1 - \frac{3}{2} \left(\sum_{p=1}^{r} x^2_p \right) - \frac{3}{2} \left(\sum_{p=r+1}^{n} x^2_p \right) - \sum_{p=1}^{r} x^3_p \]

\[+ \frac{3}{2} \sum_{p=1}^{r} x^4_p + \frac{3}{2} \sum_{p=r+1}^{n} x^4_p \]

\[+ 3 \sum_{p=p'=1}^{r} x^2_p x^2_{p'} + 3 \sum_{p<r'=r+1}^{n} x^2_p x^2_{p'} + 3 \sum_{p=1}^{n} x^2_p x^2_{p'}. \]

We show that this polynomial is an SOS \(\sigma(x)\) with Gram matrix \(H_0\) defined on top of the next page. Here the row partition of \(H_0\) corresponds to the partition of the Veronese.
map \(\nu_2(x) \) given in the following
\[
\nu_2(x) := \begin{bmatrix}
\nu_2^0(x) \\
\nu_2^1(x) \\
\nu_2^2(x) \\
\nu_2^3(x) \\
\nu_2^4(x) \\
\nu_2^5(x) \\
\nu_2^6(x) \\
\nu_2^7(x)
\end{bmatrix}
\]
with
\[
\nu_2^0(x) = 1, \\
\nu_2^1(x) = \begin{bmatrix} x_1 \\ \vdots \\ x_r \end{bmatrix}, \\
\nu_2^2(x) = \begin{bmatrix} x_{r+1} \\ \vdots \\ x_n \end{bmatrix}, \\
\nu_2^3(x) = \begin{bmatrix} x_1x_2 \\ \vdots \\ x_{r+1}x_r \end{bmatrix}, \\
\nu_2^4(x) = \begin{bmatrix} x_1x_{r+1} \\ \vdots \\ x_rx_n \end{bmatrix}, \\
\nu_2^5(x) = \begin{bmatrix} x_{r+1}x_{r+2} \\ \vdots \\ x_{n-1}x_n \end{bmatrix}, \\
\nu_2^6(x) = \begin{bmatrix} x_1^2 \\ \vdots \\ x_r^2 \end{bmatrix}, \\
\nu_2^7(x) = \begin{bmatrix} x_2^2 \\ \vdots \\ x_n^2 \end{bmatrix}
\]

Since
\[
\nu_2(x)'H_0\nu_2(x) = 1 - \frac{3}{2} \sum_{p=1}^{r} x_p^2 + (a + 2f) \sum_{p=r+1}^{n} x_p^2 - \sum_{p=1}^{r} x_p^3
\]
\[
+ \frac{3}{2} \sum_{p=1}^{r} x_p^4 + \frac{3}{2} \sum_{p=r+1}^{n} x_p^4
\]
\[
+ 3 \sum_{p < p'}^{r} x_p^2x_{p'}^2 + (c + 2e) \sum_{p < p'}^{r} x_p^2x_{p'}^2
\]
\[
+ (b + 2d) \sum_{p=1}^{n} x_p^2
\]

comparison of coefficients with those of \(1 - q(x) - s(x)(||x||^2 - 1) \) in (27) gives
\[
a + 2f = -\frac{3}{2}, \quad c + 2e = 3, \quad b + 2d = 3
\]

We will judiciously choose the parameters so that \(H_0 \) is PSD. Note that \(H_0 \) must have \(r \) zero eigenvalues with eigenvectors \(\{\nu_2(x^p) : p = 1, \ldots, r\} \). For later analysis, we also need \(H_0 \) to have precisely \(r \) zero eigenvalues, and the smallest non-zero eigenvalue of \(H_0 \) to be lower bounded by a numerical constant regardless of \(n \) and \(r \).

For that purpose, we next find all the eigenvalues of \(H_0 \). The obvious ones include \(a, 1, b \) and \(c \) of multiplicities \(n - r, C_2^r, r(n - r) \) and \(C_{n-r}^2 \), respectively. The rest of eigenvalues are those of \(E \) defined as
\[
\begin{bmatrix}
1 & \frac{1}{2}I_r & \quad -\frac{1}{2}I_r \\
\frac{1}{2}I_r & -\frac{1}{2}I_r & \quad f1_{n-r}' \\
-1_r & -\frac{1}{2}I_r & \quad -1_r \\
-\frac{1}{2}I_r & 1_r & \quad d1_{n-r}' \\
\end{bmatrix}
\]

We choose \(e + a = \frac{3}{2} \) and decompose \(E \) as \(A + B \) such that \(A \) is
\[
\begin{bmatrix}
1 & \frac{1}{2}1_r,1_{n-r}' & \quad -\frac{1}{2}1_r,1_{n-r}' \\
\frac{1}{2}1_r,1_{n-r}' & -\frac{1}{2}1_r,1_{n-r}' & \quad f1_{n-r}' \\
-1_r & -\frac{1}{2}1_r,1_{n-r}' & \quad (1 + \frac{a}{2})1_r,1_{n-r}' \\
-\frac{1}{2}1_r,1_{n-r}' & f1_{n-r}' & \quad (e + \frac{a}{n-r})1_r,1_{n-r}' \\
\end{bmatrix}
\]

and \(a, b, c, d, e, f \) are parameters to be determined later.
We already have five equations on solving a smaller set of eigenvalue equations consequently, the non-zero eigenvalues of \(M \) are easy to compute. We first ensure that \(M \) has rank 3, which, by rank invariance of Gaussian elimination, requires the following matrix,

\[
\begin{bmatrix}
 1 & 0 & (d+f)\mathbf{1}^T_{n-r} & * \\
 \frac{1}{2r} & -\frac{1}{2} & \frac{1}{2} & * \\
 0 & -\frac{1}{2} & -\frac{1}{2} & * \\
 (d+f)\mathbf{1}^T_{n-r} & 0 & 0 & * \\
 0 & 0 & 0 & * \\
\end{bmatrix}
\]

whose bottom-right block is \((e+\frac{a}{n-r}) - f^2\) \(\mathbf{1}^T_{n-r} \), to have rank 3, or equivalently, \(d+f = 0 \).

