A. Proof of Proposition 1

Proof. Let e_j 's denote standard basis vectors. We have

$$\nabla_s \phi_{\text{LN}}(s, y) = -\sum_{j=1}^m P_j(y) e_j + \sum_{j=1}^m \frac{\exp(s_j)}{\sum_{j'=1}^m \exp(s_{j'})} e_j$$

Therefore,

$$\|\nabla_s \phi_{\mathrm{LN}}(s, y)\|_1 \le \sum_{j=1}^m P_j(y) \|e_j\|_1 + \sum_{j=1}^m \frac{\exp(s_j)}{\sum_{j'=1}^m \exp(s_{j'})} \|e_j\|_1$$

= 2.

We also have

$$[\nabla_s^2 \phi_{\text{LN}}(s, y)]_{j,k} = \begin{cases} -\frac{\exp(2s_j)}{(\sum_{j'=1}^m \exp(s_{j'}))^2} + \frac{\exp(s_j)}{\sum_{j'=1}^m \exp(s_{j'})} & \text{if } j = k \\ -\frac{\exp(s_j + s_k)}{(\sum_{j'=1}^m \exp(s_{j'}))^2} & \text{if } j \neq k \ . \end{cases}$$

Moreover,

$$\begin{aligned} \|\nabla_s^2 \phi_{\mathrm{LN}}(s, y)\|_{\infty \to 1} &\leq \sum_{j=1}^m \sum_{k=1}^m |[\nabla_s^2 \phi_{\mathrm{LN}}(s, y)]_{j,k}| \\ &\leq \sum_{j=1}^m \sum_{k=1}^m \frac{\exp(s_j + s_k)}{(\sum_{j'=1}^m \exp(s_{j'}))^2} + \sum_{j=1}^m \frac{\exp(s_j)}{\sum_{j'=1}^m \exp(s_{j'})} \\ &= \frac{(\sum_{j=1}^m \exp(s_j))^2}{(\sum_{j'=1}^m \exp(s_{j'}))^2} + \frac{\sum_{j=1}^m \exp(s_j)}{\sum_{j'=1}^m \exp(s_{j'})} \\ &= 2 \end{aligned}$$

B. Proof of Proposition 2

 $\textit{Proof.}\,$ Let $\mathbf{1}_{(\text{condition})}$ denote an indicator variable. We have

$$[\nabla_s \phi_{\rm SD}(s,y)]_j = D(1) \left(\sum_{i=1}^m G(r_i) \left[\frac{1}{\sigma} \frac{\exp(s_i/\sigma)}{\sum_{j'} \exp(s_{j'}/\sigma)} \mathbf{1}_{(i=j)} - \frac{1}{\sigma} \frac{\exp((s_i+s_j)/\sigma)}{(\sum_{j'} \exp(s_{j'}/\sigma))^2} \right] \right)$$

Therefore,

$$\frac{\|\nabla_s \phi_{\mathrm{SD}}(s, y)\|_1}{D(1)G(Y_{\max})} \le \sum_{j=1}^m \left(\sum_{i=1}^m \left[\frac{1}{\sigma} \frac{\exp(s_i/\sigma)}{\sum_{j'} \exp(s_{j'}/\sigma)} \mathbf{1}_{(i=j)} + \frac{1}{\sigma} \frac{\exp((s_i+s_j)/\sigma)}{(\sum_{j'} \exp(s_{j'}/\sigma))^2} \right] \right)$$
$$= \frac{1}{\sigma} \left(\frac{\sum_j \exp(s_j/\sigma)}{\sum_{j'} \exp(s_{j'}/\sigma)} + \frac{(\sum_j \exp(s_j/\sigma))^2}{(\sum_{j'} \exp(s_{j'}/\sigma))^2} \right)$$
$$= \frac{2}{\sigma}.$$

C. RankSVM

The RankSVM surrogate is defined as:

$$\phi_{RS}(s,y) = \sum_{i=1}^{m} \sum_{j=1}^{m} \max(0, 1_{(y_i > y_j)}(1 + s_j - s_i))$$

It is easy to see that $\nabla_s \phi_{RS}(s, y) = \sum_{i=1}^m \sum_{j=1}^m \max(0, 1_{(y_i > y_j)}(1 + s_j - s_i))(e_j - e_i)$. Thus, the ℓ_1 norm of gradient is $O(m^2)$.

