## A. Proof of Proposition 1

Proof. Let $e_{j}$ 's denote standard basis vectors. We have

$$
\nabla_{s} \phi_{\mathrm{LN}}(s, y)=-\sum_{j=1}^{m} P_{j}(y) e_{j}+\sum_{j=1}^{m} \frac{\exp \left(s_{j}\right)}{\sum_{j^{\prime}=1}^{m} \exp \left(s_{j^{\prime}}\right)} e_{j}
$$

Therefore,

$$
\begin{aligned}
\left\|\nabla_{s} \phi_{\mathrm{LN}}(s, y)\right\|_{1} & \leq \sum_{j=1}^{m} P_{j}(y)\left\|e_{j}\right\|_{1}+\sum_{j=1}^{m} \frac{\exp \left(s_{j}\right)}{\sum_{j^{\prime}=1}^{m} \exp \left(s_{j^{\prime}}\right)}\left\|e_{j}\right\|_{1} \\
& =2
\end{aligned}
$$

We also have

$$
\left[\nabla_{s}^{2} \phi_{\mathrm{LN}}(s, y)\right]_{j, k}= \begin{cases}-\frac{\exp \left(2 s_{j}\right)}{\left(\sum_{j^{\prime}=1}^{m} \exp \left(s_{j^{\prime}}\right)\right)^{2}}+\frac{\exp \left(s_{j}\right)}{\sum_{j^{\prime}=1}^{m} \exp \left(s_{j^{\prime}}\right)} & \text { if } j=k \\ -\frac{\exp \left(s_{j}+s_{k}\right)}{\left(\sum_{j^{\prime}=1}^{m} \exp \left(s_{j^{\prime}}\right)\right)^{2}} & \text { if } j \neq k\end{cases}
$$

Moreover,

$$
\begin{aligned}
\left\|\nabla_{s}^{2} \phi_{\mathrm{LN}}(s, y)\right\|_{\infty \rightarrow 1} & \leq \sum_{j=1}^{m} \sum_{k=1}^{m}\left|\left[\nabla_{s}^{2} \phi_{\mathrm{LN}}(s, y)\right]_{j, k}\right| \\
& \leq \sum_{j=1}^{m} \sum_{k=1}^{m} \frac{\exp \left(s_{j}+s_{k}\right)}{\left(\sum_{j^{\prime}=1}^{m} \exp \left(s_{j^{\prime}}\right)\right)^{2}}+\sum_{j=1}^{m} \frac{\exp \left(s_{j}\right)}{\sum_{j^{\prime}=1}^{m} \exp \left(s_{j^{\prime}}\right)} \\
& =\frac{\left(\sum_{j=1}^{m} \exp \left(s_{j}\right)\right)^{2}}{\left(\sum_{j^{\prime}=1}^{m} \exp \left(s_{j^{\prime}}\right)\right)^{2}}+\frac{\sum_{j=1}^{m} \exp \left(s_{j}\right)}{\sum_{j^{\prime}=1}^{m} \exp \left(s_{j^{\prime}}\right)} \\
& =2
\end{aligned}
$$

## B. Proof of Proposition 2

Proof. Let $1_{\text {(condition) }}$ denote an indicator variable. We have

$$
\left[\nabla_{s} \phi_{\mathrm{SD}}(s, y)\right]_{j}=D(1)\left(\sum_{i=1}^{m} G\left(r_{i}\right)\left[\frac{1}{\sigma} \frac{\exp \left(s_{i} / \sigma\right)}{\sum_{j^{\prime}} \exp \left(s_{j^{\prime}} / \sigma\right)} 1_{(i=j)}-\frac{1}{\sigma} \frac{\exp \left(\left(s_{i}+s_{j}\right) / \sigma\right)}{\left(\sum_{j^{\prime}} \exp \left(s_{j^{\prime}} / \sigma\right)\right)^{2}}\right]\right)
$$

