
High Confidence Policy Improvement

Philip S. Thomas PTHOMAS@CS.UMASS.EDU

University of Massachusetts Amherst

Georgios Theocharous THEOCHAR@ADOBE.COM

Adobe Research

Mohammad Ghavamzadeh GHAVAMZA@ADOBE.COM

Adobe Research & INRIA

Abstract
We present a batch reinforcement learning (RL)
algorithm that provides probabilistic guarantees
about the quality of each policy that it proposes,
and which has no hyper-parameters that require
expert tuning. The user may select any perfor-
mance lower-bound, ρ−, and confidence level, δ,
and our algorithm will ensure that the probability
that it returns a policy with performance below
ρ− is at most δ. We then propose an incremental
algorithm that executes our policy improvement
algorithm repeatedly to generate multiple policy
improvements. We show the viability of our ap-
proach with a simple gridworld and the standard
mountain car problem, as well as with a digital
marketing application that uses real world data.

1. Introduction
Most reinforcement learing (RL) algorithms do not provide
any guarantees that they will work properly with high con-
fidence. This plays a major role in precluding their use for
applications in which execution of a bad policy could be
costly (Jonker et al., 2004) or even dangerous (Moore et al.,
2010). To overcome this limitation, rather than focusing on
learning speed, sample complexity, or computational com-
plexity, we focus on ensuring “safety”. In this paper, we
mean by safety that the probability that our algorithm re-
turns a policy with performance below a baseline ρ− is at
most δ, where both ρ− and δ are chosen by the user to spec-
ify how much risk is reasonable for the application at hand.

We present batch and incremental policy improvement al-
gorithms that provide safety guarantees for every policy

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

they propose. Our algorithms do not have any hyper-
parameters that require expert tuning (there is one hyper-
parameter that should be set based on runtime limitations).
The primary drawbacks of our algorithms are their high
computational complexity and that, in order to provide their
guarantees, they tend to require more data to produce a pol-
icy improvement than ordinary RL algorithms.

To the best of our knowledge, conservative policy itera-
tion (CPI) (Kakade & Langford, 2002) and its derivatives
(Pirotta et al., 2013) are the only RL algorithms with mono-
tonically improving behavior. However, CPI was not in-
tended to be implemented as a safe algorithm—the analysis
that shows it is safe was meant to provide insight into how
it scales to larger problems, not a practical guarantee of
safety. This is evidenced by its use of big-O notation when
specifying how many trajectories to generate before updat-
ing the policy (Kakade, 2003).1 We found that CPI requires
an impractical number of trajectories to ensure safety—for
the gridworld that we use it requires more trajectories than
the span of our plots to make a single change to the policy.

The remainder of this paper is organized as follows. We re-
view relevant material in Section 2 before formalizing the
problem in Section 3. We present a batch version of our al-
gorithm in Section 4 and an incremental version in Section
5. In Section 6 we provide case studies including a digital
marketing study using data from a Fortune 20 company to
show the viability of our approach before concluding.

2. Preliminaries
We assume that the environment can be modeled as
a Markov decision process (MDP) or partially observ-
able Markov decision process (POMDP) (Sutton & Barto,

1CPI requiresm+k trajectories for each change to the policy.
Sham Kakade’s thesis specifiedm using big-O notation in Lemma
7.3.4, and k can be derived from the appendix of the work of
Kakade & Langford (2002).

High Confidence Policy Improvement

1998). Although we adopt MDP notation hereafter, this
work can be immediately translated to the POMDP setting
with state-free policies (Kaelbling et al., 1996, Sections 7.1
and 7.2) by replacing states with observations. Let S and
A denote the state and action sets, rt ∈ [rmin, rmax] be the
bounded reward at time t, and γ ∈ [0, 1] be a discount
factor. Let π(a|s) be the probability (density) of taking
action a in state s when using policy π. A trajectory of
length T is an ordered set of states, actions, and rewards:
τ = {sτ1 , aτ1 , rτ1 , sτ2 , aτ2 , rτ2 , . . . , sτT , aτT , rτT }. We define
the (normalized and discounted) return of a trajectory to
be R(τ) :=

((∑T
t=1 γ

t−1rτt

)
−R−

)
/ (R+ −R−) ∈

[0, 1], where R− and R+ are upper and lower bounds
on
∑T
t=1 γ

t−1rτt .
2 Let ρ(π) := E[R(τ)|π] denote the

performance of policy π, i.e., the expected normalized
and discounted return when using policy π. We as-
sume that all trajectories are of length at most T . We
denote by D a set of n trajectories, {τi}ni=1, each la-
beled by the policy that generated it, {πi}ni=1, i.e., D :=
{(τi, πi) : i ∈ {1, . . . , n}, τi generated using πi} . We call
the policies, {πi}ni=1, that generated the available data, D,
behavior policies. We write |D| to denote the number of
trajectories inD, πDi to denote the ith behavior policy inD,
and τDi to denote the ith trajectory in D.

