Supplementary Material

7.1. Proof of Proposition 1

Proof. 1. Any symmetric tensor Q that satisfies the conditions in part 1 of Proposition 1 is dual feasible. The decomposition measure μ^* is primal feasible. We also have

$$\begin{aligned} \langle Q, A \rangle &= \sum_{p=1}^{r} \lambda_p \langle Q, x^p \otimes x^p \otimes x^p \rangle \\ &= \sum_{p=1}^{r} \lambda_p q(x^p) = \sum_{p=1}^{r} \lambda_p = \mu^{\star}(\mathbb{S}^{n-1}), \end{aligned}$$

establishing a zero duality gap at the primal-dual feasible solution pair (μ^*, Q) . Therefore, μ^* is primal optimal and Q is dual optimal.

For uniqueness, suppose $\hat{\mu}$ is another optimal solution. We then have

$$\mu^{\star}(\mathbb{S}^{n-1}) = \langle Q, A \rangle$$

$$= \left\langle Q, \int_{\mathbb{S}^{n-1}} x \otimes x \otimes x d\hat{\mu} \right\rangle$$

$$= \sum_{x \in \operatorname{supp}(\mu^{\star})} \hat{\mu}(x)q(x)$$

$$+ \int_{\mathbb{S}^{n-1}/\operatorname{supp}(\mu^{\star})} q(x)d\hat{\mu}$$

$$< \sum_{x_p \in \operatorname{supp}(\mu^{\star})} \hat{\lambda}_p + \int_{\mathbb{S}^{n-1}/\operatorname{supp}(\mu^{\star})} 1d\hat{\mu}$$

$$= \hat{\mu}(\mathbb{S}^{n-1})$$

due to condition (14) if $\hat{\mu}(\mathbb{S}^{n-1}/\operatorname{supp}(\mu^*)) > 0$, contradicting the optimality of $\hat{\mu}$. So all optimal solutions are supported on $\operatorname{supp}(\mu^*)$. Since the tensors $\{x^p \otimes x^p \otimes x^p, p = 1, \ldots, r\}$ are linearly independent, the coefficients are also uniquely determined.

2. Denote by p_0 and d_0 the optimal values for the primal problem (4) and the dual problem (5), respectively; and denote by p_1 and d_1 the optimal values for the primal-dual problems (9) and (12) (or (10)), respectively. We next argue that these four quantities are equal under the conditions in part 2. First, part 1 establishes $p_0 = d_0$. Second, weak duality and the construction of relaxations (9) and (12) imply that $d_1 \leq p_1 \leq p_0 = d_0$. Also the feasible set of (12) projected onto the Q space is a subset of the feasible set of (5). Since the conditions of part 2 state that the optimal dual solution Q of (5) is also feasible to (12), we hence conclude that Q is also an optimal solution of (12) and obtain $d_1 = d_0$. Therefore, $p_0 = d_0 = d_1 = p_1$, and the relaxations (9) and (12) are tight.

To show the optimality of y^* , the 2k-truncation of the (infinite) moment vector \bar{y}^* corresponding to the measure μ^* . We first note that y^* is feasible to (9). Then zero duality gap, as verified below

$$y_0^{\star} = \mu^{\star}(\mathbb{S}^{n-1}) = p_0 = d_1 = \langle Q, A \rangle$$

establishes the optimality of y^* .

3. Denote by $\sigma(x) = \nu_k(x)' H \nu_k(x)$ the SOS polynomial associated with H. Note $\nu_k(x^p)' H \nu_k(x^p) = \sigma(x^p) = 1 - q(x^p) = 0$ for $p = 1, \ldots, r$, implying $H \nu_k(x^p) = 0, p = 1, \ldots, r$ due to $H \succeq 0$. Since rank $(H) = |\mathbb{N}_k^n| - r$ by the assumption, the null space of H is span $\{\nu_k(x^p), p = 1, \ldots, r\}$.

For any optimal solution \hat{y} of (9), complementary slackness implies that

$$HM_k(\hat{y})) = 0.$$

So the eigen-space corresponding to the non-zero eigenvalues of $M_k(\hat{y})$ is a subspace of span $\{\nu_k(x^p), p = 1, \ldots, r\}$. We hence write

$$M_k(\hat{y}) = VDV'$$

where $V = [\nu_k(x^1) \cdots \nu_k(x^r)]$ and D is an $r \times r$ semidefinite matrix (not necessarily diagonal at this point). Note that $M_k(y^*) = V\Lambda V'$ where $\Lambda = \text{diag}([\lambda_1, \dots, \lambda_r])$. We next argue that $D = \Lambda$.

The moment matrix $M_k(\hat{y})$ contains a known submatrix specified by the third order moments in the tensor A, and hence is equal to the corresponding submatrix in $M_k(y^*)$. More precisely, $M_k(\hat{y})$ contains the block (at the location indicated by the orange color in Figure 5):

$$\int_{\mathbb{S}^{n-1}} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} x_1^2 & x_1 x_2 & \cdots & x_{n-1} x_n & x_n^2 \end{bmatrix} d\mu^*$$
$$= X\Lambda V_2'$$

where $X = [x^1 \cdots x^p]$, and V_2 is the submatrix of V whose rows correspond to the second-order monomials in $\nu_k(x)$. Therefore, we have

$$X\Lambda V_2' = XDV_2' \tag{25}$$

According to Lemma 3.1 (ii) of (De Lathauwer, 2008), rank(X) = r implies rank $(V_2) = r$. Multiplying both sides of (25) by the pseudo-inverse matrices X^{\dagger} from the left and $(V'_2)^{\dagger}$ from the right yield $D = \Lambda$. So $M_k(\hat{y}) =$ $M_k(y^*)$, and $\hat{y} = y^*$ is the unique solution of (9).

To see that we can extract the measure μ^* from $M_k(\hat{y}) = M_k(y^*)$, we note that the matrix $M_k(y^*) = V\Lambda V'$ has rank r for all $k \ge 1$. Hence the flat extension condition rank $(M_{k-1}(y^*) = M_k(y^*))$ is satisfied for all $k \ge 2$. Therefore, according to (Curto & Fialkow, 1996; Henrion & Lasserre, 2005), we could recover the measure from the moment matrix $M_k(y^*)$.

Figure 5. The colors encode the degrees of the entries in the moment matrix for an instance with n = 3, k = 2.

7.2. Dual Certificate: the Orthonormal Case

The proof of Theorem 1 is based on a perturbation analysis of the orthogonal case, which is the focus of this and the next sections. Hereafter, the relaxation order is fixed to k = 2.

When the vectors $\{x^p, p = 1, ..., r\}$ are orthonormal, we verify that the symmetric tensor

$$Q = \sum_{p=1}^{r} x^p \otimes x^p \otimes x^p$$

satisfies the conditions in part 1 of Proposition 1. To see this, note

$$q(x^p) = \langle Q, x^p \otimes x^p \otimes x^p \rangle = \sum_{p'=1}^r \langle x^{p'}, x^p \rangle^3 = 1.$$

Moreover, for any fixed $x \in \mathbb{S}^{n-1}$ we have

$$q(x) = \langle Q, x \otimes x \otimes x \rangle = \sum_{p=1}^{r} \langle x^p, x \rangle^3$$
$$\leq \max_p \langle x^p, x \rangle \sum_{p=1}^{r} \langle x^p, x \rangle^2$$
$$\leq \|X^T x\|_2^2$$

where we used $\max_p \langle x^p, x \rangle \leq \max_p ||x^p|| ||x|| = 1$ for all p. Due to the orthogonality of the columns of $X = [x^1 \cdots x^r]$, we clearly have $||X^T x||_2^2 \leq ||x||_2^2 = 1$. For q(x) = 1, all the involved inequalities must be equalities. For $\max_p \langle x^p, x \rangle = 1$, we need $x = x^p$ for some p, which is the only possible case that q(x) = 1. For all other cases, q(x) < 1. Therefore, $Q = \sum_p x^p \otimes x^p \otimes x^p$ satisfies the conditions of part 1 in Proposition 1. This argument combined with part 1 of Proposition 1 lead to

Theorem 3. If the vectors in $\operatorname{supp}(\mu^*)$ are orthonormal, then μ^* is the unique optimal solution to (4).