D. Proof of Theorem 3

Proof. It is straightforward to check that $\mathcal{F}'_{\text{lin}}$ is contained in both $\mathcal{F}_{\text{full}}$ as well as $\mathcal{F}_{\text{perminv}}$. So, we just need to prove that any f that is in both $\mathcal{F}_{\text{full}}$ and $\mathcal{F}_{\text{perminv}}$ has to be in $\mathcal{F}'_{\text{lin}}$ as well.

Let P_{π} denote the $m \times m$ permutation matrix corresponding to a permutation π . Consider the full linear class $\mathcal{F}_{\text{full}}$. In matrix notation, the permutation invariance property means that, for any π, X , we have $P_{\pi}[\langle X, W_1 \rangle, \dots, \langle X, W_m \rangle\rangle]^{\top} = [\langle P_{\pi}X, W_1 \rangle, \dots, \langle P_{\pi}X, W_m \rangle]^{\top}$.

Let $\rho_1 = \{P_{\pi} : \pi(1) = 1\}$, where $\pi(i)$ denotes the index of the element in the *i*th position according to permutation π . Fix any $P \in \rho_1$. Then, for any $X, \langle X, W_1 \rangle = \langle PX, W_1 \rangle$. This implies that, for all $X, \operatorname{Tr}(W_1^{\top}X) = \operatorname{Tr}(W_1^{\top}PX)$. Using the fact that $\operatorname{Tr}(A^{\top}X) = \operatorname{Tr}(B^{\top}X), \forall X$ implies A = B, we have that $W_1^{\top} = W_1^{\top}P$. Because $P^{\top} = P^{-1}$, this means $PW_1 = W_1$. This shows that all rows of W_1 , other than 1st row, are the same but perhaps different from 1st row. By considering $\rho_i = \{P_{\pi} : \pi(i) = i\}$ for i > 1, the same reasoning shows that, for each *i*, all rows of W_i , other than *i*th row, are the same but possibly different from *i*th row.

Let $\rho_{1\leftrightarrow 2} = \{P_{\pi} : \pi(1) = 2, \pi(2) = 1\}$. Fix any $P \in \rho_{1\leftrightarrow 2}$. Then, for any $X, \langle X, W_2 \rangle = \langle PX, W_1 \rangle$ and $\langle X, W_1 \rangle = \langle PX, W_2 \rangle$. Thus, we have $W_2^{\top} = W_1^{\top}P$ as well as $W_1^{\top} = W_2^{\top}P$ which means $PW_2 = W_1, PW_1 = W_2$. This shows that row 1 of W_1 and row 2 of W_2 are the same. Moreover, row 2 of W_1 and row 1 of W_2 are the same. Thus, for some $u, u' \in \mathbb{R}^d, W_1$ is of the form $[u|u'|u'| \dots |u']^{\top}$ and W_2 is of the form $[u'|u|u'| \dots |u']^{\top}$. Repeating this argument by considering $\rho_{1\leftrightarrow i}$ for i > 2 shows that W_i is of the same form (u in row i and u' elsewhere).

Therefore, we have proved that any linear map that is permutation invariant has to be of the form:

$$X \mapsto \left(u^{\top} X_i + (u')^{\top} \sum_{j \neq i} X_j \right)_{i=1}^m.$$

We can reparameterize above using w = u - u' and v = u' which proves the result.

E. Proof of Lemma 4

Proof. The first equality is true because

$$\|X^{\top}\|_{1 \to p} = \sup_{v \neq 0} \frac{\|X^{\top}v\|_{p}}{\|v\|_{1}} = \sup_{v \neq 0} \sup_{u \neq 0} \frac{\langle X^{\top}v, u \rangle}{\|v\|_{1}\|u\|_{q}}$$
$$= \sup_{u \neq 0} \sup_{v \neq 0} \frac{\langle v, Xu \rangle}{\|v\|_{1}\|u\|_{q}} = \sup_{u \neq 0} \frac{\|Xu\|_{\infty}}{\|u\|_{q}} = \|X\|_{q \to \infty}.$$

The second is true because

$$|X||_{q \to \infty} = \sup_{u \neq 0} \frac{\|Xu\|_{\infty}}{\|u\|_{q}} = \sup_{u \neq 0} \max_{j=1}^{m} \frac{|\langle X_{j}, u \rangle|}{\|u\|_{q}}$$
$$= \max_{j=1}^{m} \sup_{u \neq 0} \frac{|\langle X_{j}, u \rangle|}{\|u\|_{q}} = \max_{j=1}^{m} \|X_{j}\|_{p}.$$

F. Proof of Theorem 6

Our theorem is developed from the "expectation version" of Theorem 6 of Shalev-Shwartz et al. (2009) that was originally given in probabilistic form. The expected version is as follows.