We define a mixed policy, µα,π0,π , to be a mixture of π0 and
π with mixing parameter α ∈ [0, 1]. As α increases, the
mixed policy becomes more like π(a|s), and as α decreases
it becomes more like π0(a|s). Formally, µα,π0,π(a|s) :=
απ(a|s) + (1− α)π0(a|s).

2.1. Stationarity

Because we will use data from the past to make predic-
tions about the future, we must assume that the future will
somehow reflect the past. By assuming the problem can be
exactly formulated as a POMDP, we have assumed that the
initial state distribution and the mechanisms that produce
the rewards, observations, and state transitions, are all sta-
tionary. Although such stationarity assumptions are com-
monplace in machine learning, it is important to note that,
if an application is not exactly modeled as a POMDP, our
probabilistic guarantees are only approximate. So, practi-
tioners should strive to formulate the problem in a way that
is as close to a POMDP as possible, and should be aware
of the risks that stem from this assumption.3

2We normalize the returns because ρCI
−(X, δ,m), which will

be introduced later, requires X to be positive.
3For example, it is common in industry to retrain the policy

for selecting user-specific advertisements every day, specifically
to mitigate non-stationarity.

2.2. High-Confidence Off-Policy Evaluation (HCOPE)

High-confidence off-policy evaluation (HCOPE) involves
taking a set of trajectories, D, generated using some be-
havior policies, and using them to lower-bound the perfor-
mance of another policy, πe, called the evaluation policy.
In this section we present three approaches to HCOPE that
we use later. When discussing policy improvement later, it
will be important that we can not just lower-bound the per-
formance of a policy given some trajectories, but that we
can predict from some trajectories what the lower bound
would be if computed later with more trajectories. We
therefore present each approach as an algorithm that pre-
dicts what the lower-bound would be if computed using a
different number of samples.

All of the approaches are based on importance sampling
(Precup et al., 2000), which can be used to produce an un-
biased estimator of ρ(πe) from a trajectory τ generated
by a behavior policy, πb.4 This estimator is called the
importance weighted return, ρ̂(πe|τ, πb), and is given by:
ρ̂(πe|τ, πb) := R(τ)w(τ, πe, πb), where w(τ, πe, πb) is the
importance weight: w(τ, πe, πb) :=

∏T
t=1

πe(a
τ
t |s

τ
t)

πb(aτt |sτt)
. The

three approaches to bounding ρ(πe) are all based on first
computing the importance weighted returns, which are then
used to produce a high confidence lower-bound. For gener-
ality, we present each method in terms of a set of n random
variables, X = {X1, . . . , Xn}, which are independent and
which all have the same expected value, x̄ := E [Xi]. Later
we will use the importance weighted returns, ρ̂(πe|τi, πi),
as the Xi, and so x̄ = ρ(πe).

2.3. A Concentration Inequality (CI) for HCOPE

Thomas et al. (2015) presented a concentration inequal-
ity that is particularly well-suited to using importance
weighted returns to lower-bound the performance of the
evaluation policy. Let ρ̂−(X, δ,m, c) be a prediction, com-
puted from X, of their 1− δ confidence lower-bound on x̄,
if the lower bound were to be computed using m random
variables rather than n (m trajectories rather than n), and
if the provided hyperparameter value c were used (Thomas
et al., 2015, cf. Equation 7):

ρ̂−(X,δ,m, c) :=
1

n

(
n∑
i=1

?

)
− 7c ln(2/δ)

3(m− 1)

−

√√√√ 2 ln(2/δ)

mn(n− 1)

(
n

(
n∑
i=1

?2

)
−

(
n∑
i=1

?

)2)
,

where ? is shorthand for min{Xi, c}.

Algorithm 1 shows how their concentration inequality-
based approach can be used to compute an estimate,
ρCI
− (X, δ,m), of what the 1− δ confidence lower bound on

4If the support of πe and πb differ, then importance sampling
produces an underestimate of ρ(πe) (Thomas et al., 2015).

High Confidence Policy Improvement

x̄ would be if computed using m trajectories. Intuitively,
this algorithm approximates the optimal value for the pa-
rameter c, and then computes the prediction with this value.
If n = m, then ρCI

− (X, δ,m) is a 1 − δ confidence lower
bound on x̄. If n 6= m, then ρCI

− (X, δ,m) is an estimate
of what the lower bound would be if it were computed us-
ing m random variables rather than n.5 Note that in this
method it is assumed that each Xi ≥ 0. This approach is
similar to that of Bottou et al. (2013), but it does not dis-
card data and it optimizes the hyperparameter, c, in a more
principled manner.