7.3. SOS Dual Certificate: the Orthonormal Case

In the following, we show that for $q(x) = \sum_{p=1}^{r} \langle x, x^p \rangle^3$, we can find an SOS $\sigma(x)$ and a polynomial s(x) with degrees 4 and 2 respectively, such that

$$1 - q(x) = \sigma(x) + s(x)(||x||_2^2 - 1)$$

We start with assuming $x^p = e_p$, the *p*th canonical basis vector, for p = 1, 2, ..., r, in which case q(x) becomes $\sum_{p=1}^{r} x_p^3$. Later on we will apply a rotation to derive the general case from this special case.

We set

$$s(x) = -\frac{3}{2} \left(\sum_{p=1}^{r} x_p^2 \right) - \frac{3}{2} \left(\sum_{p=r+1}^{n} x_p^2 \right) = \nu_1(x)' G_0 \nu_1(x)$$

where

$$G_0 := \begin{bmatrix} 0 & \\ & -\frac{3}{2}I_n \end{bmatrix}.$$
 (26)

Consider

$$1 - q(x) - s(x)(||x||_{2}^{2} - 1)$$

$$= 1 - \sum_{p=1}^{r} x_{p}^{3} + \frac{3}{2} \left(\sum_{p=1}^{r} x_{p}^{2}\right) \left(\sum_{p=1}^{n} x_{p}^{2} - 1\right)$$

$$+ \frac{3}{2} \left(\sum_{p=r+1}^{n} x_{p}^{2}\right) \left(\sum_{p=1}^{n} x_{p}^{2} - 1\right)$$

$$= 1 - \frac{3}{2} \left(\sum_{p=1}^{r} x_{p}^{2}\right) - \frac{3}{2} \left(\sum_{p=r+1}^{n} x_{p}^{2}\right) - \sum_{p=1}^{r} x_{p}^{3}$$

$$+ \frac{3}{2} \sum_{p=1}^{r} x_{p}^{4} + \frac{3}{2} \sum_{p=r+1}^{n} x_{p}^{4}$$

$$+ 3 \sum_{p < p'=1}^{r} x_{p}^{2} x_{p'}^{2} + 3 \sum_{p < p'=r+1}^{n} x_{p}^{2} x_{p'}^{2} + 3 \sum_{p=1}^{r} \sum_{p'=1}^{n} x_{p}^{2} x_{p'}^{2}.$$
(27)

We show that this polynomial is an SOS $\sigma(x)$ with Gram matrix H_0 defined on top of the next page. Here the row partition of H_0 corresponds to the partition of the Veronese

$$H_{0} := \begin{bmatrix} 1 & & -\mathbf{1}_{r}' & f\mathbf{1}_{n-r}' \\ & \frac{1}{2}I_{r} & & -\frac{1}{2}I_{r} \\ & & aI_{n-r} \\ & & & I_{C_{2}^{r}} \\ & & & & bI_{r(n-r)} \\ & & & & cI_{C_{2}^{n-r}} \\ -\mathbf{1}_{r} & -\frac{1}{2}I_{r} & & & \frac{1}{2}I_{r} + \mathbf{1}_{r}\mathbf{1}_{r}' & d\mathbf{1}_{r}\mathbf{1}_{n-r}' \\ f\mathbf{1}_{n-r} & & & d\mathbf{1}_{n-r}\mathbf{1}_{r}' & (\frac{3}{2}-e)I_{n-r} + e\mathbf{1}_{n-r}\mathbf{1}_{n-r}' \end{bmatrix}$$
(28)

map $\nu_2(x)$ given in the following

$$\nu_{2}(x) := \begin{bmatrix} \nu_{2}^{0}(x) \\ \nu_{2}^{1}(x) \\ \nu_{2}^{2}(x) \\ \nu_{2}^{3}(x) \\ \nu_{2}^{4}(x) \\ \nu_{2}^{5}(x) \\ \nu_{2}^{6}(x) \\ \nu_{2}^{6}(x) \\ \nu_{2}^{7}(x) \end{bmatrix}$$
(29)

with

$$\nu_{2}^{0}(x) = 1$$

$$\nu_{2}^{1}(x) = \begin{bmatrix} x_{1} \\ \vdots \\ x_{r} \end{bmatrix}$$

$$\nu_{2}^{2}(x) = \begin{bmatrix} x_{r+1} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$\nu_{2}^{3}(x) = \begin{bmatrix} x_{1}x_{2} \\ x_{1}x_{3} \\ \vdots \\ x_{r-1}x_{r} \end{bmatrix}$$

$$\nu_{2}^{4}(x) = \begin{bmatrix} x_{1}x_{r+1} \\ \vdots \\ x_{r}x_{n} \end{bmatrix}$$

$$\nu_{2}^{5}(x) = \begin{bmatrix} x_{r+1}x_{r+2} \\ \vdots \\ x_{n-1}x_{n} \end{bmatrix}$$

$$\nu_{2}^{6}(x) = \begin{bmatrix} x_{1}^{2} \\ \vdots \\ x_{r}^{2} \end{bmatrix}$$

$$\nu_{2}^{7}(x) = \begin{bmatrix} x_{r+1}^{2} \\ \vdots \\ x_{n}^{2} \end{bmatrix}$$

and a, b, c, d, e, f are parameters to be determined later.

Since

$$\nu_{2}(x)'H_{0}\nu_{2}(x)$$

$$=1 - \frac{3}{2}\sum_{p=1}^{r}x_{p}^{2} + (a+2f)\sum_{p=r+1}^{n}x_{p}^{2} - \sum_{p=1}^{r}x_{p}^{3}$$

$$+ \frac{3}{2}\sum_{p=1}^{r}x_{p}^{4} + \frac{3}{2}\sum_{p=r+1}^{n}x_{p}^{4}$$

$$+ 3\sum_{p

$$+ (b+2d)\sum_{p=1}^{r}\sum_{p'=1}^{n}x_{p}^{2}x_{p'}^{2}$$$$

comparison of coefficients with those of $1 - q(x) - s(x)(||x||_2^2 - 1)$ in (27) gives

$$a+2f = -\frac{3}{2}$$
$$c+2e = 3$$
$$b+2d = 3$$

We will judiciously choose the parameters so that H_0 is PSD. Note that H_0 must have r zero eigenvalues with eigenvectors { $\nu_2(e^p) : p = 1, ..., r$ }. For later analysis, we also need H_0 to have precisely r zero eigenvalues, and the smallest non-zero eigenvalue of H_0 to be lower bounded by a numerical constant regardless of n and r.

For that purpose, we next find all the eigenvalues of H_0 . The obvious ones include a, 1, b and c of multiplicities $n - r, C_2^r, r(n - r)$ and C_2^{n-r} , respectively. The rest of eigenvalues are those of E defined as

$$\begin{bmatrix} 1 & -\mathbf{1}'_r & f\mathbf{1}'_{n-r} \\ & \frac{1}{2}I_r & -\frac{1}{2}I_r \\ -\mathbf{1}_r & -\frac{1}{2}I_r & \frac{1}{2}I_r + \mathbf{1}_r\mathbf{1}'_r & d\mathbf{1}_r\mathbf{1}'_{n-r} \\ f\mathbf{1}_{n-r} & d\mathbf{1}_{n-r}\mathbf{1}'_r & (\frac{3}{2}-e)I_{n-r} + e\mathbf{1}_{n-r}\mathbf{1}'_{n-r} \end{bmatrix}$$