Let \mathcal{Z} be a space endowed with a probability distribution generating iid draws Z_1, \ldots, Z_n . Let $\mathcal{W} \subseteq \mathbb{R}^d$ and $f : \mathcal{W} \times \mathcal{Z} \to \mathcal{U}$

 \mathbb{R} be λ -strongly convex⁴ and G-Lipschitz (w.r.t. $\|\cdot\|_2$) in w for every z. We define $F(w) = \mathbb{E}[f(w, Z)]$ and let

$$w^* = \underset{w \in \mathcal{W}}{\operatorname{argmin}} F(w),$$
$$\hat{w} = \underset{w \in \mathcal{W}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n f(w, Z_i)$$

Then $\mathbb{E}\left[F(\hat{w}) - F(w^{\star})\right] \leq \frac{4G^2}{\lambda n}$, where the expectation is taken over the sample. The above inequality can be proved by carefully going through the proof of Theorem 6 proved by Shalev-Shwartz et al. (2009).

We now derive the "expectation version" of Theorem 7 of Shalev-Shwartz et al. (2009). Define the regularized empirical risk minimizer as follows:

$$\hat{w}_{\lambda} = \underset{w \in \mathcal{W}}{\operatorname{argmin}} \ \frac{\lambda}{2} \|w\|_{2}^{2} + \frac{1}{n} \sum_{i=1}^{n} f(w, Z_{i}).$$

$$\tag{9}$$

The following result gives optimality guarantees for the regularized empirical risk minimizer.

Theorem 18. Let $\mathcal{W} = \{w : \|w\|_2 \leq W_2\}$ and let f(w, z) be convex and *G*-Lipschitz (w.r.t. $\|\cdot\|_2$) in w for every z. Let $Z_1, ..., Z_n$ be iid samples and let $\lambda = \sqrt{\frac{\frac{4G^2}{n}}{\frac{W_2^2}{2} + \frac{4W_2^2}{2}}}$. Then for \hat{w}_{λ} and w^* as defined above, we have

$$\mathbb{E}\left[F(\hat{w}_{\lambda}) - F(w^{\star})\right] \le 2 G W_2\left(\frac{8}{n} + \sqrt{\frac{2}{n}}\right).$$
(10)

Proof. Let $r_{\lambda}(w, z) = \frac{\lambda}{2} ||w||_2^2 + f(w, z)$. Then r_{λ} is λ -strongly convex with Lipschitz constant $\lambda W_2 + G$ in $|| \cdot ||_2$. Applying "expectation version" of Theorem 6 of Shalev-Shwartz et al. (2009) to r_{λ} , we get

$$\mathbb{E}\left[\frac{\lambda}{2}\|\hat{w}_{\lambda}\|_{2}^{2} + F(\hat{w}_{\lambda})\right] \leq \min_{w \in \mathcal{W}} \left\{\frac{\lambda}{2}\|w\|_{2}^{2} + F(w)\right\} + \frac{4(\lambda W_{2} + G)^{2}}{\lambda n} \leq \frac{\lambda}{2}\|w^{\star}\|_{2}^{2} + F(w^{\star}) + \frac{4(\lambda W_{2} + G)^{2}}{\lambda n}.$$

Thus, we get

$$\mathbb{E}\left[F(\hat{w}_{\lambda}) - F(w^{\star})\right] \le \frac{\lambda W_2^2}{2} + \frac{4(\lambda W_2 + G)^2}{\lambda n}$$

Minimizing the upper bound w.r.t. λ , we get $\lambda = \sqrt{\frac{4G^2}{n}} \sqrt{\frac{1}{\frac{W_2^2}{2} + \frac{4W_2^2}{n}}}$. Plugging this choice back in the equation above and using the fact that $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ finishes the proof of Theorem 18.

We now have all ingredients to prove Theorem 6.

Proof of Theorem 6. Let $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ and $f(w, z) = \phi(Xw, y)$ and apply Theorem 18. Finally note that if ϕ is G_{ϕ} -Lipschitz w.r.t. $\|\cdot\|_{\infty}$ and every row of $X \in \mathbb{R}^{m \times d}$ has Euclidean norm bounded by R_X then $f(\cdot, z)$ is $G_{\phi}R_X$ -Lipschitz w.r.t. $\|\cdot\|_2$ in w.