Therefore,

$$
\begin{aligned}
\frac{\left\|\nabla_{s} \phi_{\mathrm{SD}}(s, y)\right\|_{1}}{D(1) G\left(Y_{\max }\right)} & \leq \sum_{j=1}^{m}\left(\sum_{i=1}^{m}\left[\frac{1}{\sigma} \frac{\exp \left(s_{i} / \sigma\right)}{\sum_{j^{\prime}} \exp \left(s_{j^{\prime}} / \sigma\right)} 1_{(i=j)}+\frac{1}{\sigma} \frac{\exp \left(\left(s_{i}+s_{j}\right) / \sigma\right)}{\left(\sum_{j^{\prime}} \exp \left(s_{j^{\prime}} / \sigma\right)\right)^{2}}\right]\right) \\
& =\frac{1}{\sigma}\left(\frac{\sum_{j} \exp \left(s_{j} / \sigma\right)}{\sum_{j^{\prime}} \exp \left(s_{j^{\prime}} / \sigma\right)}+\frac{\left(\sum_{j} \exp \left(s_{j} / \sigma\right)\right)^{2}}{\left(\sum_{j^{\prime}} \exp \left(s_{j^{\prime}} / \sigma\right)\right)^{2}}\right) \\
& =\frac{2}{\sigma}
\end{aligned}
$$

## C. RankSVM

The RankSVM surrogate is defined as:

$$
\phi_{R S}(s, y)=\sum_{i=1}^{m} \sum_{j=1}^{m} \max \left(0,1_{\left(y_{i}>y_{j}\right)}\left(1+s_{j}-s_{i}\right)\right)
$$

It is easy to see that $\nabla_{s} \phi_{R S}(s, y)=\sum_{i=1}^{m} \sum_{j=1}^{m} \max \left(0,1_{\left(y_{i}>y_{j}\right)}\left(1+s_{j}-s_{i}\right)\right)\left(e_{j}-e_{i}\right)$. Thus, the $\ell_{1}$ norm of gradient is $O\left(m^{2}\right)$.

## D. Proof of Theorem 3

Proof. It is straightforward to check that $\mathcal{F}_{\text {lin }}^{\prime}$ is contained in both $\mathcal{F}_{\text {full }}$ as well as $\mathcal{F}_{\text {perminv }}$. So, we just need to prove that any $f$ that is in both $\mathcal{F}_{\text {full }}$ and $\mathcal{F}_{\text {perminv }}$ has to be in $\mathcal{F}_{\text {lin }}^{\prime}$ as well.
Let $P_{\pi}$ denote the $m \times m$ permutation matrix corresponding to a permutation $\pi$. Consider the full linear class $\mathcal{F}_{\text {full }}$. In matrix notation, the permutation invariance property means that, for any $\pi, X$, we have $\left.P_{\pi}\left[\left\langle X, W_{1}\right\rangle, \ldots,\left\langle X, W_{m}\right\rangle\right\rangle\right]^{\top}=$ $\left[\left\langle P_{\pi} X, W_{1}\right\rangle, \ldots,\left\langle P_{\pi} X, W_{m}\right\rangle\right]^{\top}$.
Let $\rho_{1}=\left\{P_{\pi}: \pi(1)=1\right\}$, where $\pi(i)$ denotes the index of the element in the $i$ th position according to permutation $\pi$. Fix any $P \in \rho_{1}$. Then, for any $X,\left\langle X, W_{1}\right\rangle=\left\langle P X, W_{1}\right\rangle$. This implies that, for all $X, \operatorname{Tr}\left(W_{1}{ }^{\top} X\right)=\operatorname{Tr}\left(W_{1}{ }^{\top} P X\right)$. Using the fact that $\operatorname{Tr}\left(A^{\top} X\right)=\operatorname{Tr}\left(B^{\top} X\right), \forall X$ implies $A=B$, we have that $W_{1}^{\top}=W_{1}^{\top} P$. Because $P^{\top}=P^{-1}$, this means $P W_{1}=W_{1}$. This shows that all rows of $W_{1}$, other than 1st row, are the same but perhaps different from 1st row. By considering $\rho_{i}=\left\{P_{\pi}: \pi(i)=i\right\}$ for $i>1$, the same reasoning shows that, for each $i$, all rows of $W_{i}$, other than $i$ th row, are the same but possibly different from $i$ th row.
Let $\rho_{1 \leftrightarrow 2}=\left\{P_{\pi}: \pi(1)=2, \pi(2)=1\right\}$. Fix any $P \in \rho_{1 \leftrightarrow 2}$. Then, for any $X,\left\langle X, W_{2}\right\rangle=\left\langle P X, W_{1}\right\rangle$ and $\left\langle X, W_{1}\right\rangle=$ $\left\langle P X, W_{2}\right\rangle$. Thus, we have $W_{2}^{\top}=W_{1}^{\top} P$ as well as $W_{1}^{\top}=W_{2}^{\top} P$ which means $P W_{2}=W_{1}, P W_{1}=W_{2}$. This shows that row 1 of $W_{1}$ and row 2 of $W_{2}$ are the same. Moreover, row 2 of $W_{1}$ and row 1 of $W_{2}$ are the same. Thus, for some $u, u^{\prime} \in \mathbb{R}^{d}, W_{1}$ is of the form $\left[u\left|u^{\prime}\right| u^{\prime}|\ldots| u^{\prime}\right]^{\top}$ and $W_{2}$ is of the form $\left[u^{\prime}|u| u^{\prime}|\ldots| u^{\prime}\right]^{\top}$. Repeating this argument by considering $\rho_{1 \leftrightarrow i}$ for $i>2$ shows that $W_{i}$ is of the same form ( $u$ in row $i$ and $u^{\prime}$ elsewhere).
Therefore, we have proved that any linear map that is permutation invariant has to be of the form:

$$
X \mapsto\left(u^{\top} X_{i}+\left(u^{\prime}\right)^{\top} \sum_{j \neq i} X_{j}\right)_{i=1}^{m}
$$

We can reparameterize above using $w=u-u^{\prime}$ and $v=u^{\prime}$ which proves the result.

## E. Proof of Lemma 4

Proof. The first equality is true because

$$
\begin{aligned}
\left\|X^{\top}\right\|_{1 \rightarrow p} & =\sup _{v \neq 0} \frac{\left\|X^{\top} v\right\|_{p}}{\|v\|_{1}}=\sup _{v \neq 0} \sup _{u \neq 0} \frac{\left\langle X^{\top} v, u\right\rangle}{\|v\|_{1}\|u\|_{q}} \\
& =\sup _{u \neq 0} \sup _{v \neq 0} \frac{\langle v, X u\rangle}{\|v\|_{1}\|u\|_{q}}=\sup _{u \neq 0} \frac{\|X u\|_{\infty}}{\|u\|_{q}}=\|X\|_{q \rightarrow \infty}
\end{aligned}
$$

The second is true because

$$
\begin{aligned}
\|X\|_{q \rightarrow \infty} & =\sup _{u \neq 0} \frac{\|X u\|_{\infty}}{\|u\|_{q}}=\sup _{u \neq 0} \max _{j=1}^{m} \frac{\left|\left\langle X_{j}, u\right\rangle\right|}{\|u\|_{q}} \\
& =\max _{j=1}^{m} \sup _{u \neq 0} \frac{\left|\left\langle X_{j}, u\right\rangle\right|}{\|u\|_{q}}=\max _{j=1}^{m}\left\|X_{j}\right\|_{p}
\end{aligned}
$$