We choose $e + a = \frac{3}{2}$ and decompose E as A + B such that A is

$$\begin{bmatrix} 1 & -\mathbf{1}'_r & f\mathbf{1}'_{n-r} \\ & \frac{1}{2r}\mathbf{1}_r\mathbf{1}'_r & -\frac{1}{2r}\mathbf{1}_r\mathbf{1}'_r \\ -\mathbf{1}_r & -\frac{1}{2r}\mathbf{1}_r\mathbf{1}'_r & (1+\frac{1}{2r})\mathbf{1}_r\mathbf{1}'_r & d\mathbf{1}_r\mathbf{1}'_{n-r} \\ f\mathbf{1}_{n-r} & d\mathbf{1}_{n-r}\mathbf{1}'_r & (e+\frac{a}{(n-r)})\mathbf{1}_{n-r}\mathbf{1}'_{n-r} \end{bmatrix}$$

and B is

$$\begin{array}{c} 0 \\ \frac{1}{2} \left(I_r - \frac{1}{r} \mathbf{1}_r \mathbf{1}_r' \right) & -\frac{1}{2} \left(I_r - \frac{1}{r} \mathbf{1}_r \mathbf{1}_r' \right) \\ -\frac{1}{2} \left(I_r - \frac{1}{r} \mathbf{1}_r \mathbf{1}_r' \right) & \frac{1}{2} \left(I_r - \frac{1}{r} \mathbf{1}_r \mathbf{1}_r' \right) \end{array}$$

where the bottom-right block of *B* occupied by * is $a\left(I_{n-r} - \frac{1}{n-r}\mathbf{1}_{n-r}\mathbf{1}'_{n-r}\right)$. It is easy to verify that AB = BA = 0. Hence the eigenvalues of *E* consist of those of *A* and *B*. The eigenvalues of *B* are 0, 1, and *a* of multiplicities r + 3, r - 1, n - r - 1, respectively.

Next we choose the parameters such that the eigenvalues of A are easy to compute. We first ensure that A has rank 3, which, by rank invariance of Gaussian elimination, requires the following matrix,

$$\begin{bmatrix} 1 \\ & \frac{1}{2r} \mathbf{1}_r \mathbf{1}_r' \\ & \mathbf{0}_r \\ & (d+f) \mathbf{1}_{n-r} \mathbf{1}_r' \\ & \mathbf{1}_{n-r}' \end{bmatrix}$$

whose bottom-right block is $\left(e + \frac{a}{(n-r)} - f^2\right) \mathbf{1}_{n-r} \mathbf{1}'_{n-r}$, to have rank 3, or equivalently, d + f = 0.

Multiplying A with a vector of the form $v := \begin{bmatrix} \alpha \\ \beta \mathbf{1}_r \\ \gamma \mathbf{1}_r \\ \delta \mathbf{1}_{n-r} \end{bmatrix}$

shows that the eigenvectors of A are of the form v. Consequently, the non-zero eigenvalues of A can be computed by solving a smaller set of eigenvalue equations

$$\begin{bmatrix} 1 & 0 & -r & f(n-r) \\ 0 & 1/2 & -1/2 & 0 \\ -1 & -1/2 & r+1/2 & -f(n-r) \\ f & 0 & -fr & (n-r)e+a \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix} = \lambda \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix}$$
(30)

We already have five equations on a, b, c, d, e, f:

$$a+2f = -\frac{3}{2}$$

$$c+2e = 3$$

$$b+2d = 3$$

$$e+a = \frac{3}{2}$$

$$d+f = 0$$

or.

$$b = 3 - 2d = 3 - \frac{3}{2} - a = \frac{3}{2} - a$$

$$c = 3 - 2e = 2a$$

$$d = \frac{3}{4} + \frac{a}{2}$$

$$e = \frac{3}{2} - a$$

$$f = -\frac{3}{4} - \frac{a}{2}$$

Plugging these into the matrix in (30) leads to a matrix involving a single parameter *a*:

$$\begin{bmatrix} 1 & 0 & -r & -\left(\frac{3}{4} + \frac{a}{2}\right)(n-r) \\ 0 & 1/2 & -1/2 & 0 \\ -1 & -1/2 & r+1/2 & \left(\frac{3}{4} + \frac{a}{2}\right)(n-r) \\ -\left(\frac{3}{4} + \frac{a}{2}\right) & 0 & \left(\frac{3}{4} + \frac{a}{2}\right)r & (n-r)\left(\frac{3}{2} - a\right) + a \end{bmatrix}$$

Symbolic calculation shows that the non-zero eigenvalues of this matrix are zeros of the polynomial

$$\begin{split} h(\lambda; r, n, a) &= (2+r)(15(-n+r) \\ &+ 4a(-4+(7+a)n-(7+a)r)) \\ &+ 2(16+39n-31r+15(n-r)r \\ &- 4a^2(n-r)(1+r) + 4a((1+r)(8+7r)-n(11+7r)))\lambda \\ &+ 16(-4-3n+2a(-1+n-r)+r)\lambda^2 + 32\lambda^3 \end{split}$$

We want to make sure $\lambda = a \neq 0$ is one non-zero eigenvalue, which means h(a; r, n, a) = 0, or after simplification:

$$a^{3}(r-3) + 15(r+2) + 4a^{2}(13r+32) - 2a(29r+67) = 0$$

We pick the smallest positive root branch a = a(r), which is an increasing function of r with limit $a(+\infty) = \frac{1}{2}$, and a(1) > 0.3387. We next argue that, after plugging a = a(r), $h(\lambda; r, n, a(r))$ has two other zeros that are larger than $\frac{1}{2}$ (hence larger than a(r)), which means the other two non-zero eigenvalues of A are greater than $a(r) \in (0.3387, 0.5)$. The argument is based on median value theorem by showing h(1/2; r, n, a(r)) > 0, h(n/2; r, n, a(r)) < 0 combined with the obvious fact $\lim_{\lambda\to\infty} h(\lambda; r, n, a(r)) = +\infty$.

We first show h(1/2; r, n, a) > 0 for $1 \le r \le n$ and $a \in [0.2, 0.5)$. As a function of r with parameters n and a, the function

$$h(1/2; r, n, a) = 4 - 8a - 3n + 20an + 4a^{2}n + (3 - 20a - 4a^{2})r$$

is linear in r and is decreasing since $3 - 20a - 4a^2 < 0$ for

 $a \in [0.2, 0.5)$. Therefore, we obtain

$$\begin{split} h(1/2;r,n,a) &\geq h(1/2;n,n,a) \\ &= 4 - 8a \\ &> 0. \end{split}$$

Second, we show that h(n/2; r, n, a) < 0 for $a \in [0.2, 0.5)$ and $r \in [0, n]$:

$$\begin{split} h(n/2;r,n,a) \\ = & (-2+n)(16a+(7-4a(9+a))n+8(-1+a)n^2) \\ & + (30-8a(9+a)-46n+8a(11+a)n \\ & + (19-4a(9+a))n^2)r+(-1+2a)(15+2a)(-1+n)n \\ \leq & (-2+n)(16a+(7-4a(9+a))n \\ & + 8(-1+a)n^2)+2(1-2a)(15+2a)(-1+n)nr \\ & + (-1+2a)(15+2a)(-1+n)r^2. \end{split}$$

We used the fact that

$$\begin{aligned} & 30 - 8a(9+a) - 46n + 8a(11+a)n + (19 - 4a(9+a))n^2 \\ & \leq 2(1-2a)(15+2a)(n-1)n \end{aligned}$$

which can be proved by observing that

$$2(1-2a)(15+2a)(n-1)n - (30 - 8a(9+a) - 46n + 8a(11+a)n + (19 - 4a(9+a))n^2) = -30 + 8a(9+a) + (46 - 8a(11+a) - 2(1-2a)(15+2a))n + (-19 + 4a(9+a) + 2(1-2a)(15+2a))n^2$$

is an increasing function of n (since (46 - 8a(11 + a) - 2(1 - 2a)(15 + 2a)) > 0 for $a \in [0.2, 0.5)$), and its value at n = 1 is $-3 + 12a(9 + a) - 8a(11 + a) \ge 1$.