Algorithm 1 ρCI
−(X, δ,m) : Predict what the 1 − δ confidence

lower bound on E[Xi] would be if X contained m random vari-
ables rather than n.
1: Place 1/20 of X in Xpre and the remainder in Xpost
2: c? ∈ arg maxc∈[1,∞) ρ̂−(Xpre, δ,m, c)
3: return ρ̂−(Xpost, δ,m, c

?)

The primary benefit of this approach, which we call the
concentration inequality (CI) approach, is that it introduces
no false assumptions. The drawback of the CI approach is
that, because it makes no simplifying assumptions, it tends
to be overly conservative. In the following two subsections
we present approaches to HCOPE that introduce simplify-
ing assumptions that are typically false, but which allow for
tighter lower bounds.

2.4. Student’s t-Test for HCOPE

Each of the Xi are unbiased estimators of x̄. So, the sam-
ple mean of these estimators, X̂ := 1

n

∑n
i=1Xi, is also

an unbiased estimator of x̄. As n → ∞, given mild as-
sumptions, the central limit theorem (CLT) says that the
distribution of X̂ approximates a normal distribution, and
so it is appropriate to use a one-sided Student’s t-test to get
a 1 − δ confidence lower bound on x̄. We present in Al-
gorithm 2 an algorithm similar to Algorithm 1, but using
a one-sided Student’s t-test in place of the concentration
inequality. Here t1−δ,ν denotes the 100(1 − δ) percentile
of the Student’s t distribution with ν degrees of freedom
(i.e., tinv(1− δ, ν) in MATLAB).

The benefit of using the t-test is that it usually produces
tighter bounds than the CI approach because it introduces
the additional assumption that X̂ is normally distributed.
When n is sufficiently large (using a sufficiently large num-
ber of trajectories), this assumption becomes quite rea-
sonable. However, the importance weighted returns often
come from distributions with heavy upper tails (Thomas
et al., 2015), which can make the t-test overly conservative
even for seemingly large data sets, as shown in Fig. 1.

5There are additional stipulations on how trajectories are par-
titioned intoDpre andDpost when there are multiple behavior poli-
cies (Thomas et al., 2015).

Notice, however, that this is not a real guarantee that the t-
test will be overly conservative—in some cases it may still
result in an error rate greater than δ. Still, if the domain
is non-stationary, then the false assumption that X̂ is nor-
mally distributed may be minor in comparison to the false
assumption that the environment is a POMDP.

Algorithm 2 ρTT
− (X, δ,m) : Predict what the 1 − δ confidence

lower bound on E[Xi] would be if X contained m random vari-
ables rather than n.
1: X̂ ← 1

n

∑n
i=1 Xi

2: σ ←
√

1
n−1

∑n
i=1

(
Xi − X̂

)2

3: return X̂ − σ√
m
t1−δ,m−1

2.5. A Bootstrap Confidence Interval for HCOPE

Rather than assume that the sample mean, X̂ , is normally
distributed, we can use bootstrapping to estimate the true
distribution of X̂ , which can then be used to produce a
lower-bound. A popular method for this sort of boot-
strapping is Bias Corrected and accelerated (BCa) boot-
strap (Efron, 1987). We present in Algorithm 3 an algo-
rithm similar to Algorithm 1, but using BCa in place of
the concentration inequality. We choose to use B = 2000
resamplings as suggested by practitioners (Efron & Tib-
shirani, 1993; Davison & Hinkley, 1997). In the pseudo-
code, Φ, is the cumulative distribution function of the nor-
mal distribution, 1A is one if A is true and 0 otherwise,
and #ξi < X̂ denotes the number of ξi that are less than
X̂ . Our pseudocode is derived from that of Carpenter &
Bithell (2000), with notation changed as necessary to avoid
conflicts with our other notation.

Using the bootstrap estimate of the distribution of X̂ , BCa
can correct for the heavy tails in our data to produce lower-
bounds that are not overly conservative, as shown in Fig-
ure 1. As with the t-test, for some distributions the lower-
bounds produced by BCa may have error rates larger than δ.
However, the bounds produced by BCa are reliable enough
that their use is commonplace in high-risk applications
such as analyzing the results of medical research (Cham-
pless et al., 2003; Folsom et al., 2003).

