
1 Gradient of Kullback-Leibler divergence

Let λ and λ′ be two sets of natural parameters of an exponential family, that is,

q(β;λ) = h(β) exp
(
λ>t(β)− a(λ)

)
. (1)

The partial derivatives of their Kullback-Leibler divergence are given by

∂

∂λ
DKL(λ,λ′) =

∂

∂λ
Eλ

[
log

q(β;λ)

q(β;λ′)

]
(2)

=
∂

∂λ
Eλ

[
(λ− λ′)>t(β)− a(λ) + a(λ′)

]
(3)

= (λ− λ′)> ∂

∂λ
Eλ [t(β)] + Eλ [t(β)]− ∂

∂λ
a(λ) (4)

= (λ− λ′)> ∂2

∂λ2
a(λ) +

∂

∂λ
a(λ)− ∂

∂λ
a(λ) (5)

= (λ− λ′)>I(λ), (6)

where we have used the exponential family identities

∂

∂λ
a(λ) = Eλ[t(β)]>,

∂2

∂λ2
a(λ) = I(λ). (7)

2 Asymptotic behavior of trust-region method

Here we show that the trust-region update given below converges to a natural gradient step.

dλ = argmax
dλ

{Ln(λ+ dλ)− ξDKL(λ+ dλ,λ)} (8)

For large ξ, dλ will be close to zero so that we can focus on the target functions’ first-order terms. For expo-
nential families in canonical form, we have

DKL(λ+ dλ,λ) = Eλ+dλ

[
log

q(β;λ+ dλ)

q(β;λ)

]
(9)

= Eλ+dλ

[
dλ>t(β)− a(λ+ dλ) + a(λ)

]
(10)

= dλ>∇a(λ+ dλ)− a(λ+ dλ) + a(λ). (11)

The gradient of the KL divergence in dλ is thus given by

∇DKL(λ+ dλ,λ) = ∇a(λ+ dλ) +∇2a(λ+ dλ)dλ−∇a(λ+ dλ) (12)

= ∇2a(λ+ dλ)dλ. (13)

Approximating the target function around λ yields

dλ>∇Ln(λ)− ξdλ>∇2a(λ)dλ, (14)

which when maximized gives an update proportional to the natural gradient direction,

dλ =
1

2ξ

(
∇2a(λ)

)−1∇Ln(λ). (15)
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3 Latent Dirichlet Allocation

In LDA we have global parameters β consisting of distributions over words βk and local parameters θn, zn
with distributions

p(β) =
∏
k

Dir(βk;η), (16)

p(θn) = Dir(θn;α), (17)

p(zn | θn) =
∏
m

θnznm , (18)

p(xn | zn,β) =
∏
m

βznmxnm . (19)

We approximate the posterior distribution over β with

q(β) =
∏
k

Dir(βk;λk). (20)

Writing the likelihood in the form of Equation 2 of the main paper gives

p(xn, zn,θn | β) = Dir(θ;α)

(∏
m

θnznm

)(∏
m

βznmxnm

)
(21)

= h(θn, zn) exp

(∑
m

log βznmxnm

)
(22)

= h(θn, zn) exp (〈t(β), f(zn, xn)〉) (23)

where h encompasses all terms which do not depend on β and

t(β) = logβ, (24)

f(zn, xn) =
∑
m

Iznmxnm , (25)

where Iij is a matrix with entry (i, j) set to 1 and all other entries set to 0. We here assume that β is a matrix
whose rows are the topics βk and

〈A, B〉 = vec(A)>vec(B) = tr(AB) (26)

for matrices A and B. Since the standard parametrization of the Dirichlet distribution is already in canonical
form, we can immediately apply Equation 10 of the main paper to get the steps of the inner loop of the trust-
region update,

λ = (1− ρt)λt + ρt
(
η +NEφ∗

n
[f(xn, zn)]

)
. (27)

The beliefs over zn (i.e., φ∗n) are computed in the usual manner [Blei et al., 2003].
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4 Mixture models

Consider a mixture model where the local parameters are the cluster assignments kn and the global parameters
are the prior weights π and the components’ parameters βk. We assume the following more specific form for
the model,

p(π) = Dir(π;α), (28)
p(kn | π) = πkn , (29)

p(βk) ∝ h(βk) exp
(
η>t(βk)

)
, (30)

p(xn | kn,β) = g(xn) exp
(
t(βkn)>f(xn)

)
(31)

for suitable funtions t, f , g, h. The factors of a mean-field approximation to the posterior are given by

q(π) = Dir(π;γ), (32)
q(kn) = φnkn , (33)

q(βk) ∝ h(βk) exp
(
λ>k t(βk)

)
. (34)

In each iteration, the trust-region method alternates between computing the optimal φn and updating γ and λ.
The approximate posterior over mixture components, slightly abusing notation, is given by