Multiplying \(M \) with a vector of the form \(v := \begin{bmatrix} \alpha \\ \beta \delta \end{bmatrix} \) shows that the eigenvectors of \(M \) are of the form \(v \). Consequently, the non-zero eigenvalues of \(M \) can be computed by solving a smaller set of eigenvalue equations

\[
\begin{bmatrix}
 1 & 0 & -r & f(n-r) \\
 0 & 1/2 & -1/2 & 0 \\
 -1 & -1/2 & r + 1/2 & -f(n-r) \\
 f & 0 & (n-r)e+a & \alpha \\
\end{bmatrix}
\]

\[
= \lambda \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix}
\]

or,

\[
\begin{align*}
b &= 3 - 2d = 3 - \frac{3}{2} - a = \frac{3}{2} - a \\
c &= 3 - 2e = 2a \\
d &= 3 - \frac{a}{4} - \frac{a}{2} \\
e &= \frac{3}{2} - a \\
f &= -\frac{3}{4} - \frac{a}{2}
\end{align*}
\]

Plugging these into the matrix in (30) leads to a matrix involving a single parameter \(a \):

\[
\begin{bmatrix}
 1 & 0 & -r & -(\frac{3}{4} + \frac{a}{2}) (n-r) \\
 0 & 1/2 & -1/2 & 0 \\
 -1 & -1/2 & r + 1/2 & -(\frac{3}{4} + \frac{a}{2}) (n-r) \\
 0 & (\frac{3}{4} + \frac{a}{2}) & (\frac{3}{4} + \frac{a}{2}) (n-r) & (\frac{3}{4} + \frac{a}{2}) (n-r) \\
\end{bmatrix}
\]

Symbolic calculation shows that the non-zero eigenvalues of this matrix are zeros of the polynomial

\[
h(\lambda; r, n, a) = (2 + r)(15(n-r) + 4a(-4 + 7 + a)n - (7 + a)r)) + 2(16 + 39n - 31r + 15(n-r)r - 4a^2(n-r)(1+r) + 4a((1+r)(8+7r) - n(11+7r)))\lambda + 16(-4 - 3n + 2a(-1 + n - r) + r)\lambda^2 + 32\lambda^3
\]

We want to make sure \(\lambda = a \neq 0 \) is one non-zero eigenvalue, which means \(h(a; r, n, a) = 0 \), or after simplification:

\[
a^3(r - 3) + 15(r + 2) + 4a^2(13r + 32) - 2a(29r + 67) = 0
\]

We pick the smallest positive root branch \(a = a(r) \), which is an increasing function of \(r \) with limit \(a(\infty) = \frac{1}{2} \), and \(a(1) > 0.3387 \). We next argue that, after plugging \(a = a(r) \), \(h(\lambda; r, n, a(r)) \) has two other zeros that are larger than \(\frac{1}{2} \) (hence larger than \(a(r) \)), which means the other two non-zero eigenvalues of \(A \) are greater than \(a(r) \in (0.3387, 0.5) \). The argument is based on median value theorem by showing \(h(1/2; r, n, a(r)) > 0 \), \(h(n/2; n, a(r)) < 0 \) combined with the obvious fact \(\lim_{\lambda \to \infty} h(\lambda; r, n, a(r)) = +\infty \).

We first show \(h(1/2; r, n, a) > 0 \) for \(1 \leq r \leq n \) and \(a \in [0.2, 0.5] \). As a function of \(r \) with parameters \(n \) and \(a \), the function

\[
h(1/2; r, n, a) = 4 - 8a - 3n + 20an + 4a^2n + (3 - 20a - 4a^2)r
\]

is linear in \(r \) and is decreasing since \(3 - 20a - 4a^2 < 0 \) for
To sum, we have shown that $h(\lambda; r, n, a(r))$, whose zeros are eigenvalues of A, has the property that $\lambda_1 = a(r) \in (0, 0.3387, 1/2)$ is a zero, and $h(1/2; r, n, a(r)) > 0, h(n/2; r, n, a(r)) < 0$, and $h(\pm \infty; r, n, a) > 0$. Therefore, the other two zeros of $h(\lambda; r, n, a(r))$ are greater than $1/2 > a(r)$.

Therefore, the matrix H_0 has rank $\lceil n^2/2 \rceil - r$ and the minimal non-zero eigenvalue for H_0 is

$$\min \left\{ a(r), \frac{3}{2} - a(r), 2a(r), \frac{1}{2} \right\} = a(r)$$

since $a(r) \in (0, 0.3387, 1/2)$. This shows that, when $\{x^p = e_p, p = 1, \ldots, r\}$, the matrix H_0 is PSD with rank $\lceil n^2/2 \rceil - r$ and the minimal non-zero eigenvalue is greater than $1/3$.

When $\text{supp}(\mu^*)$ is orthonormal, but is not a subset of the canonical basis vectors, we augment the matrix $X = [x^1 \cdots x^r]$ to an orthonormal matrix $P = [X_{\text{PSD}}, P_1]$ and transform the variable x to $z = P'x = P^{-1}x$. Then the tensor $A = \sum_p \lambda_p x^p \otimes x^p \otimes e_p$ is transformed to $\sum_p \lambda_p e_p \otimes e_p \otimes e_p$. So the dual polynomial

$$q_0(z) = 1 - \nu_2(z)'H_0\nu_2(z) + \frac{3}{2} \|z\|_2^2(||z||_2^2 - 1)$$

with H_0 constructed above satisfies the conditions in Proposition 1, and certifies the optimality of the decomposition $\sum_p \lambda_p e_p \otimes e_p \otimes e_p$. We transform this polynomial back to the x-domain to obtain

$$q(x) := q_0(P'x)$$

$$= 1 - \nu_2(P'x)'H_0\nu_2(P'x) + \frac{3}{2} \|x\|_2^2(||x||_2^2 - 1)$$

where we have used $\|P'x\|_2^2 = ||x||_2^2$ since P is orthonormal. According to the change of basis formula in Lemma 1, the polynomial

$$\nu_2(P'x)H_0\nu_2(P'x) = \nu_2(x)'(J'H_0J)\nu_2(x)$$

is an SOS with the Gram matrix $J'H_0J$, whose smallest eigenvalue is greater than $\frac{1}{3} \times \frac{1}{3} > \frac{1}{9}$. One can verify that $q(x)$ satisfies all the conditions in Proposition 1. As a consequence, we obtain:

Theorem 4. If the vectors in $\text{supp}(\mu^*)$ are orthonormal, then the SDP relaxation (9) with $k = 2$ gives the exact decomposition. Furthermore, the constructed dual polynomial has the form

$$q(x) = 1 - \nu_2(x)'H\nu_2(x) + \frac{3}{2} \|x\|_2^2(||x||_2^2 - 1)$$

where H has r zero eigenvalues, and the $(r + 1)$th smallest eigenvalue is greater than $\frac{1}{3}$. When the support is formed
by a subset of the canonical basis vectors, the lower bound on the \((r + 1)\)th smallest eigenvalue can be chosen as \(\frac{1}{r}z\).