3. Problem Formulation
Given a (user specified) lower-bound, ρ−, on the perfor-
mance and a confidence level, δ, we call an RL algorithm
safe if it ensures that the probability that a policy with per-
formance less than ρ− will be proposed is at most δ. The
only assumption that a safe algorithm may make is that
the underlying environment is a POMDP. Moreover, we re-
quire that the safety guarantee must hold regardless of how
any hyperparameters are tuned.

High Confidence Policy Improvement

0

0.05

20 200 2,000

E
m

p
iri

ca
l E

rr
or

 R
a

te

n

CI

TT

BCa

Figure 1. Empirical error rates when estimating a 95% confidence
lower-bound on the mean of a gamma distribution (shape param-
eter k = 2 and scale parameter θ = 50) using ρ†−, where the
legend specifies the value of †. This gamma distribution has a
heavy upper-tail similar to that of importance weighted returns.
The logarithmically scaled horizontal axis is the number of sam-
ples used to compute the lower bound (from 20 to 2000) and the
vertical axis is the mean empirical error rate over 100,000 trials.
Note that CI is overly conservative, with zero error in all the tri-
als (it is on the x-axis). The t-test is initially conservative, but
approaches the allowed 5% error rate as the number of samples
increases. BCa remains around the correct 5% error rate regard-
less of the number of samples.

We call an RL algorithm semi-safe if it would be safe,
except that it makes a false but reasonable assumption.
Semi-safe algorithms are of particular interest when the
assumption that the environment is a POMDP is signifi-
cantly stronger than the (other) false assumption made by
the algorithm, e.g., that the sample mean of the importance
weighted returns is normally distributed when using many
trajectories.

We call a policy, π, (as opposed to an algorithm) safe if we
can ensure that ρ(π) ≥ ρ− with confidence 1−δ. Note that
“a policy is safe” is a statement about our belief concerning
that policy given the observed data, and not a statement
about the policy itself.

If there are many policies that might be deemed safe, then
the policy improvement mechanism should return the one
that is expected to perform the best, i.e.,

π′ ∈ arg max
safe π

g(π|D), (1)

where g(π|D) ∈ R is a prediction of ρ(π) computed from
D. We use a lower-variance, but biased, alternative to or-
dinary importance sampling, called weighted importance
sampling (Precup et al., 2000), for g, i.e., g(π|D) :=(∑|D|

i=1 ρ̂(π|τDi , πDi)
)
/
(∑|D|

i=1 ŵ(τDi , π, π
D
i)
)
. Note that

even though Eq. 1 uses g, our safety guarantee is
uncompromising—it uses the true (unknown and often un-
knowable) expected return, ρ(π).

In this paper, we present batch and incremental policy im-
provement algorithms that are safe when they use the CI
approach to HCOPE and semi-safe when they use the t-test
or BCa approaches. Our algorithms have no hyperparame-

Algorithm 3 ρBCa
− (X, δ,m) : Predict what the 1− δ confidence

lower bound on E[Xi] would be if X contained m random vari-
ables rather than n.
1: X̂ ← 1

n

∑n
i=1 Xi

2: B ← 2000;
3: for i = 1 to B do
4: Randomly sample m elements of x ∈ X, with replace-

ment.
5: Set ξi to be the mean of these m samples.
6: end for
7: Sort the vector ξ = (ξ1, ξ2, . . . , ξB) such that ξi ≤ ξj for

1 ≤ i < j ≤ B.
8: z0 ← Φ−1

(
{#ξi<X̂}

B

)
9: for i = 1 to n do

10: Set yi to be the mean of X excluding the ith element:
yi ← 1

n−1

∑n
j=1 1(j 6=i)Xj

11: end for
12: ȳ ← 1

n

∑n
i=1 yi

13: a←
∑n
i=1(ȳ−yi)3

6[
∑n
i=1(ȳ−yi)2]3/2

14: zL ← z0 − Φ−1(1−δ)−z0
1+a(Φ−1(1−δ)−z0)

15: Q← (B + 1)Φ(zL)
16: l← min{bQc, B − 1}

17: return X̂ +
Φ−1(Q

B+1
)−Φ−1(l

B+1
)

Φ−1(l+1
B+1

)−Φ−1(l
B+1

)
(ξQ, ξQ+1)

ters that require expert tuning.

In the following, we use the † symbol as a placeholder for
either CI, TT, or BCa. We also overload the symbol ρ†− so
that it can take as input a policy, π, and a set of trajectories,
D, in place of X, as follows:

ρ†−(π,D, δ,m) := ρ†−

(|D|⋃
i=1

{
ρ̂
(
π|τDi , πDi

)}
︸ ︷︷ ︸

X

, δ,m
)
. (2)

For example, ρBCa
− (π,D, δ,m) is a prediction made using

the data setD of what the 1− δ confidence lower-bound on
ρ(π) would be, if computed from m trajectories by BCa.