## F. Proof of Theorem 6

Our theorem is developed from the "expectation version" of Theorem 6 of Shalev-Shwartz et al. (2009) that was originally given in probabilistic form. The expected version is as follows.
Let $\mathcal{Z}$ be a space endowed with a probability distribution generating iid draws $Z_{1}, \ldots, Z_{n}$. Let $\mathcal{W} \subseteq \mathbb{R}^{d}$ and $f: \mathcal{W} \times \mathcal{Z} \rightarrow$
$\mathbb{R}$ be $\lambda$-strongly convex ${ }^{4}$ and $G$-Lipschitz (w.r.t. $\|\cdot\|_{2}$ ) in $w$ for every $z$. We define $F(w)=\mathbb{E}[f(w, Z)]$ and let

$$
\begin{aligned}
w^{\star} & =\underset{w \in \mathcal{W}}{\operatorname{argmin}} F(w) \\
\hat{w} & =\underset{w \in \mathcal{W}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} f\left(w, Z_{i}\right)
\end{aligned}
$$

Then $\mathbb{E}\left[F(\hat{w})-F\left(w^{\star}\right)\right] \leq \frac{4 G^{2}}{\lambda n}$, where the expectation is taken over the sample. The above inequality can be proved by carefully going through the proof of Theorem 6 proved by Shalev-Shwartz et al. (2009).
We now derive the "expectation version" of Theorem 7 of Shalev-Shwartz et al. (2009). Define the regularized empirical risk minimizer as follows:

$$
\begin{equation*}
\hat{w}_{\lambda}=\underset{w \in \mathcal{W}}{\operatorname{argmin}} \frac{\lambda}{2}\|w\|_{2}^{2}+\frac{1}{n} \sum_{i=1}^{n} f\left(w, Z_{i}\right) . \tag{9}
\end{equation*}
$$

The following result gives optimality guarantees for the regularized empirical risk minimizer.
Theorem 18. Let $\mathcal{W}=\left\{w:\|w\|_{2} \leq W_{2}\right\}$ and let $f(w, z)$ be convex and $G$-Lipschitz (w.r.t. $\|\cdot\|_{2}$ ) in $w$ for every $z$. Let $Z_{1}, \ldots, Z_{n}$ be iid samples and let $\lambda=\sqrt{\frac{\frac{4 G^{2}}{n}}{\frac{W_{2}^{2}}{2}+\frac{4 W_{2}^{2}}{n}}}$. Then for $\hat{w}_{\lambda}$ and $w^{\star}$ as defined above, we have

$$
\begin{equation*}
\mathbb{E}\left[F\left(\hat{w}_{\lambda}\right)-F\left(w^{\star}\right)\right] \leq 2 G W_{2}\left(\frac{8}{n}+\sqrt{\frac{2}{n}}\right) \tag{10}
\end{equation*}
$$

Proof. Let $r_{\lambda}(w, z)=\frac{\lambda}{2}\|w\|_{2}^{2}+f(w, z)$. Then $r_{\lambda}$ is $\lambda$-strongly convex with Lipschitz constant $\lambda W_{2}+G$ in $\|\cdot\|_{2}$. Applying "expectation version" of Theorem 6 of Shalev-Shwartz et al. (2009) to $r_{\lambda}$, we get

$$
\mathbb{E}\left[\frac{\lambda}{2}\left\|\hat{w}_{\lambda}\right\|_{2}^{2}+F\left(\hat{w}_{\lambda}\right)\right] \leq \min _{w \in \mathcal{W}}\left\{\frac{\lambda}{2}\|w\|_{2}^{2}+F(w)\right\}+\frac{4\left(\lambda W_{2}+G\right)^{2}}{\lambda n} \leq \frac{\lambda}{2}\left\|w^{\star}\right\|_{2}^{2}+F\left(w^{*}\right)+\frac{4\left(\lambda W_{2}+G\right)^{2}}{\lambda n}
$$

Thus, we get

$$
\mathbb{E}\left[F\left(\hat{w}_{\lambda}\right)-F\left(w^{\star}\right)\right] \leq \frac{\lambda W_{2}^{2}}{2}+\frac{4\left(\lambda W_{2}+G\right)^{2}}{\lambda n}
$$

Minimizing the upper bound w.r.t. $\lambda$, we get $\lambda=\sqrt{\frac{4 G^{2}}{n}} \sqrt{\frac{1}{\frac{W_{2}^{2}}{2}+\frac{4 W_{2}^{2}}{n}}}$. Plugging this choice back in the equation above and using the fact that $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$ finishes the proof of Theorem 18.