Now the upper bound on h(n/2; r, n, a) is an increasing function of r for $r \in [1, n]$. We therefore further bound h(n/2; r, n, a) by setting r = n in its upper bound:

$$h(n/2; r, n, a) \leq -32a - 14n + 8a(11 + a)n + 8(1 - 3a)n^2 + (7 - 4a(5 + a))n^3 := u(n; a)$$

Since $\frac{d}{dn}u(n;a)$ is

$$-14 + 8a(11 + a) + 16(1 - 3a)n + 3(7 - 4a(5 + a))n^{2},$$

which is decreasing for $n \ge 0$ due to 3(7 - 4a(5 + a)) < 0and 16(1 - 3a) < 0 when $a \in (0.3387, 0.5)$, we have

$$\frac{d}{dn}u(n;a) \le \frac{d}{dn}u(8;a) = 1458 - 8a(517 + 95a) < 0$$

for $n \ge 8$ and $a \in (0.3387, .5)$. Therefore, u(n; a) is

further upper bounded by its value at n = 8 for $n \ge 8$:

$$\begin{aligned} h(n/2;r,n,a) \leq & u(8;a) = -16(-249 + 2a(347 + 62a)) \\ < & 0 \end{aligned}$$

for $a \in (0.3387, .5)$.

To sum, we have showed that $h(\lambda; r, n, a(r))$, whose zeros are eigenvalues of A, has the property that $\lambda_1 = a(r) \in (0.3387, 1/2)$ is a zero, and h(1/2; r, n, a(r)) > 0, h(n/2; r, n, a(r)) < 0, and $h(+\infty; r, n, a) > 0$. Therefore, the other two zeros of $h(\lambda; r, n, a(r))$ are greater than 1/2 > a(r).

Therefore, the matrix H_0 has rank $|\mathbb{N}_2^n| - r$ and the minimal non-zero eigenvalue for H_0 is

$$\min\left\{a(r), \frac{3}{2} - a(r), 2a(r), \frac{1}{2}, 1\right\} = a(r)$$

since $a(r) \in (0.3387, 1/2)$. This shows that, when $\{x^p = e_p, p = 1, ..., r\}$, the matrix H_0 is PSD with rank $|\mathbb{N}_2^n| - r$ and the minimal non-zero eigenvalue is greater than 1/3.

When $\operatorname{supp}(\mu^*)$ is orthonormal, but is not a subset of the canonical basis vectors, we augment the matrix $X = \begin{bmatrix} x^1 & \cdots & x^r \end{bmatrix}$ to an orthonormal matrix $P = \begin{bmatrix} X & P_1 \end{bmatrix}$ and transform the variable x to $z = P'x = P^{-1}x$. Then the tensor $A = \sum_p \lambda_p x^p \otimes x^p \otimes x^p$ is transformed to $\sum_p \lambda_p e_p \otimes e_p \otimes e_p$. So the dual polynomial

$$q_0(z) = 1 - \nu_2(z)' H_0 \nu_2(z) + \frac{3}{2} ||z||_2^2 (||z||_2^2 - 1)$$

with H_0 constructed above satisfies the conditions in Proposition 1, and certifies the optimality of the decomposition $\sum_p \lambda_p e_p \otimes e_p \otimes e_p$. We transform this polynomial back to the x-domain to obtain

$$q(x) := q_0(P'x)$$

= 1 - \nu_2(P'x)'H_0\nu_2(P'x) + \frac{3}{2} ||x||_2^2(||x||_2^2 - 1)

where we have used $||P'x||_2^2 = ||x||_2^2$ since P is orthonormal. According to the change of basis formular in Lemma 1, the polynomial

$$\nu_2(P'x)H_0\nu_2(P'x) = \nu_2(x)'(J'H_0J)\nu_2(x)$$

is an SOS with the Gram matrix $J'H_0J$, whose smallest eigenvalue is greater than $\frac{1}{2} \times \frac{1}{3} > \frac{1}{6}$. One can verify that q(x) satisfies all the conditions in Proposition 1. As a consequence, we obtain:

Theorem 4. If the vectors in $\operatorname{supp}(\mu^*)$ are orthonormal, then the SDP relaxation (9) with k = 2 gives the exact decomposition. Furthermore, the constructed dual polynomial has the form

$$q(x) = 1 - \nu_2(x)' H \nu_2(x) + \frac{3}{2} \|x\|_2^2 (\|x\|_2^2 - 1)$$

where *H* has *r* zero eigenvalues, and the (r + 1)th smallest eigenvalue is greater than $\frac{1}{6}$. When the support is formed

by a subset of the canonical basis vectors, the lower bound on the (r + 1)th smallest eigenvalue can be chosen as $\frac{1}{3}$.

The SOS matrix decomposition is verified by Matlab. With n = 7 and r = 3, we have the following plot for H_0 :

Figure 6. H_0 has r = 4 zero eigenvalues and the 5th smallest is a(4) = 0.3789.

7.4. Dual Certificate: The Non-Orthonormal Case

We now proceed to apply a perturbation analysis to construct a dual polynomial for the non-orthonormal case.

Suppose the measure $\mu^* = \sum_{k=1}^r \lambda_k \delta(x - x^k)$ where $\{x^k, k = 1, \ldots, r\}$ are not orthogonal. Define $X = [x^1, \cdots, x^r]$ and find $P_1 \in \mathbb{R}^{n \times (n-r)}$ which has orthonormal columns and is orthogonal to X. Further define $P = [X \quad P_1]$. Then the transformation $x \mapsto z = P^{-1}x$ maps x^k to the kth canonical basis vector e_k . The unit sphere is mapped to an ellipsoid $E^{n-1} = \{z : z'P'Pz = 1\}$.

If we could construct a polynomial $q(z)=\langle Q,z\otimes z\otimes z\rangle$ with symmetric Q such that

$$q(e_k) = 1, k = 1, \dots, r$$
 (31)

$$|q(z)| < 1, z \in E^{n-1}, z \neq e_k \tag{32}$$

then the polynomial $q_1(x) := q(P^{-1}x) = \langle Q, P^{-1}x \otimes P^{-1}x \otimes P^{-1}x \rangle$ would satisfy

$$q_1(x^k) = q(e_k) = 1, k = 1, \dots, r$$
$$|q_1(x)| = |q(P^{-1}x)| < 1, x \in \mathbb{S}^{n-1}, x \neq x^k.$$

The desired q(z) must satisfy that $q(e_k) = 1$ and q(z)achieves maximum at $z = e_k$ for k = 1, ..., r. Denote $L(z;\nu) = q(z) - \nu(z'P'Pz - 1)$ as the Lagrangian. A necessary condition for q(z) to achieve maximum at e_k is given by the KKT condition:

$$\frac{\partial L(z)}{\partial z}|_{z=e_k} = \frac{\partial q(z)}{\partial z}|_{z=e_k} - \nu \frac{\partial}{\partial z} (z'P'Pz - 1)|_{z=e_k}$$
$$= 3\sum_{i=1}^n \langle Q, e_k \otimes e_k \otimes e_i \rangle e_i - 2\nu P'Pe_k$$
$$= 0$$

Taking inner product with e_k yields

$$3q(e_k) = 3\langle Q, e_k \otimes e_k \otimes e_k \rangle = 2\nu e'_k P' P e_k = 3,$$

implying $\nu = \frac{3}{2}$. Therefore, the symmetric tensor Q must satisfy

$$\sum_{i=1}^{n} \langle Q, e_k \otimes e_k \otimes e_i \rangle e_i = P' P e_k, k = 1, \dots, r.$$
 (33)

Note the condition (31) is a consequence of (33). We pick

$$Q = \sum_{k=1}^{r} e_k \otimes e_k \otimes P' P e_k + \sum_{k=1}^{r} e_k \otimes P' P e_k \otimes e_k$$
$$+ \sum_{k=1}^{r} P' P e_k \otimes e_k \otimes e_k - 2 \sum_{k=1}^{r} e_k \otimes e_k \otimes e_k$$

which actually has minimal energy among all symmetric Qs that satisfy (33). The dual polynomial is then given by

$$q(z) = \langle Q, z \otimes z \otimes z \rangle$$

= $\sum_{k=1}^{r} [3z_k^2(z'P'Pe_k) - 2z_k^3]$
= $\sum_{k=1}^{r} [3(z'P'Pe_k) - 2z_k]z_k^2.$

Clearly, q(z) satisfies the interpolation condition (31). In the following, we show that q(z) also satisfies the condition (32). The argument is based on partitioning the ellipsoid E^{n-1} into a region that is far from any e_k and a region that is near to some e_k .