4. Safe Policy Improvement
Our proposed batch (semi-)safe policy improvement algo-
rithm, POLICYIMPROVEMENT†‡, takes as input a set of tra-
jectories labeled with the policies that generated them, D,
a performance lower bound, ρ−, and a confidence level, δ,
and outputs either a new policy or NO SOLUTION FOUND
(NSF). The meaning of the ‡ subscript will be described
later.

When we use D to both search the space of policies and
perform safety tests, we must be careful to avoid the mul-
tiple comparisons problem (Benjamin & Hochberg, 1995).
To make this important problem clear, consider what would
happen if our search of policy space included only two poli-

High Confidence Policy Improvement

cies, and used all of D to test both of them for safety. If at
least one is deemed safe, then we return it. HCOPE meth-
ods can incorrectly label a policy as safe with probability
at most δ. However, the system we have described will
make an error whenever either policy is incorrectly labeled
as safe, which means its error rate can be as large as 2δ.
In practice the search of policy space should include many
more than just two policies, which would further increase
the error rate.

We avoid the multiple comparisons problem by setting
aside data that is only used for a single safety test that de-
termines whether or not a policy will be returned. Specif-
ically, we first partition the data into a small training set,
Dtrain, and a larger test set, Dtest. The training set is used
to search for which single policy, called the candidate pol-
icy, πc, should be tested for safety using the test set. This
policy improvement method, POLICYIMPROVEMENT†‡, is
reported in Algorithm 4. To simplify later pseudocode,
POLICYIMPROVEMENT†‡ assumes that the trajectories have
already been partitioned into Dtrain and Dtest. In prac-
tice, we place 1/5 of the trajectories in the training
set and the remainder in the test set. Also, note that
POLICYIMPROVEMENT†‡ can use the safe concentration in-
equality approach, † = CI, or the semi-safe t-test or BCa
approaches, † ∈ { TT, BCa}.

POLICYIMPROVEMENT†‡ is presented in a
top-down manner and makes use of the
GETCANDIDATEPOLICY†‡(D, δ, ρ−,m) method, which
searches for a candidate policy. The input m specifies the
number of trajectories that will be used during the sub-
sequent safety test. Although GETCANDIDATEPOLICY†‡
could be any batch RL algorithm, like LSPI or FQI
(Lagoudakis & Parr, 2001; Ernst et al., 2005), we pro-
pose an approach that leverages our knowledge that the
candidate policy must pass a safety test. We will present
two versions of GETCANDIDATEPOLICY†‡, which we
differentiate between using the subscript ‡, which may
stand for None or k-fold.

Before presenting these two methods, we define an objec-
tive function f† as:

f†(π,D, δ, ρ−,m) :=

{
g(π|D) if ρ†− (π,D, δ,m) ≥ ρ−,
ρ†− (π,D, δ,m) otherwise.

Intuitively, f† returns the predicted performance of π if the
predicted lower-bound on ρ(π) is at least ρ−, and the pre-
dicted lower-bound on ρ(π), otherwise.

Consider GETCANDIDATEPOLICY†None, which is presented
in Algorithm 5. This method uses all of the available train-
ing data to search for the policy that is predicted to perform
the best, subject to it also being predicted to pass the safety
test. That is, if no policy is found that is predicted to pass

the safety test, it returns the policy, π, that it predicts will
have the highest lower bound on ρ(π). If policies are found
that are predicted to pass the safety test, it returns one that
is predicted to perform the best (according to g).

The benefits of this approach are its simplicity and that
it works well when there is an abundance of data. How-
ever, when there are few trajectories in D (e.g., cold start),
this approach has a tendency to overfit—it finds a policy
that it predicts will perform exceptionally well and which
will easily pass the safety test, but actually fails the sub-
sequent safety test in POLICYIMPROVEMENT†None. We call
this method ‡ = None because it does not use any methods
to avoid overfitting.

Algorithm 4 POLICYIMPROVEMENT†‡(Dtrain,Dtest, δ, ρ−)
Either returns NO SOLUTION FOUND (NSF) or a (semi-)safe pol-
icy. Here † can denote either CI, TT, or BCa.

1: πc ← GETCANDIDATEPOLICY†‡(Dtrain, δ, ρ−, |Dtest|)
2: if ρ†− (πc,Dtest, δ, |Dtest|) ≥ ρ− then return πc
3: return NSF

Algorithm 5 GETCANDIDATEPOLICY†None(D, δ, ρ−,m)
Searches for the candidate policy, but does nothing to mitigate
overfitting.