The SOS matrix decomposition is verified by Matlab. With \(n = 7\) and \(r = 3\), we have the following plot for \(H_0\):

![Plot](image-url)

Figure 6. \(H_0\) has \(r = 4\) zero eigenvalues and the 5th smallest is \(\alpha(4) = 0.3789\).

7.4. Dual Certificate: The Non-Orthonormal Case

We now proceed to apply a perturbation analysis to construct a dual polynomial for the non-orthonormal case.

Suppose the measure \(\mu^* = \sum_{k=1}^{r} \lambda_k \delta(x - x^k)\) where \(\{x^k, k = 1, \ldots, r\}\) are not orthogonal. Define \(X = [x^1, \ldots, x^r]\) and find \(P_1 \in \mathbb{R}^{n \times (n-r)}\) which has orthonormal columns and is orthogonal to \(X\). Further define \(P = [X \ P_1]\). Then the transformation \(x \mapsto z = P^{-1}x\) maps \(x^k\) to the \(k\)th canonical basis vector \(e_k\). The unit sphere is mapped to an ellipsoid \(E_n = \{z : z'P'Pz = 1\}\).

If we could construct a polynomial \(q(z) = \langle Q, z \otimes z \otimes z \rangle\) with symmetric \(Q\) such that

\[
q(e_k) = 1, k = 1, \ldots, r
\]

\[
|q(z)| < 1, z \in E_n, z \neq e_k
\] (31)

then the polynomial \(q_1(x) := q(P^{-1}x) = \langle Q, P^{-1}x \otimes P^{-1}x \otimes P^{-1}x \rangle\) would satisfy

\[
q_1(x^k) = q(e_k) = 1, k = 1, \ldots, r
\]

\[
|q_1(x)| = |q(P^{-1}x)| < 1, x \in S^{n-1}, x \neq x^k.
\] (32)

The desired \(q(z)\) must satisfy that \(q(e_k) = 1\) and \(q(z)\) achieves maximum at \(z = e_k\) for \(k = 1, \ldots, r\). Denote \(L(z; \nu) = q(z) - \nu(z'P'Pz - 1)\) as the Lagrangian. A necessary condition for \(q(z)\) to achieve maximum at \(e_k\) is given by the KKT condition:

\[
\frac{\partial L(z)}{\partial z} |_{z = e_k} = \frac{\partial q(z)}{\partial z} |_{z = e_k} - \nu \frac{\partial}{\partial z} (z'P'Pz - 1) |_{z = e_k} = 3 \sum_{i=1}^{n} (Q, e_k \otimes e_k \otimes e_i)e_i - 2 \nu P'P e_k = 0
\]

Taking inner product with \(e_k\) yields

\[
3q(e_k) = 3(Q, e_k \otimes e_k \otimes e_k) = 2\nu e_k'P'P e_k = 3,
\]

implying \(\nu = \frac{3}{2}\). Therefore, the symmetric tensor \(Q\) must satisfy

\[
\sum_{i=1}^{n} (Q, e_k \otimes e_k \otimes e_i)e_i = P'P e_k, k = 1, \ldots, r. \tag{33}
\]

Note the condition (31) is a consequence of (33). We pick

\[
Q = \sum_{k=1}^{r} e_k \otimes e_k \otimes P'P e_k + \sum_{k=1}^{r} e_k \otimes P'P e_k \otimes e_k
\]

\[
+ \sum_{k=1}^{r} P'P e_k \otimes e_k \otimes e_k - 2 \sum_{k=1}^{r} e_k \otimes e_k \otimes e_k
\]

which actually has minimal energy among all symmetric \(Qs\) that satisfy (33). The dual polynomial is then given by

\[
q(z) = (Q, z \otimes z \otimes z)
\]

\[
= \sum_{k=1}^{r} [3z_k^2(z'P'P e_k) - 2z_k^3]
\]

\[
= \sum_{k=1}^{r} [3(z'P'P e_k) - 2z_k]z_k^2.
\]

Clearly, \(q(z)\) satisfies the interpolation condition (31). In the following, we show that \(q(z)\) also satisfies the condition (32). The argument is based on partitioning the ellipsoid \(E_n = \{z : z'P'Pz = 1\}\) into a region that is far from any \(e_k\) and a region that is near to some \(e_k\).

First note

\[
q(z) \leq \max_k [3(z'P'P e_k) - 2z_k] \sum_{k=1}^{r} z_k^2
\]

When \(z \in E_n - 1, \text{ due to } \|P'P - I\| \leq \epsilon, \text{ we have } -\epsilon z'z \leq 1 - z'z \leq \epsilon z'z, \text{ implying}
\]

\[
\frac{1}{1 + \epsilon} \leq z'z \leq \frac{1}{1 - \epsilon}
\]

Therefore, we can further upper bound \(q(z)\) as

\[
q(z) \leq \max_k [3(z'P'P e_k) - 2z_k] \sum_{k=1}^{r} z_k^2
\]

\[
\leq \frac{1}{1 - \epsilon} \max_k [3(z'P'P e_k) - 2z_k]
\]
So, if

$$\max_k [3(z^tP^tPe_k) - 2z_k] < 1 - \epsilon$$

then \(q(z) < 1\). Therefore, we have showed that \(q(z) < 1\) in the “far-away” region.

Define \(N_k = \{ z : 3(z^tP^tPe_k) - 2z_k \geq 1 - \epsilon, z^tP^tPz = 1 \}\). When \(P^tP \approx I\), this is saying \(z_k \geq 1 - \epsilon\), so \(z \in N_k\) is close to \(e_k\). The union of \(N_k\)s defines the “near region”.