First note

$$q(z) \le \max_{k} [3(z'P'Pe_{k}) - 2z_{k}] \sum_{k=1}^{r} z_{k}^{2}$$

When $z \in E^{n-1}$, due to $||P'P - I|| \le \epsilon$, we have $-\epsilon z'z \le 1 - z'z \le \epsilon z'z$, implying

$$\frac{1}{1+\epsilon} \leq -z'z - \leq \frac{1}{1-\epsilon}$$

Therefore, we can further upper bound q(z) as

$$q(z) \le \max_{k} [3(z'P'Pe_{k}) - 2z_{k}] \sum_{k=1}^{'} z_{k}^{2}$$
$$\le \frac{1}{1 - \epsilon} \max_{k} [3(z'P'Pe_{k}) - 2z_{k}]$$

So, if

$$\max_{k}[3(z'P'Pe_k) - 2z_k] < 1 - \epsilon$$

then q(z) < 1. Therefore, we have showed that q(z) < 1 in the "far-away" region.

Define $N_k = \{z : 3(z'P'Pe_k) - 2z_k \ge 1 - \epsilon, z'P'Pz = 1\}$. When $P'P \approx I$, this is saying $z_k \ge 1 - \epsilon$, so $z \in N_k$ is close to e_k . The union of N_k s defines the "near region".

We want to make sure that q(z) is strictly less than 1 in each N_k except when $z = e_k \in N_k$. For that purpose, we perform a Taylor expansion of the Lagrangian L(z) :=L(z; 3/2) in N_k around $z = e_k$

$$L(z) = q(z) - \frac{3}{2}(z'P'Pz - 1)$$

= $L(e_k) + (z - e_k)'\frac{\partial L}{\partial z}|_{z=e_k}$
+ $\frac{1}{2}(z - e_k)'H(\xi_z)(z - e_k)$
= $1 + \frac{1}{2}(z - e_k)'H(\xi_z)(z - e_k)$

where $H(\xi_z)$ is the Hessian of L(z) evaluated at ξ_z and $\xi_z \in L_{k,z} = \{tz + (1-t)e_k : t \in (0,1)\}$, the line segment connecting e_k and z.

Since q(z) = L(z) on the ellipsoid E^{n-1} , it suffices to show $\frac{1}{2}(z-e_k)'H(\xi_z)(z-e_k) < 0$ for $z \in N_k/\{e_k\}$. For this purpose, we compute the Hessian matrix $H(\xi)$:

$$H(\xi) = \frac{\partial}{\partial z} \left[3 \sum_{i=1}^{n} \langle Q, z \otimes z \otimes e_i \rangle e_i - 3P'Pz \right] |_{z=\xi}$$
$$= 6 \sum_{i,j=1}^{n} \langle Q, \xi \otimes e_j \otimes e_i \rangle e_i \otimes e_j - 3P'P$$

Plugging in the expression of Q, we get that the Hessian $H(\xi)$ equals

n

$$6\sum_{i,j=1}^{n} [\xi_j e'_i P' P e_j + \xi_i e'_j P' P e_i] e_i \otimes e_j$$
$$+ 6\sum_{i=1}^{n} [(\xi' P' P e_i) - 2\xi_i] e_i \otimes e_i - 3P' P$$

To get a sense why this Hessian guarantees a negative second order term in the Taylor expansion, we set $\xi = e_k$ to get

$$\begin{aligned} H(e_k) &= 6 \sum_{i,j=1}^n [e_k(j)e'_i P' P e_j + e_k(i)e'_j P' P e_i]e_i \otimes e_j \\ &+ 6 \sum_{i=1}^n [(e'_k P' P e_i) - 2e_k(i)]e_i \otimes e_i - 3P' P \\ &= 6 \left[\sum_i (e'_i P' P e_k)e_i \otimes e_k + \sum_j (e'_j P' P e_k)e_k \otimes e_j \right] \\ &+ 6 \sum_{i=1}^n [(e'_k P' P e_i) - 2e_k(i)]e_i \otimes e_i - 3P' P \end{aligned}$$

When $P'P \approx I$,

$$\begin{aligned} H(e_k) &\approx 12e_k \otimes e_k - 6e_k \otimes e_k - 3I \\ &= 6e_k \otimes e_k - 3I \end{aligned}$$

which is PSD except in the direction e_k , which is orthogonal to the tangent space of $E^{n-1} \approx S^{n-1}$ at $z = e_k$. Therefore, the Hessian projected onto the tangent space is negative definite, as desired.

Returning to the non-orthogonal case, we bound

$$H(\xi) = 6 \sum_{i,j=1}^{n} [\xi_j e'_i P' P e_j + \xi_i e'_j P' P e_i] e_i \otimes e_j + 6 \sum_{i=1}^{n} [(\xi' P' P e_i) - 2\xi_i] e_i \otimes e_i - 3P' P$$

for $\xi \in L_{k,z}$ with $z \in N_k$, where

$$N_k = \{ z : 3(z'P'Pe_k) - 2z_k \ge 1 - \epsilon, z'P'Pz = 1 \}$$

The simplifications

$$\sum_{i,j=1}^{n} (\xi_j e'_i P' P e_j) e_i \otimes e_j = P' P \operatorname{diag}(\xi)$$

$$\sum_{i,j=1}^{n} (\xi_i e'_j P' P e_i) e_i \otimes e_j = \operatorname{diag}(\xi) P' P$$

$$\sum_{i=1}^{n} (\xi' P' P e_i) e_i \otimes e_i = \operatorname{diag}(P' P \xi)$$

$$\sum_{i=1}^{n} \xi_i e_i \otimes e_i = \operatorname{diag}(\xi)$$

lead to the following compact expression for the Hessian matrix $H(\xi)$:

$$\begin{split} & 6(P'P\operatorname{diag}(\xi) + \operatorname{diag}(\xi)P'P + \operatorname{diag}(P'P\xi) - 2\operatorname{diag}(\xi)) \\ & - 3P'P \end{split}$$

We want to show that

$$(z - e_k)'H(\xi)(z - e_k) < 0, \forall \xi \in L_{k,z}, z \in N_k.$$

We first argue that $z \in N_k = \{z : 3(z'P'Pe_k) - 2z_k \ge 1 - 2z_k$

 $\epsilon, z'P'Pz = 1$ imposes certain restrictions on the size of z, and implies that z is close to e_k . Indeed, $||I - P'P|| \le \epsilon$ and z'P'Pz = 1 imply that

$$\frac{1}{1+\epsilon} \leq \frac{1}{\lambda_{\max}(P'P)} \leq \|z\|_2^2 \leq \frac{1}{\lambda_{\min}(P'P)} \leq \frac{1}{1-\epsilon}$$

To show the closeness of z and e_k , we observe that

$$3z'P'Pe_k - 2z_k = 3z'(P'P - I)e_k + 3z'e_k - 2z_k$$

= $z_k + 3z'(P'P - I)e_k$

Since $|3z'(P'P - I)e_k| \le 3||z||_2||P'P - I|| \le \frac{3\epsilon}{\sqrt{1-\epsilon}}$, z_k is bounded from below as follows:

$$z_k \ge 1 - \epsilon - 3z'(P'P - I)e_k$$
$$\ge 1 - \epsilon - \frac{3\epsilon}{\sqrt{1 - \epsilon}}.$$

On the other hand, $z_k \leq ||z||_2 \leq \frac{1}{\sqrt{1-\epsilon}}$.