We now have all ingredients to prove Theorem 6.
Proof of Theorem 6. Let $\mathcal{Z}=\mathcal{X} \times \mathcal{Y}$ and $f(w, z)=\phi(X w, y)$ and apply Theorem 18. Finally note that if $\phi$ is $G_{\phi^{-}}$ Lipschitz w.r.t. $\|\cdot\|_{\infty}$ and every row of $X \in \mathbb{R}^{m \times d}$ has Euclidean norm bounded by $R_{X}$ then $f(\cdot, z)$ is $G_{\phi} R_{X}$-Lipschitz w.r.t. $\|\cdot\|_{2}$ in $w$.

## G. Proof of Theorem 12

Proof. Following exactly the same line of reasoning (reducing a sample of size $n$, where each prediction is $\mathbb{R}^{m}$-valued, to an sample of size $m n$, where each prediction is real valued) as in the beginning of proof of Proposition 7, we have

$$
\begin{equation*}
\mathcal{N}_{\infty}\left(\epsilon, \phi \circ \mathcal{F}_{1}, n\right) \leq \mathcal{N}_{\infty}\left(\epsilon / G_{\phi}, \mathcal{G}_{1}, m n\right) \tag{11}
\end{equation*}
$$

Plugging in the following bound due to Zhang (2002, Corollary 5):

$$
\begin{aligned}
\log _{2} \mathcal{N}_{\infty}\left(\epsilon / G_{\phi}, \mathcal{G}_{1}, m n\right) & \leq\left\lceil\frac{288 G_{\phi}^{2} W_{1}^{2} \bar{R}_{X}^{2}(2+\ln d)}{\epsilon^{2}}\right\rceil \\
& \times \log _{2}\left(2\left\lceil 8 G_{\phi} W_{1} \bar{R}_{X} / \epsilon\right\rceil m n+1\right)
\end{aligned}
$$

into (11) respectively proves the result.

[^0]
## H. Calculations involved in deriving Equation (8)

Plugging in the value of $\eta$ from (7) into the expression

$$
\frac{L_{\phi}\left(w^{\star}\right)}{(1-4 \eta H)}+\frac{W_{2}^{2}}{2 \eta(1-4 \eta H) n}
$$

yields (using the shorthand $L^{\star}$ for $L_{\phi}\left(w^{\star}\right)$ )

$$
L^{\star}+\frac{2 H W_{2} L^{\star}}{\sqrt{4 H^{2} W_{2}^{2}+2 H L^{\star} n}}+\frac{W_{2}}{n}\left[\frac{4 H^{2} W_{2}^{2}}{\sqrt{4 H^{2} W_{2}^{2}+2 H L^{\star} n}}+\sqrt{4 H^{2} W_{2}^{2}+2 H L^{\star} n}+4 H W_{2}\right]
$$

Denoting $H W_{2}^{2} / n$ by $x$, this simplifies to

$$
L^{\star}+\frac{2 \sqrt{x} L^{\star}+4 x \sqrt{x}}{\sqrt{4 x+2 L^{\star}}}+\sqrt{x} \sqrt{4 x+2 L^{\star}}+4 x
$$

Using the arithmetic mean-geometric mean inequality to upper bound the middle two terms gives

$$
L^{\star}+2 \sqrt{2 x L^{\star}+4 x^{2}}+4 x
$$

Finally, using $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$, we get our final upper bound