We want to make sure that \(q(z)\) is strictly less than 1 in each \(N_k\) except when \(z = e_k \in N_k\). For that purpose, we perform a Taylor expansion of the Lagrangian \(L(z) := L(z; 3/2)\) in \(N_k\) around \(z = e_k\)

$$L(z) = q(z) - \frac{3}{2} (z^tP^tPz - 1)$$

$$= L(e_k) + (z - e_k) \frac{\partial L}{\partial z}|_{z=e_k} + \frac{1}{2} (z - e_k)^t H(\xi_z) (z - e_k)$$

$$= 1 + \frac{1}{2} (z - e_k)^t H(\xi_z) (z - e_k)$$

where \(H(\xi_z)\) is the Hessian of \(L(z)\) evaluated at \(\xi_z\) and \(\xi_z \in L_{k,z} = \{ t(z + (1-t)e_k : t \in (0,1)) \}\), the line segment connecting \(e_k\) and \(z\).

Since \(q(z) = L(z)\) on the ellipsoid \(E^{n-1}\), it suffices to show \(\frac{1}{2} (z - e_k)^t H(\xi_z) (z - e_k) < 0\) for \(z \in N_k\). For this purpose, we compute the Hessian matrix \(H(\xi)\):

$$H(\xi) = \frac{\partial}{\partial z} \left[3 \sum_{i=1}^n (Q, z \otimes z \otimes e_i) e_i - 3P^tPz \right]|_{z=\xi}$$

$$= 3 \sum_{i=1}^n (Q, e_i \otimes e_i \otimes e_i) e_i - 3P^tP$$

Plugging in the expression of \(Q\), we get that the Hessian \(H(\xi)\) equals

$$6 \sum_{i,j=1}^n [\xi_j e_i^t P e_j + \xi_i e_j^t P e_i] e_i \otimes e_j$$

$$+ 6 \sum_{i=1}^n [(\xi^t P^t Pe_i) - 2\xi_i] e_i \otimes e_i - 3P^tP$$

To get a sense why this Hessian guarantees a negative second order term in the Taylor expansion, we set \(\xi = e_k\) to get

$$H(e_k) = 6 \sum_{i,j=1}^n [e_k(j) e_i^t P e_j + e_k(i) e_j^t P e_i] e_i \otimes e_j$$

$$+ 6 \sum_{i=1}^n [(e_k^t P^t P e_i) - 2e_k(i)] e_i \otimes e_i - 3P^tP$$

$$= 6 \left(\sum_i (e_k^t P^t P e_i) e_i \otimes e_k + \sum_j (e_k^t P^t P e_j) e_k \otimes e_j \right)$$

$$+ 6 \sum_i [(e_k^t P^t P e_i) - 2e_k(i)] e_i \otimes e_i - 3P^tP$$

When \(P^tP \approx I\),

$$H(e_k) \approx 12e_k \otimes e_k - 6e_k \otimes e_k - 3I$$

$$= 6e_k \otimes e_k - 3I$$

which is PSD except in the direction \(e_k\), which is orthogonal to the tangent space of \(E^{n-1} \approx S^{n-1}\) at \(z = e_k\). Therefore, the Hessian projected onto the tangent space is negative definite, as desired.

Returning to the non-orthogonal case, we bound

$$H(\xi) = 6 \sum_{i,j=1}^n [\xi_j e_i^t P e_j + \xi_i e_j^t P e_i] e_i \otimes e_j$$

$$+ 6 \sum_{i=1}^n [(\xi^t P^t P e_i) - 2\xi_i] e_i \otimes e_i - 3P^tP$$

for \(\xi \in L_{k,z}\) with \(z \in N_k\), where

$$N_k = \{ z : 3(z^tP^tP e_k) - 2z_k \geq 1 - \epsilon, z^tP^tPz = 1 \}\.

The simplifications

$$\sum_{i,j=1}^n (\xi_j e_i^t P e_j) e_i \otimes e_j = P^tP \text{ diag}(\xi)$$

$$\sum_{i,j=1}^n (\xi_i e_j^t P e_i) e_i \otimes e_j = \text{ diag}(\xi) P^tP$$

$$\sum_{i=1}^n (\xi^t P^t P e_i) e_i \otimes e_i = \text{ diag}(P^tP \xi)$$

$$\sum_{i=1}^n \xi_i e_i \otimes e_i = \text{ diag}(\xi)$$

lead to the following compact expression for the Hessian matrix \(H(\xi)\):

$$6(P^tP \text{ diag}(\xi) + \text{ diag}(\xi) P^tP + \text{ diag}(P^tP \xi) - 2 \text{ diag}(\xi))$$

$$- 3P^tP$$

We want to show that

$$(z - e_k)^t H(\xi)(z - e_k) < 0, \forall \xi \in L_{k,z}, z \in N_k.$$
\(\epsilon, z', P'Pz = 1 \) imposes certain restrictions on the size of \(z \), and implies that \(z \) is close to \(\epsilon k \). Indeed, \(\| I - P'P \| \leq \epsilon \) and \(z'P'Pz = 1 \) imply that
\[
\frac{1}{1 + \epsilon} \leq \frac{1}{\lambda_{\max}(P'P)} \leq \frac{1}{\| z \|_2^2} \leq \frac{1}{\lambda_{\min}(P'P)} \leq \frac{1}{1 - \epsilon}.
\]
To show the closeness of \(z \) and \(\epsilon k \), we observe that
\[
3z'P'Pe_k - 2z_k = 3z'(P'P - I)e_k + 3z'e_k - 2z_k
= z_k + 3z'(P'P - I)e_k.
\]
Since \(|3z'(P'P - I)e_k| \leq 3\| z \|_2\| P'P - I \| \leq \frac{3\epsilon}{\sqrt{1-\epsilon}} \), \(z_k \) is bounded from below as follows:
\[
z_k \geq 1 - \epsilon - 3z'(P'P - I)e_k
\geq 1 - \epsilon - \frac{3\epsilon}{\sqrt{1-\epsilon}}.
\]
On the other hand, \(z_k \leq \| z \|_2 \leq \frac{1}{\sqrt{1-\epsilon}} \).