G. Proof of Theorem 12

Proof. Following exactly the same line of reasoning (reducing a sample of size n, where each prediction is \mathbb{R}^m -valued, to an sample of size mn, where each prediction is real valued) as in the beginning of proof of Proposition 7, we have

$$\mathcal{N}_{\infty}(\epsilon, \phi \circ \mathcal{F}_1, n) \le \mathcal{N}_{\infty}(\epsilon/G_{\phi}, \mathcal{G}_1, mn).$$
(11)

Plugging in the following bound due to Zhang (2002, Corollary 5):

$$\log_2 \mathcal{N}_{\infty}(\epsilon/G_{\phi}, \mathcal{G}_1, mn) \leq \left[\frac{288 G_{\phi}^2 W_1^2 \bar{R}_X^2 (2+\ln d)}{\epsilon^2}\right] \\ \times \log_2 \left(2\lceil 8G_{\phi} W_1 \bar{R}_X / \epsilon\rceil mn+1\right)$$

into (11) respectively proves the result.

⁴Recall that a function is called λ -strongly convex (w.r.t. $\|\cdot\|_2$) iff $f - \frac{\lambda}{2} \|\cdot\|_2^2$ is convex.

H. Calculations involved in deriving Equation (8)

Plugging in the value of η from (7) into the expression

$$\frac{L_{\phi}(w^{\star})}{(1-4\eta H)} + \frac{W_2^2}{2\eta(1-4\eta H)n}$$

yields (using the shorthand L^{\star} for $L_{\phi}(w^{\star})$)

$$L^{\star} + \frac{2HW_2L^{\star}}{\sqrt{4H^2W_2^2 + 2HL^{\star}n}} + \frac{W_2}{n} \left[\frac{4H^2W_2^2}{\sqrt{4H^2W_2^2 + 2HL^{\star}n}} + \sqrt{4H^2W_2^2 + 2HL^{\star}n} + 4HW_2 \right]$$

Denoting HW_2^2/n by x, this simplifies to

$$L^{\star} + \frac{2\sqrt{x}L^{\star} + 4x\sqrt{x}}{\sqrt{4x + 2L^{\star}}} + \sqrt{x}\sqrt{4x + 2L^{\star}} + 4x.$$

Using the arithmetic mean-geometric mean inequality to upper bound the middle two terms gives

$$L^* + 2\sqrt{2xL^* + 4x^2} + 4x.$$

Finally, using $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$, we get our final upper bound

$$L^{\star} + 2\sqrt{2xL^{\star}} + 8x.$$

I. Calculation of smoothness constant

$$\begin{split} \| (X^{(i)})^{\top} \nabla_{s}^{2} \phi(X^{(i)}w, y^{(i)}) X^{(i)} \|_{2 \to 2} &= \sup_{v \neq 0} \frac{\| (X^{(i)})^{\top} \nabla_{s}^{2} \phi(X^{(i)}w, y^{(i)}) X^{(i)} v \|_{2}}{\| v \|_{2}} \\ &\leq \sup_{v \neq 0} \frac{\| (X^{(i)})^{\top} \|_{1 \to 2} \| \nabla_{s}^{2} \phi(X^{(i)}w, y^{(i)}) X^{(i)} v \|_{1}}{\| v \|_{2}} \leq \sup_{v \neq 0} \frac{\| (X^{(i)})^{\top} \|_{1 \to 2} \cdot \| \nabla_{s}^{2} \phi(X^{(i)}w, y^{(i)}) \|_{\infty \to 1} \cdot \| X^{(i)} v \|_{\infty}}{\| v \|_{2}} \\ &\leq \sup_{v \neq 0} \frac{\| (X^{(i)})^{\top} \|_{1 \to 2} \cdot \| \nabla_{s}^{2} \phi(X^{(i)}w, y^{(i)}) \|_{\infty \to 1} \cdot \| X^{(i)} \|_{2 \to \infty} \cdot \| v \|_{2}}{\| v \|_{2}} \\ &\leq \left(\max_{j=1}^{m} \| X_{j}^{(i)} \| \right)^{2} \cdot \| \nabla_{s}^{2} \phi(X^{(i)}w, y^{(i)}) \|_{\infty \to 1} \\ &\leq R_{X}^{2} \| \nabla_{s}^{2} \phi(X^{(i)}w, y^{(i)}) \|_{\infty \to 1}. \end{split}$$