$$
L^{\star}+2 \sqrt{2 x L^{\star}}+8 x
$$

## I. Calculation of smoothness constant

$$
\begin{aligned}
& \left\|\left(X^{(i)}\right)^{\top} \nabla_{s}^{2} \phi\left(X^{(i)} w, y^{(i)}\right) X^{(i)}\right\|_{2 \rightarrow 2}=\sup _{v \neq 0} \frac{\left\|\left(X^{(i)}\right)^{\top} \nabla_{s}^{2} \phi\left(X^{(i)} w, y^{(i)}\right) X^{(i)} v\right\|_{2}}{\|v\|_{2}} \\
\leq & \sup _{v \neq 0} \frac{\left\|\left(X^{(i)}\right)^{\top}\right\|_{1 \rightarrow 2}\left\|\nabla_{s}^{2} \phi\left(X^{(i)} w, y^{(i)}\right) X^{(i)} v\right\|_{1}}{\|v\|_{2}} \leq \sup _{v \neq 0} \frac{\left\|\left(X^{(i)}\right)^{\top}\right\|_{1 \rightarrow 2} \cdot\left\|\nabla_{s}^{2} \phi\left(X^{(i)} w, y^{(i)}\right)\right\|_{\infty \rightarrow 1} \cdot\left\|X^{(i)} v\right\|_{\infty}}{\|v\|_{2}} \\
\leq & \sup _{v \neq 0} \frac{\left\|\left(X^{(i)}\right)^{\top}\right\|_{1 \rightarrow 2} \cdot\left\|\nabla_{s}^{2} \phi\left(X^{(i)} w, y^{(i)}\right)\right\|_{\infty \rightarrow 1} \cdot\left\|X^{(i)}\right\|_{2 \rightarrow \infty} \cdot\|v\|_{2}}{\|v\|_{2}} \\
\leq & \left(\max _{j=1}^{m}\left\|X_{j}^{(i)}\right\|\right)^{2} \cdot\left\|\nabla_{s}^{2} \phi\left(X^{(i)} w, y^{(i)}\right)\right\|_{\infty \rightarrow 1} \\
\leq & R_{X}^{2}\left\|\nabla_{s}^{2} \phi\left(X^{(i)} w, y^{(i)}\right)\right\|_{\infty \rightarrow 1} .
\end{aligned}
$$

## J. Proof of Lemma 14

Proof. Consider the function

$$
f(t)=\phi\left((1-t) s_{1}+t s_{2}\right)
$$

It is clearly non-negative. Moreover
and therefore it is smooth with constant $h=H_{\phi}\left\|\mid s_{2}-s_{1}\right\| \|^{2}$. Appealing to Lemma 13 now gives

$$
(f(1)-f(0))^{2} \leq 6 H_{\phi}\left\|\mid s_{2}-s_{1}\right\| \|^{2}(f(1)+f(0))(1-0)^{2}
$$

which proves the lemma since $f(0)=\phi\left(s_{1}\right)$ and $f(1)=\phi\left(s_{2}\right)$.

## K. Proof of Proposition 15

Proof. Let $w, w^{\prime} \in \mathcal{F}_{\phi, 2}(r)$. Using Lemma 14

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{1}{n}\left(\phi\left(X^{(i)} w, y^{(i)}\right)-\phi\left(X^{(i)} w^{\prime}, y^{(i)}\right)\right)^{2} \\
\leq & 6 H_{\phi} \sum_{i=1}^{n} \frac{1}{n}\left(\phi\left(X^{(i)} w, y^{(i)}\right)+\phi\left(X^{(i)} w^{\prime}, y^{(i)}\right)\right) \\
\cdot & \left\|X^{(i)} w-X^{(i)} w^{\prime}\right\|_{\infty}^{2} \\
\leq & 6 H_{\phi} \cdot \max _{i=1}^{n}\left\|X^{(i)} w-X^{(i)} w^{\prime}\right\|_{\infty}^{2} \\
& \cdot \sum_{i=1}^{n} \frac{1}{n}\left(\phi\left(X^{(i)} w, y^{(i)}\right)+\phi\left(X^{(i)} w^{\prime}, y^{(i)}\right)\right) \\
= & 6 H_{\phi} \cdot \max _{i=1}^{n}\left\|X^{(i)} w-X^{(i)} w^{\prime}\right\|_{\infty}^{2} \cdot\left(\hat{L}_{\phi}(w)+\hat{L}_{\phi}\left(w^{\prime}\right)\right) \\
\leq & 12 H_{\phi} r \cdot \max _{i=1}^{n}\left\|X^{(i)} w-X^{(i)} w^{\prime}\right\|_{\infty}^{2} .
\end{aligned}
$$