1: return arg maxπ f
†(π,D, δ, ρ−,m)

In machine learning, it is common to introduce a regular-
ization term, α‖w‖, into the objective function in order to
prevent overfitting. Here w is the model’s weight vector
and ‖·‖ is some measure of the complexity of the model
(often L1 or squared L2-norm), and α is a parameter that is
tuned using a model selection method like cross-validation.
This term penalizes solutions that are too complex, since
they are likely to be overfitting the training data.

Here we can use the same intuition, where we control for
the complexity of the solution policy using a regulariza-
tion parameter, α, that is optimized using k-fold cross-
validation. Just as the squared L2-norm relates the com-
plexity of a weight vector to its squared distance from
the zero vector, we define the complexity of a policy to
be some notion of its distance from the initial policy, π0.
In order to allow for an intuitive meaning of α, rather
than adding a regularization term to our objective function,
f†(·,Dtrain, δ, ρ−, |Dtest|), we directly constrain the set of
policies that we search over to have limited complexity.

We achieve this by only searching the space of mixed poli-
cies, µα,π0,π , where α is the fixed regularization param-
eter, π0 is the fixed initial policy, and where we search
the space of all possible π. Consider, for example what
happens to the probability of action a in state s when
α = 0.5. If π0(a|s) = 0.4, then for any π, we have
that µα,π0,π(a|s) ∈ [0.2, 0.7]. That is, the mixed policy

High Confidence Policy Improvement

can only move 50% of the way towards being determin-
istic (in either direction). In general, α denotes that the
mixed policy can change the probability of an action no
more than 100α% towards being deterministic. So, using
mixed policies results in our searches of policy space being
constrained to some feasible set centered around the initial
policy, and where α scales the size of this feasible set.

While small values of α can effectively eliminate overfit-
ting by precluding the mixed policy from moving far away
from the initial policy, they also limit the quality of the best
mixed policy in the feasible set. It is therefore important
that α is chosen to balance the tradeoff between overfit-
ting and limiting the quality of solutions that remain in the
feasible set. Just as in machine learning, we use k-fold
cross-validation to automatically select α.

This approach is provided in Algorithm 6, where
CROSSVALIDATE†(α,D, δ, ρ−,m) uses k-fold cross-
validation to predict the value of f†(π,Dtest, δ, ρ−, |Dtest|)
if π were to be optimized usingDtrain and regularization pa-
rameter α. CROSSVALIDATE† is reported in Algorithm 7.
In our implementations we use k = min{20, 12 |D|} folds.

Algorithm 6 GETCANDIDATEPOLICY†k-fold(D, δ, ρ−,m)
Searches for the candidate policy using k-fold cross-validation to
avoid overfitting.

1: α? ← arg maxα∈[0,1] CROSSVALIDATE†(α,D, δ, ρ−,m)

2: π? ← arg maxπ f
†(µα?,π0,π,D, δ, ρ−,m)

3: return µα?,π0,π?

Algorithm 7 CROSSVALIDATE†(α,D, δ, ρ−,m)

1: Partition D into k subsets, D1, . . . ,Dk, of approximately the
same size.

2: result← 0
3: for i = 1 to k do
4: D̂ ←

⋃
j 6=iDj

5: π? ← arg maxπ f
†(µα,π0,π, D̂, δ, ρ−,m)

6: result← result +f†(µα,π0,π? ,Di, δ, ρ−,m)
7: end for
8: return result/k

5. Daedalus
The POLICYIMPROVEMENT†‡ algorithm is a batch method
that can be applied to an existing data set, D. However,
it can also be used in an incremental manner by executing
new safe policies whenever they are found. The user might
choose to change ρ− at each iteration, e.g., to reflect an es-
timate of the performance of the best policy found so far
or the most recently proposed policy. However, for sim-
plicity in our pseudocode and experiments, we assume that
the user fixes ρ− as an estimate of the performance of the
initial policy. This scheme for selecting ρ− is appropriate
when trying to convince a user to deploy an RL algorithm

to tune a currently fixed initial policy, since it guarantees
with high confidence that it will not decrease performance.

Our algorithm maintains a list, C, of the policies that it
has deemed safe. When generating new trajectories, it
always uses the policy in C that is expected to perform
best. C is initialized to include a single initial policy,
π0, which is the same as the baseline policy used by
GETCANDIDATEPOLICY†k-fold. This online safe learning
algorithm is presented in Algorithm 8.6 It takes as input
an additional constant, β, which denotes the number of tra-
jectories to be generated by each policy. If β is not al-
ready specified by the application, it should be selected
to be as small as possible, while allowing DAEDALUS†‡
to execute within the available time. We name this algo-
rithm DAEDALUS†‡ after the mythological character who
promoted safety when he encouraged Icarus to use caution.