A consequence of the sizes of \(z \) and \(z_k \) is that
\[
\| z - z_ke_k \|_2^2 = \sum_{j \neq k} z_j^2
= \| z \|_2^2 - z_k^2
\leq \frac{1}{1 - \epsilon} \left(1 - \epsilon - \frac{3\epsilon}{\sqrt{1-\epsilon}} \right)^2.
\]
Therefore, we have
\[
\| z - \epsilon k \|_\infty
\leq \max\{ \epsilon + \frac{3\epsilon}{\sqrt{1-\epsilon}}, \frac{1}{\sqrt{1-\epsilon}} - 1, \sqrt{\frac{1}{1 - \epsilon} \left(1 - \epsilon - \frac{3\epsilon}{\sqrt{1-\epsilon}} \right)^2} \}
:= c_1(\epsilon)
= O(\epsilon)
\]
and
\[
\| z - \epsilon k \|_2^2
= \sum_{j \neq k} z_j^2 + (z_k - 1)^2 \leq \| z - z_k e_k \|_2^2
\leq \frac{1}{1 - \epsilon} \left(1 - \epsilon - \frac{3\epsilon}{\sqrt{1-\epsilon}} \right)^2
+ \max\{ \epsilon + \frac{3\epsilon}{\sqrt{1-\epsilon}}, \frac{1}{\sqrt{1-\epsilon}} - 1 \}^2
= c_2(\epsilon)
\]
Since \(\xi \in L_{k,z} \), we have \(\xi_z = tz + (1-t)\epsilon_k \) for some \(t \in (0, 1) \). As consequence, we obtain the following estimates for \(\xi_z \):
\[
\| \xi_z - \epsilon_k \|_\infty \leq t \| z - \epsilon_k \|_\infty \leq c_1(\epsilon),
\| \xi_z - \epsilon_k \|_2 \leq t^2 \| z - \epsilon_k \|_2 \leq c_2(\epsilon),
\| \xi_z \|_2 \leq t \| z \|_2 + (1-t) \| \epsilon_k \|_2 \leq \frac{1}{\sqrt{1-\epsilon}}.
\]
For notational simplicity, in the following we ignore the subscript \(z \) in \(\xi_z \). We show that each term in
\(P'P \) diag(\(\xi \)) + diag(\(\xi \))P'P + diag(\(P'P \xi \)) - 2 diag(\(\xi \)) is close to \(\epsilon_k e_k' \), except the last term which is close to \(2 \epsilon_k e_k' \). The first term is bounded as follows:
\[
\| P'P \) diag(\(\xi \)) - \epsilon_k e_k' \|
\leq \| P'P \) diag(\(\xi \)) - P'P e_k e_k' + \| P'P e_k e_k' - \epsilon_k e_k' \|
\leq \| P'P \| \| \xi - \epsilon_k \|_\infty + \| P'P - I \|
\leq (1 + \epsilon)c_1(\epsilon) + \epsilon
\]
Similar bounds hold for the term diag(\(\xi \))P'P:
\[
\| \text{diag}(P'P \xi) - \epsilon_k e_k' \|
\leq \| P'P \xi - \epsilon_k \|_\infty
\leq \| P'P \xi - \xi \|_\infty + \| \xi - \epsilon_k \|_\infty
\leq \| P'P - I \| \| \xi \|_2 + c_1(\epsilon)
\leq \frac{\epsilon}{\sqrt{1-\epsilon}} + c_1(\epsilon),
\]
and the term diag(\(\xi \)):
\[
\| \text{diag}(\xi) - \epsilon_k e_k' \| \leq \| \xi - \epsilon_k \|_\infty \leq c_1(\epsilon).
\]
These bounds imply that
\[
\| P'P \text{diag}(\xi) + \text{diag}(\xi)P'P + \text{diag}(P'P \xi) - 2 \text{diag}(\xi) - \epsilon_k e_k' \|
\leq 2(1 + \epsilon)c_1(\epsilon) + 2\epsilon + \frac{\epsilon}{\sqrt{1-\epsilon}} + c_1(\epsilon) + c_1(\epsilon)
:= c_3(\epsilon)
= O(\epsilon).
\]
Furthermore, we have
\[
\| P'P e_k e_k' - \epsilon_k e_k \|
= \| P'P e_k e_k' P'P - P'P e_k e_k' - P'P e_k e_k' e_k' - \epsilon_k e_k' \|
\leq \| P'P \| \| e_k e_k' \| \| P'P - I \| + \| P'P - I \| \| e_k e_k' \|
\leq (1 + \epsilon)c_1(\epsilon) + \epsilon
= O(\epsilon).
\]
Therefore, we get
\[
\| H(\xi) - (6P'P e_k e_k' P'P - 3P'P) \|
\leq 6c_3(\epsilon) + 6\epsilon(2 + \epsilon)
:= c_4(\epsilon)
= O(\epsilon).
\]
For any \(z \in N_k \), we next show that \((z - \epsilon_k)'P'P e_k \) is small
due to the fact that both z and e_k lie on E^{n-1}:

$$1 = \zeta' P' P z = e'_k P' P e_k + 2(z - e_k)' P' P e_k + (z - e_k)' P' P (z - e_k)$$

implying

$$\| (z - e_k)' P' P e_k \| = \frac{1}{2} (z - e_k)' P' P (z - e_k)$$

$$\leq \frac{1}{2} \| P' P \| \| z - e_k \|^2_2$$

$$\leq \frac{1}{2} (1 + \epsilon) \| z - e_k \|^2_2$$

The following chain of inequalities

$$(z - e_k)' H(\xi) (z - e_k)$$

$$\leq (z - e_k)' (6 P' P e_k e'_k P' P - 3 P' P) (z - e_k)$$

$$+ \| z - e_k \|^2_2 c_4(\epsilon)$$

$$= 6 (z - e_k)' P' P e_k - 3 (z - e_k)' P' P (z - e_k)$$

$$+ \| z - e_k \|^2_2 c_4(\epsilon)$$

$$= \frac{3}{2} (1 + \epsilon) \| z - e_k \|^2_2 - 3 (z - e_k)' P' P (z - e_k)$$

$$+ \| z - e_k \|^2_2 c_4(\epsilon)$$

$$\leq \frac{3}{2} (1 + \epsilon) \| z - e_k \|^2_2 - 3 (1 - \epsilon) \| z - e_k \|^2_2$$

$$+ \| z - e_k \|^2_2 c_4(\epsilon)$$

$$= \frac{3}{2} (1 + \epsilon) \| z - e_k \|^2_2 - (3 - 3 \epsilon - c_4(\epsilon)) \| z - e_k \|^2_2$$

show that the second order term is negative if

$$\frac{3}{2} (1 + \epsilon)^2 \| z - e_k \|^2_2 < 3 - 3 \epsilon - c_4(\epsilon)$$