A consequence of the sizes of z and z_k is that

$$\begin{aligned} \|z - z_k e_k\|_2^2 &= \sum_{j \neq k} z_j^2 \\ &= \|z\|_2^2 - z_k^2 \\ &\leq \frac{1}{1 - \epsilon} - \left(1 - \epsilon - \frac{3\epsilon}{\sqrt{1 - \epsilon}}\right)^2 \end{aligned}$$

Therefore, we have

 $\|z - e_k\|_{\infty}$

$$\leq \max\{\epsilon + \frac{3\epsilon}{\sqrt{1-\epsilon}}, \frac{1}{\sqrt{1-\epsilon}} - 1, \\ \sqrt{\frac{1}{1-\epsilon} - \left(1-\epsilon - \frac{3\epsilon}{\sqrt{1-\epsilon}}\right)^2}\} \\ := c_1(\epsilon) \\ = O(\epsilon)$$

and

$$||z - e_k||_2^2$$

$$= \sum_{j \neq k} z_j^2 + (z_k - 1)^2 \le ||z - z_k e_k||_2^2$$

$$+ \max\left\{\epsilon + \frac{3\epsilon}{\sqrt{1 - \epsilon}}, \frac{1}{\sqrt{1 - \epsilon}} - 1\right\}^2$$

$$= \frac{1}{1 - \epsilon} - \left(1 - \epsilon - \frac{3\epsilon}{\sqrt{1 - \epsilon}}\right)^2$$

$$+ \max\left\{\epsilon + \frac{3\epsilon}{\sqrt{1 - \epsilon}}, \frac{1}{\sqrt{1 - \epsilon}} - 1\right\}^2$$

$$= c_2(\epsilon)$$

Since $\xi_z \in L_{k,z}$, we have $\xi_z = tz + (1-t)e_k$ for some $t \in (0, 1)$. As consequence, we obtain the following estimates

for ξ_z :

$$\begin{split} \|\xi_z - e_k\|_{\infty} &\leq t \|z - e_k\|_{\infty} \leq c_1(\epsilon), \\ \|\xi_z - e_k\|_2^2 &\leq t^2 \|z - e_k\|_2^2 \leq c_2(\epsilon), \\ \|\xi_z\|_2 &\leq t \|z\|_2 + (1-t) \|e_k\|_2 \leq \frac{1}{\sqrt{1-\epsilon}}. \end{split}$$

For notational simplicity, in the following we ignore the subscript z in ξ_z . We show that each term in

$$P'P\operatorname{diag}(\xi) + \operatorname{diag}(\xi)P'P + \operatorname{diag}(P'P\xi) - 2\operatorname{diag}(\xi)$$

is close to $e_k e'_k$, except the last term which is close to $2e_k e'_k$. The first term is bounded as follows:

$$||P'P \operatorname{diag}(\xi) - e_k e'_k|| \le ||P'P \operatorname{diag}(\xi) - P'P e_k e'_k|| + ||P'P e_k e'_k - e_k e'_k|| \le ||P'P|| ||\xi - e_k||_{\infty} + ||P'P - I|| \le (1 + \epsilon)c_1(\epsilon) + \epsilon$$

Similar bounds hold for the term $diag(\xi)P'P$:

$$\|\operatorname{diag}(P'P\xi) - e_k e'_k\|$$

= $\|P'P\xi - e_k\|_{\infty}$
 $\leq \|P'P\xi - \xi\|_{\infty} + \|\xi - e_k\|_{\infty}$
 $\leq \|P'P - I\|\|\xi\|_2 + c_1(\epsilon)$
 $\leq \frac{\epsilon}{\sqrt{1-\epsilon}} + c_1(\epsilon),$

and the term $diag(\xi)$:

$$\|\operatorname{diag}(\xi) - e_k e'_k\| \le \|\xi - e_k\|_{\infty} \le c_1(\epsilon).$$

These bounds imply that

$$\begin{aligned} \|P'P\operatorname{diag}(\xi) + \operatorname{diag}(\xi)P'P + \operatorname{diag}(P'P\xi) - 2\operatorname{diag}(\xi) \\ &- e_k e'_k \| \\ \leq & 2(1+\epsilon)c_1(\epsilon) + 2\epsilon + \frac{\epsilon}{\sqrt{1-\epsilon}} + c_1(\epsilon) + c_1(\epsilon) \\ &:= & c_3(\epsilon) \\ &= & O(\epsilon). \end{aligned}$$

Furthermore, we have

$$\begin{aligned} \|P'Pe_{k}e'_{k}P'P - e_{k}e_{k}\| \\ = \|P'Pe_{k}e'_{k}P'P - P'Pe_{k}e'_{k} + P'Pe_{k}e'_{k} - e_{k}e'_{k}\| \\ \leq \|P'P\|\|e_{k}e'_{k}\|\|P'P - I\| + \|P'P - I\|\|e_{k}e'_{k}\| \\ \leq (1+\epsilon)\epsilon + \epsilon \\ = O(\epsilon). \end{aligned}$$

Therefore, we get

$$\|H(\xi) - (6P'Pe_ke'_kP'P - 3P'P)\|$$

$$\leq 6c_3(\epsilon) + 6\epsilon(2 + \epsilon)$$

$$:= c_4(\epsilon)$$

$$= O(\epsilon).$$

For any $z \in N_k$, we next show that $(z-e_k)'P'Pe_k$ is small

due to the fact that both z and e_k lie on E^{n-1} :

$$1 = z'P'Pz$$

= $e'_k P'Pe_k + 2(z - e_k)'P'Pe_k + (z - e_k)'P'P(z - e_k)$
= $1 + 2(z - e_k)'P'Pe_k + (z - e_k)'P'P(z - e_k)$

implying

$$|(z - e_k)'P'Pe_k| = \frac{1}{2}(z - e_k)P'P(z - e_k)$$

$$\leq \frac{1}{2}||P'P||||z - e_k||_2^2$$

$$\leq \frac{1}{2}(1 + \epsilon)||z - e_k||_2^2$$

The following chain of inequalities

$$\begin{aligned} &(z - e_k)'H(\xi)(z - e_k) \\ \leq &(z - e_k)'(6P'Pe_ke'_kP'P - 3P'P)(z - e_k) \\ &+ \|z - e_k\|_2^2 c_4(\epsilon) \\ = &6[(z - e_k)'P'Pe_k]^2 - 3(z - e_k)'P'P(z - e_k) \\ &+ \|z - e_k\|_2^2 c_4(\epsilon) \\ = &\frac{3}{2}(1 + \epsilon)^2 \|z - e_k\|_2^4 - 3(z - e_k)'P'P(z - e_k) \\ &+ \|z - e_k\|_2^2 c_4(\epsilon) \\ \leq &\frac{3}{2}(1 + \epsilon)^2 \|z - e_k\|_2^4 - 3(1 - \epsilon) \|z - e_k\|_2^2 \\ &+ \|z - e_k\|_2^2 c_4(\epsilon) \\ = &\frac{3}{2}(1 + \epsilon)^2 \|z - e_k\|_2^4 - (3 - 3\epsilon - c_4(\epsilon)) \|z - e_k\|_2^2 \end{aligned}$$

show that the second order term is negative if

$$\frac{3}{2}(1+\epsilon)^2 \|z - e_k\|_2^2 < 3 - 3\epsilon - c_4(\epsilon)$$

So it suffices to require

$$c_2(\epsilon)\frac{3}{2}(1+\epsilon)^2 < 3 - 3\epsilon - c_4(\epsilon)$$

Numerical computation shows that the above inequality holds if

$$\epsilon \leq 0.0016.$$

We summarize the above argument into a theorem:

Theorem 5. For a symmetric tensor $A = \sum_{p=1}^{r} \lambda_p x^p \otimes x^p \otimes x^p$, if the vectors $\{x^p\}$ are near orthogonal, that is, the matrix $X = [x^1 \ x^2 \ \cdots \ x^r]$ satisfies

$$||X'X - I_r|| \le 0.0016,$$

then there exists a dual symmetric tensor Q such that the dual polynomial $q(x) = \langle Q, x \otimes x \otimes x \rangle$ satisfies the conditions in part 1 of Proposition 1. Thus, $A = \sum_{p=1}^{r} \lambda_p x^p \otimes x^p \otimes x^p$ is the unique decomposition that achieves the tensor nuclear norm, and can be found by solving (4).