where the last inequality follows because $\hat{L}_{\phi}(w)+\hat{L}_{\phi}\left(w^{\prime}\right) \leq 2 r$.
This immediately implies that if we have a cover of the class $\mathcal{G}_{2}$ at scale $\epsilon / \sqrt{12 H_{\phi} r}$ w.r.t. the metric

$$
\max _{i=1}^{n} \max _{j=1}^{m}\left|\left\langle X_{j}^{(i)}, w\right\rangle-\left\langle X_{j}^{(i)}, w^{\prime}\right\rangle\right|
$$

then it is also a cover of $\mathcal{F}_{\phi, 2}(r)$ w.r.t. $d_{2}^{Z^{(1: n)}}$. Therefore, we have

$$
\begin{equation*}
\mathcal{N}_{2}\left(\epsilon, \mathcal{F}_{\phi, 2}(r), Z^{(1: n)}\right) \leq \mathcal{N}_{\infty}\left(\epsilon / \sqrt{12 H_{\phi} r}, \mathcal{G}_{2}, m n\right) \tag{12}
\end{equation*}
$$

Appealing once again to a result by Zhang (2002, Corollary 3), we get

$$
\begin{aligned}
\log _{2} \mathcal{N}_{\infty}\left(\epsilon / \sqrt{12 H_{\phi} r}, \mathcal{G}_{2}, m n\right) \leq & \left\lceil\frac{12 H_{\phi} W_{2}^{2} R_{X}^{2} r}{\epsilon^{2}}\right\rceil \\
& \times \log _{2}(2 m n+1)
\end{aligned}
$$

which finishes the proof.

## L. Proof of Corollary 16

Proof. We plug in Proposition 15's estimate into (5):

$$
\begin{aligned}
\widehat{\Re}_{n}\left(\mathcal{F}_{\phi, 2}(r)\right) & \leq \inf _{\alpha>0}\left(4 \alpha+10 \int_{\alpha}^{\sqrt{B r}} \sqrt{\frac{\left[\frac{12 H_{\phi} W_{2}^{2} R_{X}^{2} r}{\epsilon^{2}}\right] \log _{2}(2 m n+1)}{n}} d \epsilon\right) \\
& \leq \inf _{\alpha>0}\left(4 \alpha+20 \sqrt{3} W_{2} R_{X} \sqrt{\frac{r H_{\phi} \log _{2}(3 m n)}{n}} \int_{\alpha}^{\sqrt{B r}} \frac{1}{\epsilon} d \epsilon\right)
\end{aligned}
$$

Now choosing $\alpha=C \sqrt{r}$ where $C=5 \sqrt{3} W_{2} R_{X} \sqrt{\frac{H_{\phi} \log _{2}(3 m n)}{n}}$ gives us the upper bound

$$
\widehat{\Re}_{n}\left(\mathcal{F}_{\phi, 2}(r)\right) \leq 4 \sqrt{r} C\left(1+\log \frac{\sqrt{B}}{C}\right) \leq 4 \sqrt{r} C \log \frac{3 \sqrt{B}}{C}
$$

## M. Proof of Theorem 17

Proof. We appeal to Theorem 6.1 of Bousquet (2002) that assumes there exists an upper bound

$$
\widehat{\mathfrak{R}}_{n}\left(\mathcal{F}_{2, \phi}(r)\right) \leq \psi_{n}(r)
$$

where $\psi_{n}:[0, \infty) \rightarrow \mathbb{R}_{+}$is a non-negative, non-decreasing, non-zero function such that $\psi_{n}(r) / \sqrt{r}$ is non-increasing. The upper bound in Corollary 16 above satisfies these conditions and therefore we set $\psi_{n}(r)=4 \sqrt{r} C \log \frac{3 \sqrt{B}}{C}$ with $C$ as defined in Corollary 16. From Bousquet's result, we know that, with probability at least $1-\delta$,