So it suffices to require

$$c_2(\epsilon) \frac{3}{2} (1 + \epsilon)^2 < 3 - 3 \epsilon - c_4(\epsilon)$$

Numerical computation shows that the above inequality holds if

$$\epsilon \leq 0.0016.$$

We summarize the above argument into a theorem:

Theorem 5. For a symmetric tensor $A = \sum_{p=1}^r \lambda_p x^p \otimes x^p \otimes x^p$, if the vectors $\{x^p\}$ are near orthogonal, that is, the matrix $X = [x^1 \ x^2 \ \cdots \ x^r]$ satisfies

$$\| X' X - I_r \| \leq 0.0016,$$

then there exists a dual symmetric tensor Q such that the dual polynomial $q(x) = \langle Q, x \otimes x \otimes x \rangle$ satisfies the conditions in part 1 of Proposition 1. Thus, $A = \sum_{p=1}^r \lambda_p x^p \otimes x^p \otimes x^p$ is the unique decomposition that achieves the tensor nuclear norm, and can be found by solving (4).

7.5. SOS Dual Certificate: The Non-Orthogonal Case

After rotating to the canonical basis vectors, the dual polynomial we constructed for the orthogonal case is

$$q_0(z) = \sum_{k=1}^r z_k^3$$

while the one for the non-orthogonal case is

$$q(z) = \sum_{k=1}^r [3(z'_k P' P e_k) - 2 z_k] z_k^2.$$

We first show that $1 - q_0(z)$ is an SOS modulo the ellipsoid E^{n-1}. We know that $q_0(z)$ is an SOS modulo the sphere, that is, there exist symmetric matrices H and $G \in \mathbb{R}^{n \times (n+1)}$ such that

$$1 - q_0(z) = \nu_2(z)' H \nu_2(z) + \nu_1(z)' G \nu_1(z) (\| z \|^2_2 - 1).$$

In Section 7.3, we constructed $G = G_0$ in (26) and $H = H_0$ in (28). So (H_0, G_0) is in the feasible set of the following two constraints:

$$\nu_2(z)' H \nu_2(z) + \nu_1(z)' G \nu_1(z) (\| z \|^2_2 - 1) = 1 - q_0(z), \forall z H \gg 0.$$ \hspace{1cm} (34)

Note that any feasible H must satisfy $\nu_2(e_i)' H \nu_2(e_i) = 0$ for $i = 1, 2, \ldots, r$, implying that $\{\nu_2(e_i) : i = 1, 2, \ldots, r\}$ spans a subspace of the null space of H.

Define matrices B_α and C_α^0 that satisfy

$$\nu_2(z)' \nu_2(z)' = \sum_{|\alpha| \leq 4} B_\alpha z^\alpha$$

$$\nu_1(z)' \nu_1(z)' (\| z \|^2_2 - 1) = \sum_{|\alpha| \leq 4} C_\alpha^0 z^\alpha$$

These notations allow us to write

$$\nu_2(z)' H \nu_2(z) = \langle B_\alpha, H \rangle z^\alpha$$

and

$$\nu_1(z)' G \nu_1(z) (\| z \|^2_2 - 1) = \langle \nu_1(z)' \nu_1(z)' (\| z \|^2_2 - 1), G \rangle$$

$$= \sum_{|\alpha| \leq 4} \langle C_\alpha^0, G \rangle z^\alpha.$$

Denote by b_α^0 the coefficient for z^α in $1 - q_0(z)$. We write the polynomial equation $\nu_2(z)' H \nu_2(z) + \nu_1(z)' G \nu_1(z) (\| z \|^2_2 - 1) = 1 - q_0(z)$ equivalently as

$$\langle B_\alpha, H \rangle + \langle C_\alpha^0, G \rangle = b_\alpha^0, |\alpha| \leq 4.$$ \hspace{1cm} (35)

Therefore, we obtain the SDP formulation of (34)

find G, H

subject to $\langle B_\alpha, H \rangle + \langle C_\alpha^0, G \rangle = b_\alpha^0, |\alpha| \leq 4$

$H \gg 0.$

(35)

As aforementioned, G_0 and H_0 defined respectively in (26) and (28) form a feasible point for (35).
Now we switch to the non-orthogonal case, and we would like to show that
\[
q(z) = \sum_{k=1}^{r} [3(z' P'P e_k) - 2 z_k] z_k^2
\]
is an SOS module the ellipsoid \(E^{\alpha - 1} \). That is, we want to solve the feasibility problem

find \(G \) and \(H \) subject to
\[
\nu_2(z)'H\nu_2(z) + \nu_1(z)G\nu_1(z)(z' P'P z - 1) = 1 - q(z) \quad \text{if} \quad H \succ 0.
\]
(36)
or equivalently in SDP

find \(G \) and \(H \) subject to
\[
\langle B_\alpha, H \rangle + \langle C_\alpha, G \rangle = b_\alpha, |\alpha| \leq 4
\]
\[
H \succ 0.
\]
(37)
Here \(B_\alpha \) is defined as before, while \(b_\alpha \) is the coefficient for \(z^\alpha \) in \(1 - q(z) \) for \(|\alpha| \leq 4 \) and \(C_\alpha \) is defined via
\[
\nu_1(z)\nu_1(z)(z' P'P z - 1) = \sum_{|\alpha|\leq 4} C_\alpha z^\alpha
\]
We again note that any feasible \(H \) must satisfy
\(\nu_2(e_i)'H\nu_2(e_i) = 0 \) for \(i = 1, 2, \ldots, r \), implying that \(\{\nu_2(e_i) : i = 1, 2, \ldots, r\} \) spans a subspace of the null space of \(H \).