7.5. SOS Dual Certificate: The Non-Orthonormal Case

After rotating to the canonical basis vectors, the dual polynomial we constructed for the orthogonal case is

$$q_0(z) = \sum_{k=1}^r z_k^3$$

while the one for the non-orthogonal case is

$$q(z) = \sum_{k=1}^{r} [3(z'P'Pe_k) - 2z_k] z_k^2.$$

We first show that 1 - q(z) is an SOS modulo the ellipsoid E^{n-1} . We know that $q_0(z)$ is an SOS modulo the sphere, that is, there exist symmetric matrices $H \succeq 0$ and $G \in \mathbb{R}^{(n+1)\times(n+1)}$ such that

$$1 - q_0(z) = \nu_2(z)' H \nu_2(z) + \nu_1(z)' G \nu_1(z) (||z||_2^2 - 1).$$

In Section 7.3, we constructed $G = G_0$ in (26) and $H = H_0$ in (28). So (H_0, G_0) is in the feasible set of the following two constraints:

$$\nu_2(z)'H\nu_2(z) + \nu_1(z)'G\nu_1(z)(||z||_2^2 - 1) = 1 - q_0(z), \forall z$$

$$H \succeq 0.$$
(34)

Note that any feasible H must satisfy $\nu_2(e_i)'H\nu_2(e_i) = 0$ for i = 1, 2, ..., r, implying that $\{\nu_2(e_i) : i = 1, 2, ..., r\}$ spans a subspace of the null space of H.

Define matrices B_{α} and C_{α}^{0} that satisfy

$$\nu_2(z)\nu_2(z)' = \sum_{|\alpha| \le 4} B_{\alpha} z^{\alpha}$$
$$\nu_1(z)\nu_1(z)'(||z||_2^2 - 1) = \sum_{|\alpha| \le 4} C_{\alpha}^0 z^{\alpha}$$

These notations allow us to write

$$\nu_2(z)'H\nu_2(z) = \langle \nu_2(z)\nu_2(z)', H \rangle = \sum_{|\alpha| \le 4} \langle B_\alpha, H \rangle z^\alpha$$

and

$$\nu_1(z)'G\nu_1(z)(||z||_2^2 - 1) = \langle \nu_1(z)\nu_1(z)'(||z||_2^2 - 1), G \rangle$$

= $\sum_{|\alpha| \le 4} \langle C_{\alpha}^{\alpha}, G \rangle z^{\alpha}$

Denote by b_{α}^{0} the coefficient for z^{α} in $1 - q_{0}(z)$. We write the polynomial equation $\nu_{2}(z)'H\nu_{2}(z) + \nu_{1}(z)'G\nu_{1}(z)(||z||_{2}^{2}-1) = 1 - q_{0}(z)$ equivalently as

$$\langle B_{\alpha}, H \rangle + \langle C_{\alpha}^{0}, G \rangle = b_{\alpha}^{0}, |\alpha| \le 4$$

Therefore, we obtain the SDP formulation of (34)

find
$$G, H$$

subject to $\langle B_{\alpha}, H \rangle + \langle C_{\alpha}^{0}, G \rangle = b_{\alpha}^{0}, |\alpha| \le 4$
 $H \succcurlyeq 0.$ (35)

As aforementioned, G_0 and H_0 defined respectively in (26) and (28) form a feasible point for (35).

Now we switch to the non-orthogonal case, and we would like to show that

$$q(z) = \sum_{k=1}^{r} [3(z'P'Pe_k) - 2z_k] z_k^2$$

is an SOS module the ellipsoid E^{n-1} . That is, we want to solve the feasibility problem

find G and H

subject to $\nu_2(z)'H\nu_2(z) + \nu_1(z)'G\nu_1(z)(z'P'Pz - 1) = 1 - q(z)$ $H \succeq 0.$ (36)

or equivalently in SDP

find G and H

subject to

Here B_{α} is defined as before, while b_{α} is the coefficient for z^{α} in 1 - q(z) for $|\alpha| \le 4$ and C_{α} is defined via

$$\nu_1(z)\nu_1(z)'(z'P'Pz-1) = \sum_{|\alpha| \le 4} C_{\alpha} z^{\alpha}$$

We again note that any feasible H must satisfy $\nu_2(e_i)'H\nu_2(e_i) = 0$ for i = 1, 2, ..., r, implying that $\{\nu_2(e_i) : i = 1, 2, ..., r\}$ spans a subspace of the null space of H.

When $||P'P-I|| \leq \epsilon$ with ϵ small, C_{α} is close to C_{α}^{0} and b_{α} is close to b_{α}^{0} . We claim that, when ϵ is sufficiently small, we can always take $G_{1} = G_{0}$ and H_{1} in the neighborhood of H_{0} that form a feasible point of (37). Denote $\Delta H =$ $H_{1} - H_{0}$ and $e_{\alpha} = (b_{\alpha} - b_{\alpha}^{0}) - (\langle C_{\alpha}, G_{0} \rangle - \langle C_{\alpha}^{0}, G_{0} \rangle)$, then ΔH must satisfy

$$\langle B_{\alpha}, \Delta H \rangle = e_{\alpha}, |\alpha| \le 4$$

These set of equality constraints, which are equivalent to

$$\nu_2(z)'\Delta H\nu_2(z) = \sum_{|\alpha| \le 4} e_{\alpha} z^{\alpha}$$

= $q(z) - q_0(z) - \nu_1(z)'G_0\nu_1(z)(z'P'Pz - z'z),$

also implies that $\nu_2(e_i)'\Delta H\nu_2(e_i) = 0, i = 1, \ldots, r$. Therefore, $\{\nu_2(e_i) : i = 1, 2, \ldots, r\}$ spans a subspace of the null spaces of H_0, H_1 and ΔH . Since the null space of H_0 is exactly span($\{\nu_2(e_i) : i = 1, 2, \ldots, r\}$), and the minimal non-zero eigenvalue of H_0 is strictly greater than 1/3 according to Theorem 4, it suffices to find a symmetric ΔH that satisfies

$$\langle B_{\alpha}, \Delta H \rangle = e_{\alpha}, |\alpha| \le 4$$

and $\|\Delta H\|$ is very small, much smaller than $\frac{1}{3}$.

In the following, we will complete the argument by show-

ing that the solution $\Delta \hat{H}$ to

minimize
$$\|\Delta H\|_F$$

subject to $\langle B_{\alpha}, \Delta H \rangle = e_{\alpha}, |\alpha| \le 4.$ (38)

satisfies $\|\Delta H\|_F \leq 0.0048$ under the conditions of $\|P'P - I\| \leq 0.0016$, implying that $\Delta \overline{H} = \frac{1}{2}(\Delta \hat{H} + \Delta \hat{H}')$ is the desired ΔH .

We first estimate $||e||_{\infty}$. Note

$$q(z) - q_0(z) = \sum_{k=1}^r [3(z'P'Pe_k) - 2z_k] z_k^2 - \sum_{k=1}^r z_k^3$$
$$= 3\sum_{k=1}^r [(z'P'Pe_k) - z_k] z_k^2$$

which involves only third order monomials in sets $\{z_k^3 : k = 1, \ldots, r\}$, $\{z_k^2 z_j : k = 1, \ldots, r; j = r + 1, \ldots, n\}$, and $\{z_k^2 z_j : j \neq k = 1, \ldots, r\}$. The coefficient for z_k^3 is $3(1 - e'_k P' P e_k) = 0$, and the coefficient for $z_k^2 z_j$ is $-3e'_j P' P e_k$. When $k = 1, \ldots, r; j = r + 1, \ldots, n$, we have $-3e'_j P' P e_k = 0$ due to the construction of P; when $j \neq k = 1, \ldots, r$, the quantity $-3e'_j P' P e_k$ is non-zero. Therefore, we get

$$||b - b^0||_{\infty} \leq 3 \max_{1 \leq j \neq k \leq r} |e'_j P' P e_k| \leq 3\epsilon.$$

We next bound

$$\begin{split} |\langle C_{\alpha}, G_{0} \rangle - \langle C_{\alpha}^{0}, G_{0} \rangle| &= |\langle C_{\alpha} - C_{\alpha}^{0}, G_{0} \rangle| \\ &= \frac{3}{2} |\operatorname{trace}(C_{\alpha} - C_{\alpha})| \end{split}$$