φ∗n = argmax
φn

Ln(λ,γ,φn) (35)

∝ expEq [log p(xn | kn,β)p(kn | π)] (36)

= expEq [log p(xn | kn,β)] exp

(
ψ(γ)− ψ

(∑
k

γk

))
(37)

where for the expected log-likelihood we have

Eq [log p(xn | kn,β)] = Eq [t(βkn)]
>
f(xn) + log g(xn). (38)

Once φ∗n is computed, we update γ and λ via

γ = (1− ρt)γt + ρt (α+Nφ∗n) , (39)

λk = (1− ρt)λt
k + ρt (η +Nφ∗nkf(xn)) . (40)

For mini-batches of size B, these updates become

γ = (1− ρt)γt + ρt

(
α+

N

B

∑
n

φ∗n

)
, (41)

λk = (1− ρt)λt
k + ρt

(
η +

N

B

∑
n

φ∗nkf(xn)

)
. (42)

To use these results with any concrete mixture model, we have to write down the prior over β in canonical form
and implement the expected log-likelihood (Equation 38) and the update in Equation 42.
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4.1 Mixture of multivariate Bernoullis

For the multivariate Bernoulli model,

p(xn | kn,β) =
∏
i

βxni
ki (1− βki)1−xni , (43)

we assume beta distributions for the prior and approximate posterior,

p(βk) ∝ βa−1
ki (1− βki)b−1, (44)

q(βk) ∝ βaki−1
ki (1− βki)bki−1. (45)

λk = (ak, bk) are already the natural parameters of the beta distribution, so that the updates (Equation 42)
become

ak = (1− ρt)at
k + ρt

(
a+

N

B

∑
n

φ∗nkxni

)
, (46)

bk = (1− ρt)bt
k + ρt

(
b+

N

B

∑
n

φ∗nk(1− xni)

)
. (47)

The expected log-likelihood needed for the computation of φ∗n is given by

Eq [log p(xn | kn,β)] = x>nψ(akn) + (1− xn)>ψ(bkn)− 1>ψ(akn + bkn), (48)

where the digamma function ψ is applied point-wise and 1 is a vector of ones.

4.2 Mixture of Gaussians

We assume a normal-inverse-Wishart distribution (NIW) for the parameters βk = (µk, Σk) of each Gaussian
distribution. The NIW for a singe component is given by

p(µ, Σ) ∝ exp
(
−s

2
(µ−m)>Σ−1(µ−m)

)
exp

(
−1

2
tr(ΨΣ−1)

)
|Σ|−

ν+D+1
2 (49)

= exp

(
−s

2
µ>Σ−1µ+ sµ>Σ−1m− 1

2
tr(smm>Σ−1)− 1

2
tr(ΨΣ−1)− ν

2
log |Σ| − D + 1

2
log |Σ|

)
(50)

= exp
(
η(m, s, Ψ, ν)>t(µ, Σ)

)
(51)

where

η(m, s, Ψ, ν) =
(
s,−2sm, vec(smm> + Ψ), ν

)
(52)

= (s, b, vec C, ν) = η, (53)

t(µ, Σ) = −1

2

(
µ>Σ−1µ, Σ−1µ, vec Σ−1, log |Σ|

)
. (54)
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are the natural parameters and sufficient statistics of the distribution, respectively. The likelihood for a single
data point x is given by

p(x | µ, Σ) ∝ exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
/|Σ| 12 (55)

= exp

(
−1

2
tr
(
Σ−1xx>

)
+ x>Σ−1µ− 1

2
µ>Σ−1µ− 1

2
log |Σ|

)
(56)

= exp
(
t(µ, Σ)>f(x)

)
, (57)

where

f(x) =
(
1,−2x, vec

(
xx>

)
, 1
)

. (58)

Hence, assuming the natural parameters of all components are given by

ηk = η(mk, sk, Ψk, νk) = (sk, bk, vec Ck, νk) , (59)

an update of the inner loop of the trust-region method (Equation 42) is given by

sk = (1− ρt)stk + ρt

(
s+

N

B

∑
n

φ∗nk

)
, (60)

bk = (1− ρt)bt
k + ρt

(
b− 2

N

B

∑
n

φ∗nkxn

)
, (61)

Ck = (1− ρt)Ct
k + ρt

(
C +

N

B

∑
n

φ∗nkxnx>n

)
, (62)

νk = (1− ρt)νtk + ρt

(
ν +

N

B

∑
n

φ∗nk

)
. (63)

Or, in terms of the more traditional parametrization,

mk = (1− ρt)
stk
sk

mt
k +

1

sk
ρt

(
sm +

N

B

∑
n

φ∗nkxn

)
, (64)

Ψk = (1− ρt)
(
Ψt

k + stkmt
kmt

k
>
)

+ ρt

(
Ψ + smm> +

N

B

∑
n

φ∗nkxnx>n

)
− skmkm>k . (65)

A proof that these updates leave Ψk positive definite is given below.