J. Proof of Lemma 14

Proof. Consider the function

$$f(t) = \phi((1-t)s_1 + ts_2).$$

It is clearly non-negative. Moreover

$$\begin{aligned} |f'(t_1) - f'(t_2)| &= |\langle \nabla_s \phi(s_1 + t_1(s_2 - s_1)) - \nabla_s \phi(s_1 + t_2(s_2 - s_1)), s_2 - s_1 \rangle | \\ &\leq |||\nabla_s \phi(s_1 + t_1(s_2 - s_1)) - \nabla_s \phi(s_1 + t_2(s_2 - s_1))|||_{\star} \cdot |||s_2 - s_1||| \\ &\leq H_{\phi} |t_1 - t_2| |||s_2 - s_1|||^2 \end{aligned}$$

and therefore it is smooth with constant $h = H_{\phi} |||s_2 - s_1|||^2$. Appealing to Lemma 13 now gives

$$(f(1) - f(0))^2 \le 6H_{\phi}|||s_2 - s_1|||^2(f(1) + f(0))(1 - 0)^2$$

which proves the lemma since $f(0) = \phi(s_1)$ and $f(1) = \phi(s_2)$.

K. Proof of Proposition 15

Proof. Let $w, w' \in \mathcal{F}_{\phi,2}(r)$. Using Lemma 14

$$\begin{split} &\sum_{i=1}^{n} \frac{1}{n} \left(\phi(X^{(i)}w, y^{(i)}) - \phi(X^{(i)}w', y^{(i)}) \right)^{2} \\ &\leq 6H_{\phi} \sum_{i=1}^{n} \frac{1}{n} \left(\phi(X^{(i)}w, y^{(i)}) + \phi(X^{(i)}w', y^{(i)}) \right) \\ &\cdot \|X^{(i)}w - X^{(i)}w'\|_{\infty}^{2} \\ &\leq 6H_{\phi} \cdot \max_{i=1}^{n} \|X^{(i)}w - X^{(i)}w'\|_{\infty}^{2} \\ &\cdot \sum_{i=1}^{n} \frac{1}{n} \left(\phi(X^{(i)}w, y^{(i)}) + \phi(X^{(i)}w', y^{(i)}) \right) \\ &= 6H_{\phi} \cdot \max_{i=1}^{n} \|X^{(i)}w - X^{(i)}w'\|_{\infty}^{2} \cdot \left(\hat{L}_{\phi}(w) + \hat{L}_{\phi}(w') \right) \\ &\leq 12H_{\phi}r \cdot \max_{i=1}^{n} \|X^{(i)}w - X^{(i)}w'\|_{\infty}^{2}. \end{split}$$

where the last inequality follows because $\hat{L}_{\phi}(w) + \hat{L}_{\phi}(w') \leq 2r$. This immediately implies that if we have a cover of the class \mathcal{G}_2 at scale $\epsilon/\sqrt{12H_{\phi}r}$ w.r.t. the metric

$$\max_{i=1}^{n} \max_{j=1}^{m} \left| \left\langle X_{j}^{(i)}, w \right\rangle - \left\langle X_{j}^{(i)}, w' \right\rangle \right|$$

then it is also a cover of $\mathcal{F}_{\phi,2}(r)$ w.r.t. $d_2^{Z^{(1:n)}}.$ Therefore, we have

$$\mathcal{N}_2(\epsilon, \mathcal{F}_{\phi,2}(r), Z^{(1:n)}) \le \mathcal{N}_\infty(\epsilon/\sqrt{12H_\phi r}, \mathcal{G}_2, mn).$$
(12)

Appealing once again to a result by Zhang (2002, Corollary 3), we get

$$\log_2 \mathcal{N}_{\infty}(\epsilon/\sqrt{12H_{\phi}r}, \mathcal{G}_2, mn) \leq \left\lceil \frac{12H_{\phi}W_2^2 R_X^2 r}{\epsilon^2} \right\rceil \\ \times \log_2(2mn+1)$$

which finishes the proof.