$$
\begin{aligned}
\forall w \in \mathcal{F}_{2}, L_{\phi}(w) \leq & \hat{L}_{\phi}(w)+45 r_{n}^{\star}+\sqrt{8 r_{n}^{\star} L_{\phi}(w)} \\
& +\sqrt{4 r_{0} L_{\phi}(w)}+20 r_{0}
\end{aligned}
$$

where $r_{0}=B(\log (1 / \delta)+\log \log n) / n$ and $r_{n}^{\star}$ is the largest solution to the equation $r=\psi_{n}(r)$. In our case, $r_{n}^{\star}=$ $\left(4 C \log \frac{3 \sqrt{B}}{C}\right)^{2}$. This proves the first inequality.
Now, using the above inequality with $w=\hat{w}$, the empirical risk minimizer and noting that $\hat{L}_{\phi}(\hat{w}) \leq \hat{L}_{\phi}\left(w^{\star}\right)$, we get

$$
\begin{aligned}
L_{\phi}(\hat{w}) \leq & \hat{L}_{\phi}\left(w^{\star}\right)+45 r_{n}^{\star}+\sqrt{8 r_{n}^{\star} L_{\phi}(\hat{w})} \\
& +\sqrt{4 r_{0} L_{\phi}(\hat{w})}+20 r_{0}
\end{aligned}
$$

The second inequality now follows after some elementary calculations detailed below.

## M.1. Details of some calculations in the proof of Theorem 17

Using Bernstein's inequality, we have, with probability at least $1-\delta$,

$$
\begin{aligned}
\hat{L}_{\phi}\left(w^{\star}\right) & \leq L_{\phi}\left(w^{\star}\right)+\sqrt{\frac{4 \operatorname{Var}\left[\phi\left(X w^{\star}, y\right)\right] \log (1 / \delta)}{n}}+\frac{4 B \log (1 / \delta)}{n} \\
& \leq L_{\phi}\left(w^{\star}\right)+\sqrt{\frac{4 B L_{\phi}\left(w^{\star}\right) \log (1 / \delta)}{n}}+\frac{4 B \log (1 / \delta)}{n} \\
& \leq L_{\phi}\left(w^{\star}\right)+\sqrt{4 r_{0} L_{\phi}\left(w^{\star}\right)}+4 r_{0}
\end{aligned}
$$

Set $D_{0}=45 r_{n}^{\star}+20 r_{0}$. Putting the two bounds together and using some simple upper bounds, we have, with probability at least $1-2 \delta$,

$$
\begin{aligned}
L_{\phi}(\hat{w}) & \leq \sqrt{D_{0} \hat{L}_{\phi}\left(w^{\star}\right)}+D_{0} \\
\hat{L}_{\phi}\left(w^{\star}\right) & \leq \sqrt{D_{0} L_{\phi}\left(w^{\star}\right)}+D_{0}
\end{aligned}
$$

which implies that

$$
L_{\phi}(\hat{w}) \leq \sqrt{D_{0}} \sqrt{\sqrt{D_{0} L_{\phi}\left(w^{\star}\right)}+D_{0}}+D_{0}
$$

Using $\sqrt{a b} \leq(a+b) / 2$ to simplify the first term on the right gives us

$$
L_{\phi}(\hat{w}) \leq \frac{D_{0}}{2}+\frac{\sqrt{D_{0} L_{\phi}\left(w^{\star}\right)}+D_{0}}{2}+D_{0}=\frac{\sqrt{D_{0} L_{\phi}\left(w^{\star}\right)}}{2}+2 D_{0}
$$


[^0]:    ${ }^{4}$ Recall that a function is called $\lambda$-strongly convex (w.r.t. $\|\cdot\|_{2}$ ) iff $f-\frac{\lambda}{2}\|\cdot\|_{2}^{2}$ is convex.