When \(\|P'P - I\| \leq \epsilon \) with \(\epsilon \) small, \(C_\alpha \) is close to \(C_\alpha^0 \) and \(b_\alpha \) is close to \(b_\alpha^0 \). We claim that, when \(\epsilon \) is sufficiently small, we can always take \(G = G_0 \) and \(H = H_0 \) in the neighborhood of \(H_0 \) that form a feasible point of (37). Denote \(\Delta H = H_1 - H_0 \) and \(e_\alpha = (b_\alpha - b_\alpha^0) - (C_\alpha, G_0) - (C_\alpha^0, G_0) \), then \(\Delta H \) must satisfy
\[
\langle B_\alpha, \Delta H \rangle = e_\alpha, |\alpha| \leq 4
\]
These set of equality constraints, which are equivalent to
\[
\nu_2(z)'\Delta H\nu_2(z) = \sum_{|\alpha|\leq 4} e_\alpha z^\alpha
\]
\[
= q(z) - q_0(z) - \nu_1(z)G\nu_1(z)(z' P'P z - z'z),
\]
also implies that \(\nu_2(e_i)'\Delta H\nu_2(e_i) = 0, i = 1, 2, \ldots, r \). Therefore, \(\{\nu_2(e_i) : i = 1, 2, \ldots, r\} \) spans a subspace of the null spaces of \(H_0, H_1 \) and \(\Delta H \). Since the null space of \(H_0 \) is exactly span{\(\{\nu_2(e_i) : i = 1, 2, \ldots, r\} \)}, and the minimal non-zero eigenvalue of \(H_0 \) is strictly greater than \(1/3 \) according to Theorem 4, it suffices to find a symmetric \(\Delta H \) that satisfies
\[
\langle B_\alpha, \Delta H \rangle = e_\alpha, |\alpha| \leq 4
\]
and \(\|\Delta H\| \) is very small, much smaller than \(1/3 \).

In the following, we will complete the argument by showing that the solution \(\Delta H \) to

\[
\text{minimize} \quad \|\Delta H\|_F
\]
subject to \(\langle B_\alpha, \Delta H \rangle = e_\alpha, |\alpha| \leq 4 \)
\[
\text{satisfies} \quad \|\Delta H\|_F \leq 0.0048 \text{ under the conditions of} \quad \|P'P - I\| \leq 0.0016, \text{implying that} \quad \Delta H = \frac{1}{2}(\Delta H + \Delta H') \text{is the desired} \ \Delta H.
\]

We first estimate \(\|e\|_\infty \). Note
\[
q(z) - q_0(z) = \sum_{k=1}^{r} [3(z' P'P e_k) - 2 z_k] z_k^2 - \sum_{k=1}^{r} z_k^3
\]
\[
= 3 \sum_{k=1}^{r} [(z' P'P e_k) - z_k] z_k^2
\]
which involves only third order monomials in sets \(\{z_k^3 : k = 1, \ldots, r\}, \{z_k^2z_j : k = 1, \ldots, r; j = r + 1, \ldots, n\} \) and \(\{z_k z_j : j \neq k = 1, \ldots, r\} \). The coefficient for \(z_k^3 \) is \(3(1 - e_k^0 P'P e_k) = 0 \), and the coefficient for \(z_k^2z_j \) is \(-3e_j^0 P'P e_k \). When \(k = 1, \ldots, r; j = r + 1, \ldots, n \), we have \(-3e_j^0 P'P e_k = 0 \) due to the construction of \(P \); when \(j \neq k = 1, \ldots, r \), the quantity \(-3e_j^0 P'P e_k \) is non-zero. Therefore, we get
\[
\|b - b^0\|_\infty \leq 3 \max_{1 \leq i \neq k \leq r} |e_j^0 P'P e_k| \leq 3\epsilon.
\]
We next bound
\[
|\langle C_\alpha, G_0 \rangle - \langle C_\alpha^0, G_0 \rangle| = |\langle C_\alpha - C_\alpha^0, G_0 \rangle| = \frac{3}{2} \text{trace}(C_\alpha - C_\alpha^0)
\]
To control \(\text{trace}(C_\alpha - C_\alpha^0) \), we write
\[
\sum_{|\alpha|\leq 4} (C_\alpha - C_\alpha^0) z^\alpha = \nu_1(z)\nu_1(z)'[z'(P'P - I)z]
\]
Taking trace on both sides gives
\[
\sum_{|\alpha|\leq 4} \text{trace}(C_\alpha - C_\alpha^0) z^\alpha
\]
\[
= \text{trace}(\nu_1(z)\nu_1(z)'[z'(P'P - I)z])
\]
\[
= \left(1 + \sum_{i=1}^{r} z_i^2 \right) [z'(P'P - I)z]
\]
\[
= \left(1 + \sum_{i=1}^{r} z_i^2 \right) \sum_{1 \leq j \neq k \leq r} (P'P - I)_{jk} z_j z_k
\]
Since the diagonal of \(P'P - I \) constitutes of zeros, the only monomials that have non-zero coefficients are in the sets \(\{z_i^2 z_j z_k : 1 \leq i \leq r, 1 \leq j \neq k \leq r\} \) and \(\{z_j z_k : 1 \leq j \neq k \leq r\} \). To compute the coefficients for \(z_i^2 z_j z_k \), we consider two separate cases. When \(j = i \), the coefficient for the term \(z_i^2 z_j z_k \) is \((P'P - I)_{ik} + (P'P - I)_{ki} \). When \(j \neq i \) and \(k \neq i \), the coefficient for the term \(z_i^2 z_j z_k \) is \((P'P - I)_{jk} + (P'P - I)_{kj} \). In both cases, we can bound
the absolute value of the coefficient by
\[\max_{j \neq k} |(P'P - I)_{jk} + (P'P - I)_{kj}| \leq 2\epsilon. \]

A similar argument shows that the coefficients for \(z_j z_k \), with \(1 \leq j \neq k \leq r \) are also bounded by \(2\epsilon \). Hence, we get
\[\max_{|\alpha| \leq 4} |\text{trace}(C_\alpha - C_\alpha^0)| \leq 2\epsilon. \]

Since the components of \(b_\alpha - b_\alpha^0 \) and \((C_\alpha - C_\alpha^0, G_0) \) attain non-zero at different \(\alpha \)'s, we conclude that
\[||e||_\infty \leq 3\epsilon. \]

Denote by \(S \in \mathbb{R}^{[N_2]^2 \times [N_2]^2} \) the matrix whose \(\alpha \)th row is \(\text{vec}(B_\alpha) \) for \(|\alpha| \leq 4 \). The solution to (38) is given by \(\text{vec}(\Delta H) = S^1 e \) where we used \(\dagger \) to represent pseudo-inverse.