To control trace $(C_{\alpha} - C_{\alpha}^{0})$, we write

$$\sum_{|\alpha| \le 4} (C_{\alpha} - C_{\alpha}^{0}) z^{\alpha} = \nu_{1}(z) \nu_{1}(z)' [z'(P'P - I)z]$$

Taking trace on both sides gives

$$\sum_{|\alpha| \le 4} \operatorname{trace}(C_{\alpha} - C_{\alpha}^{0}) z^{\alpha}$$

= $\operatorname{trace}(\nu_{1}(z)\nu_{1}(z)')[z'(P'P - I)z]$
= $\left(1 + \sum_{i=1}^{r} z_{i}^{2}\right)[z'(P'P - I)z]$
= $\left(1 + \sum_{i=1}^{r} z_{i}^{2}\right)\sum_{1 \le j \ne k \le r} (P'P - I)_{jk} z_{j} z_{k}$

Since the diagonal of P'P-I constitutes of zeros, the only monomials that have non-zero coefficients are in the sets $\{z_i^2 z_j z_k : 1 \le i \le r, 1 \le j \ne k \le r\}$, and $\{z_j z_k : 1 \le j \ne k \le r\}$. To compute the coefficients for $z_i^2 z_j z_k$, we consider two separate cases. When j = i, the coefficient for the term $z_i^3 z_k$ is $(P'P - I)_{ik} + (P'P - I)_{ki}$. When $j \ne i$ and $k \ne i$, the coefficient for the term $z_i^2 z_j z_k$ is $(P'P - I)_{jk} + (P'P - I)_{kj}$. In both cases, we can bound the absolute value of the coefficient by

$$\max_{j \neq k} |(P'P - I)_{jk} + (P'P - I)_{kj}| \le 2\epsilon.$$

A similar argument shows that the coefficients for $z_j z_k$ with $1 \leq j \neq k \leq r$ are also bounded by 2ϵ . Hence, we get

$$\max_{|\alpha| \le 4} |\operatorname{trace}(C_{\alpha} - C_{\alpha}^{0})| \le 2\epsilon$$

Since the components of $b_{\alpha} - b_{\alpha}^0$ and $\langle C_{\alpha} - C_{\alpha}^0, G_0 \rangle$ attain non-zero at different αs , we conclude that

$$\|e\|_{\infty} \le 3\epsilon.$$

Denote by $S \in \mathbb{R}^{|\mathbb{N}_4^n| \times |\mathbb{N}_2^n|^2}$ the matrix whose α th row is $\operatorname{vec}(B_{\alpha})^T$ for $|\alpha| \leq 4$. The solution to (38) is given by $\operatorname{vec}(\Delta H) = S^{\dagger}e$ where we used \dagger to represent pseudo-inverse.

We want to control

$$\|S^{\dagger}\|_{\infty,2} = \max_{\alpha} \|[S^{\dagger}]_{\alpha}\|_{2}$$

where $[S^{\dagger}]_{\alpha}$ is the α th row of S^{\dagger} . Note S has orthogonal rows, and each $\operatorname{vec}(B_{\alpha})$ is composed of zeros and ones, and the ones indicate where the monomial z^{α} locates in $\nu_2(z)\nu_2(z)'$. As a consequence, the matrix SS' is diagonal with the diagonal element d_{α} counts the number of appearances of z^{α} in $\nu_2(z)\nu_2(z)'$, which is always greater than or equal to 1. Therefore, we get

$$\begin{split} \|S^{\dagger}\|_{\infty,2} &= \|S'(SS')^{-1}\|_{\infty,2} \\ &\leq \max_{\beta} \|[S']_{\beta} \operatorname{diag}(d^{-1})\|_{2} \\ &\leq \max_{\beta} \|S^{\beta}\|_{2} \end{split}$$

where S^{β} represents that β th column of S. The index β indexes the rows and columns of $\nu_2(z)\nu_2(z)'$. Each column of S consists of zeros and a single one, with the latter representing which z^{α} is at the entry of $\nu_2(z)\nu_2(z)'$ specified by the column index β . Therefore, we obtain

$$\|S^{\dagger}\|_{\infty,2} \le \max_{\beta} \|S^{\beta}\|_{2} \le 1$$

We conclude that

$$\begin{split} \|\Delta \bar{H}\|_F &\leq \|\Delta \hat{H}\|_F \\ &= \|S^{\dagger}e\|_2 \leq \|S^{\dagger}\|_{\infty,2} \|e\|_{\infty} \\ &\leq 3\epsilon \\ &\leq 0.0048 \end{split}$$

for $\epsilon \leq 0.0016$. Therefore, the minimal non-zero eigenvalue of the Gram matrix $H_1 = H_0 + \Delta \overline{H}$ is lower bounded by 1/3 - 0.0048 > 0.

So far we have showed that q(z) is an SOS modulo the ellipsoid $\{z : z'P'Pz = 1\}$. To prove Theorem 1, we need to map z back to x, and make sure that after the mapping,

the new Gram matrix still have rank $|\mathbb{N}_2^n| - r$. It suffices to show that the change of basis transformation on \mathbb{R}^n that maps x to z induces a well-conditioned transformation between $\nu_2(x)$ and $\nu_2(z)$. This is given in Lemma 1 developed in the next section. Therefore, we have completed the proof of Theorem 1.

7.6. Change of Basis Formular

Consider two *n*-dimensional variables x and z linked by a change of basis transformation x = Pz or $z = P^{-1}x$. We aim at finding the matrix J that expresses $\nu_2(z)$ in terms of $\nu_2(x)$, *i.e.*,

$$\nu_2(z) = \nu_2(P^{-1}x) = J\nu_2(x)$$

The transform J is well defined since a polynomial of degree k in z is always transformed into a polynomial of degree k in x under $z = P^{-1}x$. It's easy to see J has the form:

$$J = \begin{bmatrix} 1 & & \\ & P^{-1} & \\ & & J_2 \end{bmatrix}$$

where J_2 expresses all quadratic monomials of z in terms of quadratic monomials of x. To find J_2 , we rewrite the relationship $zz' = P^{-1}xx'P^{-1'}$ as

$$\operatorname{vec}(zz') = P^{-1} \otimes_K P^{-1} \operatorname{vec}(xx')$$

where the subscript in the Kronecker product notation \otimes_K is used to distinguish it from the tensor product notation \otimes , and $\operatorname{vec}(\cdot)$ vectorizes a matrix column-wise. Denote by $\bar{\nu}_2(x)$ all unique quadratic monomials in x, and write $\bar{\nu}_2(x) = \Pi \operatorname{vec}(xx')$, where Π is the matrix that picks and averages the duplicated quadratic monomials of x in $\operatorname{vec}(xx')$. One can verify that $\operatorname{vec}(xx') = \Pi^{\dagger} \bar{\nu}_2(x)$, and the smallest and largest singular values of Π are $\frac{1}{\sqrt{2}}$ and 1 respectively. Consequently, we have

$$\bar{\nu}_2(z) = \Pi \operatorname{vec}(zz') = \Pi \left(P^{-1} \otimes_K P^{-1} \right) \Pi^{\dagger} \bar{\nu}_2(x),$$

or equivalently $J_2 = \prod P^{-1} \otimes_K P^{-1} \prod^{\dagger}$. So if $\|PP' - I\| \leq \epsilon$, the singular values of J_2 are lower bounded and upper bounded by $\frac{1}{\sqrt{2}} \frac{1}{1+\epsilon}$ and $\frac{\sqrt{2}}{1-\epsilon}$ respectively. The same holds for J. We summarize these results in the following lemma.

Lemma 1. The change of basis transformation x = Pzinduces a linear transformation between $\nu_2(z)$ and $\nu_2(x)$

$$\nu_2(z) = J\nu_2(x) = \begin{bmatrix} 1 & & \\ & P^{-1} & \\ & & \Pi \left(P^{-1} \otimes_K P^{-1} \right) \Pi^{\dagger} \end{bmatrix} \nu_2(x)$$

such that the singular values of J fall into the interval $\left[\frac{1}{\sqrt{2}}, \frac{1}{1+\epsilon}, \frac{\sqrt{2}}{1-\epsilon}\right]$.