Algorithm 8 DAEDALUS†‡(π0, δ, ρ−, β)
Incremental policy improvement algorithm.
1: C ← {π0}
2: Dtrain ← Dtest ← ∅
3: while true do
4: D̂ ← Dtrain
5: π? ← arg maxπ∈C g(π|D̂)
6: Generate β trajectories using π? and append dβ/5e to

Dtrain and the rest to Dtest
7: πc ←POLICYIMPROVEMENT†‡(Dtrain,Dtest, δ, ρ−)

8: D̂ ← Dtrain
9: if πc 6= NSF and g(πc|D̂) > maxπ∈C g(π|D̂) then

10: C ← C ∪ πc
11: Dtest ← ∅
12: end if
13: end while

The benefits of ‡ = k-fold are biggest when
only a few trajectories are available, since then
GETCANDIDATEPOLICY†None is prone to overfitting.
When there is a lot of data, overfitting is not a big problem,
and so the additional computational complexity of k-fold
cross-validation is not justified. In our implementations
of DAEDALUS†k-fold, we therefore only use ‡ = k-fold
until the first policy is successfully added to C, and ‡ =
None thereafter. This provides the early benefits of k-fold
cross-validation without incurring its full computational
complexity.

The DAEDALUS†‡ algorithm ensures safety with each newly
proposed policy. That is, during each iteration of the while-
loop, the probability that a new policy, π, where ρ(π) <
ρ−, is added to C is at most δ. The multiple comparison
problem is not relevant here because this guarantee is per-
iteration. However, if we consider the safety guarantee over
multiple iterations of the while-loop, it applies and means

6If trajectories are available a priori, then Dtrain,Dtest, and C
can be initialized accordingly.

High Confidence Policy Improvement

that the probability that at least one policy, π, where ρ(π) <
ρ−, is added to C over k iterations is at most min{1, 2δ}.

We define DAEDALUS2†‡ to be DAEDALUS†‡ but with line
12 removed. The multiple hypothesis testing problem does
not affect DAEDALUS2†‡ more than DAEDALUS†‡, since the
safety guarantee is per-iteration. However, a more subtle
problem is introduced: the importance weighted returns
from the trajectories in the testing set, ρ̂(πc|τDtest

i , πDtest
i),

are not necessarily unbiased estimates of ρ(πc). This hap-
pens because the policy, πc, is computed in part from
the trajectories in Dtest that are used to test it for safety.
This dependence is depicted in Figure 2. We also mod-
ify DAEDALUS2†‡ by changing lines 4 and 8 to D̂ ←
Dtrain ∪ Dtest, which introduces an additional minor depen-
dence of πc on the trajectories in Djtest.

Safety Test Safety Test

Figure 2. This diagram depicts influences as DAEDALUS2†‡ runs.
First, π0 is used to generate sets of trajectories, D1

train and D1
test,

where superscripts denote the iteration. Next D1
train is used to se-

lect the candidate policy, π1
c . Next, π1

c is tested for safety us-
ing the trajectories in D1

test (this safety test occurs on line 2 of
POLICYIMPROVEMENT†‡). The result of the safety test influences
which policy, π1, will be executed next. These policies are then
used to produce D2

train and D2
test as before. Next, both D1

train and
D2

train are used to select the candidate policy, π2
c . This policy is

then tested for safety using the trajectories in D1
test and D2

test. The
result of this test influences which policy, π2, will be executed
next, and the process continues. Notice that D1

test is used when
testing π2

c for safety (as indicated by the dashed blue line) even
though it also influences π2

c (as indicated by the dotted red path).
This is akin to performing an experiment, using the collected data
(D1

test) to select a hypothesis (π2
c is safe), and then using that same

data to test the hypothesis. DAEDALUS†‡ does not have this prob-
lem because the dashed blue line is not present.

Although our theoretical analysis applies to DAEDALUS†‡,
we propose the use of DAEDALUS2†‡ because the ability of
the trajectories, Ditest, to bias the choice of which policy to
test for safety in the future (πjc , where j > i) towards a pol-
icy thatDitest will deem safe, is small. However, the benefits
of DAEDALUS2†‡ over DAEDALUS†‡ are significant—the set
of trajectories used in the safety tests increases in size with
each iteration, as opposed to always being of size β. So,
in practice, we expect the over-conservativeness of ρCI

− to
far outweigh the error introduced by DAEDALUS2†‡. No-
tice that DAEDALUS2CI

‡ is safe (not just semi-safe) if we
consider its execution up until the first change of the pol-
icy, since then the trajectories are always generated by π0,
which is not influenced by any of the testing data.