We want to control
\[\|S^\dagger\|_{\infty, 2} = \max_\alpha \|S^\dagger\|_{\alpha, 2} \]
where \([S^\dagger]_\alpha \) is the \(\alpha \)th row of \(S^\dagger \). Note \(S \) has orthogonal rows, and each \(\text{vec}(B_\alpha) \) is composed of zeros and ones, and the ones indicate where the monomial \(z^\alpha \) locates in \(\nu_2(z) \nu_2(z)' \). As a consequence, the matrix \(SS' \) is diagonal with the diagonal element \(d_\alpha \) counts the number of appearances of \(z^\alpha \) in \(\nu_2(z) \nu_2(z)' \), which is always greater than or equal to 1. Therefore, we get
\[\|S^\dagger\|_{\infty, 2} = \|S'S'S^{-1}\|_{\infty, 2} \]
\[\leq \max_\beta \|S^\beta\|_{\beta, 2} \|\text{diag}(d^{-1})\|_2 \]
\[\leq \max_\beta \|S^\beta\|_2 \]

where \(S^\beta \) represents that \(\beta \)th column of \(S \). The index \(\beta \) indexes the rows and columns of \(\nu_2(z) \nu_2(z)' \). Each column of \(S \) consists of zeros and a single one, with the latter representing which \(z^\beta \) is at the entry of \(\nu_2(z) \nu_2(z)' \) specified by the column index \(\beta \). Therefore, we obtain
\[\|S^\dagger\|_{\infty, 2} \leq \max_\beta \|S^\beta\|_2 \leq 1 \]

We conclude that
\[\|\Delta H\|_F \leq \|\Delta H\|_F \]
\[= \|S^\dagger e\|_2 \leq \|S^\dagger\|_{\infty, 2} \|e\|_\infty \]
\[\leq 3\epsilon \]
\[\leq 0.0048 \]
for \(\epsilon \leq 0.0016 \). Therefore, the minimal non-zero eigenvalue of theGram matrix \(H_1 = H_0 + \Delta H \) is lower bounded by \(1/3 - 0.0048 > 0 \).

So far we have showed that \(q(z) \) is an SNS modulo the ellipsoid \(\{ z : z'Pz = 1 \} \). To prove Theorem 1, we need to map \(z \) back to \(x \), and make sure that after the mapping, the new Gram matrix still has rank \([N_2]^2 - r \). It suffices to show that the change of basis transformation on \(\mathbb{R}^n \) that maps \(x \) to \(z \) induces a well-conditioned transformation between \(\nu_2(x) \) and \(\nu_2(z) \). This is given in Lemma 1 developed in the next section. Therefore, we have completed the proof of Theorem 1.

7.6. Change of Basis Formular

Consider two \(n \)-dimensional variables \(x \) and \(z \) linked by a change of basis transformation \(x = Pz \) or \(z = P^{-1}x \). We aim at finding the matrix \(J \) that expresses \(\nu_2(z) \) in terms of \(\nu_2(x) \), i.e.,
\[\nu_2(z) = \nu_2(P^{-1}x) = J\nu_2(x). \]

The transform \(J \) is well defined since a polynomial of degree \(k \) in \(z \) is always transformed into a polynomial of degree \(k \) in \(x \) under \(z = P^{-1}x \). It’s easy to see \(J \) has the form:
\[J = \begin{bmatrix} 1 & P^{-1} \\ \Pi P^{-1} & J_2 \end{bmatrix} \]
where \(J_2 \) expresses all quadratic monomials of \(z \) in terms of quadratic monomials of \(x \). To find \(J_2 \), we rewrite the relationship \(zz' = P^{-1}xx'P^{-1} \) as
\[\text{vec}(zz') = P^{-1} \otimes_K P^{-1} \text{vec}(xx') \]
where the subscript in the Kronecker product notation \(\otimes_K \) is used to distinguish it from the tensor product notation \(\otimes \), and \(\text{vec}(\cdot) \) vectorizes a matrix column-wise. Denote by \(\tilde{\nu}_2(x) \) all unique quadratic monomials in \(x \), and write \(\tilde{\nu}_2(x) = \Pi \text{vec}(xx') \), where \(\Pi \) is the matrix that picks and averages the duplicated quadratic monomials of \(x \) in \(\text{vec}(xx') \). One can verify that \(\text{vec}(xx') = \Pi \tilde{\nu}_2(x) \), and the smallest and largest singular values of \(\Pi \) are \(1/\sqrt{2} \) and 1 respectively. Consequently, we have
\[\tilde{\nu}_2(z) = \Pi \text{vec}(zz') = \Pi (P^{-1} \otimes_K P^{-1} \Pi) \tilde{\nu}_2(x), \]
or equivalently \(J_2 = \Pi P^{-1} \otimes_K P^{-1} \Pi \). So if \(\|PP' - I\| \leq \epsilon \), the singular values of \(J_2 \) are lower bounded and upper bounded by \(\frac{1}{\sqrt{2}} \frac{1}{1+\epsilon} \) and \(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{1-\epsilon}} \) respectively. The same holds for \(J \). We summarize these results in the following lemma.

Lemma 1

The change of basis transformation \(x = Pz \) induces a linear transformation between \(\nu_2(z) \) and \(\nu_2(x) \)
\[\nu_2(z) = J\nu_2(x) = \begin{bmatrix} 1 & P^{-1} \\ \Pi (P^{-1} \otimes_K P^{-1} \Pi) & J_2 \end{bmatrix} \nu_2(x) \]
such that the singular values of \(J \) fall into the interval \(\left[\frac{1}{\sqrt{2}} \frac{1}{1+\epsilon}, \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1-\epsilon}} \right] \).