L. Proof of Corollary 16

Proof. We plug in Proposition 15's estimate into (5):

$$\widehat{\mathfrak{R}}_{n}\left(\mathcal{F}_{\phi,2}(r)\right) \leq \inf_{\alpha>0} \left(4\alpha + 10\int_{\alpha}^{\sqrt{Br}} \sqrt{\frac{\left[\frac{12H_{\phi}W_{2}^{2}R_{X}^{2}r}{\epsilon^{2}}\right]\log_{2}(2mn+1)}{n}} d\epsilon\right)$$
$$\leq \inf_{\alpha>0} \left(4\alpha + 20\sqrt{3}W_{2}R_{X}\sqrt{\frac{rH_{\phi}\log_{2}(3mn)}{n}} \int_{\alpha}^{\sqrt{Br}} \frac{1}{\epsilon} d\epsilon\right).$$

Now choosing $\alpha = C\sqrt{r}$ where $C = 5\sqrt{3}W_2 R_X \sqrt{\frac{H_\phi \log_2(3mn)}{n}}$ gives us the upper bound

$$\widehat{\mathfrak{R}}_n\left(\mathcal{F}_{\phi,2}(r)\right) \le 4\sqrt{r}C\left(1+\log\frac{\sqrt{B}}{C}\right) \le 4\sqrt{r}C\log\frac{3\sqrt{B}}{C}.$$

M. Proof of Theorem 17

Proof. We appeal to Theorem 6.1 of Bousquet (2002) that assumes there exists an upper bound

$$\widehat{\mathfrak{R}}_n\left(\mathcal{F}_{2,\phi}(r)\right) \le \psi_n(r)$$

where $\psi_n : [0, \infty) \to \mathbb{R}_+$ is a non-negative, non-decreasing, non-zero function such that $\psi_n(r)/\sqrt{r}$ is non-increasing. The upper bound in Corollary 16 above satisfies these conditions and therefore we set $\psi_n(r) = 4\sqrt{rC}\log\frac{3\sqrt{B}}{C}$ with C as defined in Corollary 16. From Bousquet's result, we know that, with probability at least $1 - \delta$,

$$\forall w \in \mathcal{F}_2, \ L_{\phi}(w) \leq \hat{L}_{\phi}(w) + 45r_n^{\star} + \sqrt{8r_n^{\star}L_{\phi}(w)} + \sqrt{4r_0L_{\phi}(w)} + 20r_0$$

where $r_0 = B(\log(1/\delta) + \log \log n)/n$ and r_n^* is the largest solution to the equation $r = \psi_n(r)$. In our case, $r_n^* = \left(4C\log\frac{3\sqrt{B}}{C}\right)^2$. This proves the first inequality.

Now, using the above inequality with $w = \hat{w}$, the empirical risk minimizer and noting that $\hat{L}_{\phi}(\hat{w}) \leq \hat{L}_{\phi}(w^{\star})$, we get

$$L_{\phi}(\hat{w}) \leq \hat{L}_{\phi}(w^{\star}) + 45r_{n}^{\star} + \sqrt{8r_{n}^{\star}L_{\phi}(\hat{w})} + \sqrt{4r_{0}L_{\phi}(\hat{w})} + 20r_{0}$$

The second inequality now follows after some elementary calculations detailed below.

M.1. Details of some calculations in the proof of Theorem 17

Using Bernstein's inequality, we have, with probability at least $1 - \delta$,

$$\hat{L}_{\phi}(w^{\star}) \leq L_{\phi}(w^{\star}) + \sqrt{\frac{4 \operatorname{Var}[\phi(Xw^{\star}, y)] \log(1/\delta)}{n}} + \frac{4B \log(1/\delta)}{n} \\
\leq L_{\phi}(w^{\star}) + \sqrt{\frac{4BL_{\phi}(w^{\star}) \log(1/\delta)}{n}} + \frac{4B \log(1/\delta)}{n} \\
\leq L_{\phi}(w^{\star}) + \sqrt{4r_0 L_{\phi}(w^{\star})} + 4r_0.$$

Set $D_0 = 45r_n^* + 20r_0$. Putting the two bounds together and using some simple upper bounds, we have, with probability at least $1 - 2\delta$,

$$L_{\phi}(\hat{w}) \leq \sqrt{D_0 \hat{L}_{\phi}(w^{\star})} + D_0,$$
$$\hat{L}_{\phi}(w^{\star}) \leq \sqrt{D_0 L_{\phi}(w^{\star})} + D_0.$$

which implies that

$$L_{\phi}(\hat{w}) \le \sqrt{D_0} \sqrt{\sqrt{D_0 L_{\phi}(w^{\star})} + D_0} + D_0.$$

Using $\sqrt{ab} \le (a+b)/2$ to simplify the first term on the right gives us

$$L_{\phi}(\hat{w}) \leq \frac{D_0}{2} + \frac{\sqrt{D_0 L_{\phi}(w^{\star})} + D_0}{2} + D_0 = \frac{\sqrt{D_0 L_{\phi}(w^{\star})}}{2} + 2D_0 .$$