Positive definiteness of Ψk

We show positive definiteness of Ψk in two steps. First, we show that the constraint is fulfilled for ρt = 0 and
ρt = 1. Second, we show that the set of valid natural parameters induced by the constraint is convex, implying
that the constraint must be fulfilled for any linear interpolation of two natural parameters.
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For ρt = 0, we have Ψk = Ψt
k since none of the natural parameters has changed. Thus, Ψk is positive definite

if Ψt
k is positive definite. For ρt = 1, we have

Ψk = Ψ + smm> +
N

B

∑
n

φ∗nkxnx>n − skmkm>k , (66)

skmkmk =
1

sk

(
sm +

N

B

∑
n

φ∗nkxn

)(
sm +

N

B

∑
n

φ∗nkxn

)>
, (67)

sk = s+
N

B

∑
n

φ∗nk. (68)

Note that p0 = s/sk and pn = N
B φnk/sk are positive and sum to one and therefore can be considered proba-

bilities. Let X be a random variable which takes on value m with probability p0 and value xn with probability
pn. Then we can rewrite Equation 66 as

Ψk = Ψ + skEp[XX>]− skEp[X]Ep[X]> = Ψ + skV[X]. (69)

Since Ψ is positive definite and the covariance matrix V[X] is at least positive semi-definite, Ψk must be
positive definite.

We next show that the set of valid natural parameters,

{(s, b, C, ν) : s > 0, ν > D − 1, C− 1

4s
bb> is p. d. }, (70)

is convex. Not that this set is convex iff

{(s, b, C) : s > 0, C− 1

s2
bb> is p. d. }, (71)

is convex. This set is convex iff

{(s, b, C) : s > 0, C− bb> is p. d. }, (72)

is convex, since any perspective function preserves convexity and P (s, b, C) = (s, b/s, C) is a perspective
function. Finally, this set is convex iff the following set is convex,

Ω = {(b, C) : C− bb> is p. d. }. (73)

Assume (b1, C1), (b2, C2) ∈ Ω and let ρ ∈ [0, 1]. Then

ρC1 + (1− ρ)C2 − (ρb1 + (1− ρ)b2) (ρb1 + (1− ρ)b2)
> (74)

= ρC1 + (1− ρ)C2 − (ρ(b1 − b2) + b2) (b1 + (1− ρ)(b2 − b1))
> (75)

= ρ(C1 − b1b
>
1 ) + (1− ρ)(C2 − b2b

>
2 ) + ρ(1− ρ)(b1 − b2)(b1 − b2)>, (76)

which is a sum of positive definite and semi-definite matrices and therefore positive definite. Hence,

(ρC1 + (1− ρ)C2, ρb1 + (1− ρ)b2) ∈ Ω (77)

and Ω is convex.
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Expected log-likelihood

To compute he expected log-likelihood (Equation 38), we need

Eq

[
µ>k Σ−1k µk

]
= Eq

[
Eq

[
µ>k Σ−1k µk | Σk

]]
(78)

= Eq

[
tr
(
s−1k ΣkΣ−1k

)
+ m>k Σ−1k mk

]
(79)

= Ds−1k + νkm>k Ψ−1k mk, (80)

Eq

[
Σ−1k µk

]>
x = νkm>k Ψ−1k x, (81)

x>Eq

[
Σ−1k

]
x = νkx>Ψ−1k x, (82)

Eq

[
log |Σ−1k |

]
=

D∑
i=1

ψ

(
νk + 1− i

2

)
+D log 2 + log |Ψ−1k |. (83)

For Equation 79, see Petersen and Pedersen [2008]. For Equation 83, see Bishop [2006]. The expected log-
likelihood is thus given by

Eq [log p(x | k,β)] = Eq

[
−1

2
x>Σ−1k x + xΣ−1k µk −

1

2
µ>k Σ−1k µk +

1

2
log |Σ−1k | −

D

2
log(2π)

]
(84)

= −νk
2

x>Ψ−1k x + νkx>Ψ−1k mk −
D

2
s−1k −

νk
2

m>k Ψ−1k mk (85)

+
1

2

(
D∑
i=1

ψ

(
νk + 1− i

2

)
+D log 2− log |Ψk|

)
− D

2
log(2π) (86)

= −νk
2

(x−mk)>Ψ−1k (x−mk)− D

2
s−1k +

1

2

D∑
i=1

ψ

(
νk + 1− i

2

)
+

1

2
log |Ψ−1k | −

D

2
log π.

(87)
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