6. Case Studies
We present three case studies: a discrete 4 × 4 grid-
world, the canonical Mountain Car domain (Sutton &
Barto, 1998), which has continuous state variables, and a
digital marketing domain. The digital marketing domain
involves optimizing a policy that targets advertisements to-
wards each user that visits a webpage, and uses real data
collected from a Fortune 20 company. The mountain car
and digital marketing domains are almost identical to those
used by Thomas et al. (2015). The only difference is that
the digital marketing domains use data collected from dif-
ferent companies. Due to space restrictions, we refer the
reader to Thomas et al. (2015) for additional details about
these two domains.

The gridworld domain uses four actions: up, down, left,
and right, which deterministically move the agent in the
specified direction. The top left and bottom right states are
the initial and terminal states, respectively, and a rewards
are always −1. We use T = 10 and a decent handcrafted
initial policy that leaves room for improvement.

In all of the experiments that we present, we selected ρ− to
be an empirical estimate of the performance of the initial
policy and δ = 0.05. We used CMA-ES (Hansen, 2006) to
solve all arg maxπ , where π was parameterized by a vector
of policy parameters using linear softmax action selection
(Sutton & Barto, 1998) with the Fourier basis (Konidaris
et al., 2011).

First we ran POLICYIMPROVEMENT†None on the Mountain
Car domain for all three values of †. The results are pro-
vided in Fig. 3. As expected, the CI approach requires more
data to ensure safe policy improvement than the TT ap-
proach, and BCa requires the least data. All three methods
jump to an optimal policy given 5,000 trajectories. No-
tice that the CI approach, which is safe (not just semi-
safe) is able to produce safe policy improvement using
900 trajectories. In results that are not shown here, using
POLICYIMPROVEMENTCI

k-fold reduces this to only 400 tra-
jectories.

Next, for each domain, we executed DAEDALUS2†‡ with
† ∈ {CI, TT, BCa} and ‡ ∈ {None, k-fold}. Ideally, we
would use β = 1 for all domains. However, as β decreases,
the runtime increases. We selected β = 100 for the grid-
world, β = 50 for Mountain Car, and β ∈ [50, 100, 500] for
the digital marketing domain. β increases with the number
of trajectories in the digital marketing domain so that the
plot can span the number of trajectories required by the CI
approach without requiring too many calls to the computa-
tionally demanding POLICYIMPROVEMENTBCa

k-fold method.
We did not tune β for these experiments—it was set solely
to limit the runtime.

The performance of DAEDALUS2†‡ on these three domains

High Confidence Policy Improvement

0.22

0.61

1

0 700 1400

E
xp

ec
te

d
 N

or
m

al
iz

e
d

R
et

u
rn

Number of Trajectories

(a) 4× 4 gridworld results.

0.2

0.6

1

0 450 900

E
xp

e
ct

ed
 N

or
m

al
iz

ed
 R

e
tu

rn

Number of Trajectories

(b) Mountain Car results.

0.06

0.2

0 1500 3000

E
xp

e
ct

e
d

N
or

m
al

iz
e

d
R

et
u

rn

Number of Episodes

(c) Digital marketing results.

0.2

0.6

1

0 450 900

E
xp

ec
te

d
N

o
rm

a
liz

ed
 R

e
tu

rn

Number of Trajectories

None, CI

None, TT

None, BCa

k-fold, CI

k-fold, TT

k-fold, BCa

Figure 4. Performance of DAEDALUS2†‡. The legend specifies ‡, †.

0

0.5

1

n=50 n=200 n=900 n=5000E
xp

ec
te

d
N

o
rm

al
iz

e
d

R
et

u
rn

CI TT BCa

Figure 3. Mean performance (100 trials) of the policies produced
by POLICYIMPROVEMENT†None for Mountain Car, where † is
specified in the legend and the number of trajectories, n = |D|,
is specified on the horizontal axis. Using † = CI with n = 50
never resulted in a change to the policy, and so it specifies the
performance of the initial policy.

is provided in Figure 4. The expected normalized returns
in Figures 4(a), 4(b), and 4(c) are computed using 100,000,
10,000, and 20,000 Monte Carlo rollouts, respectively. The
curves are also averaged over 100, 100, and 10 trials, re-
spectively, with standard error bars provided when they do
not cause too much clutter.

First, consider the different values for †. As expected,
the CI approaches (solid curves) are the most conservative,
and therefore require the most trajectories in order to guar-
antee improvement. The BCa approaches (dashed lines)
perform the best, and are able to provide high-confidence
guarantees of improvement with as few as 50 trajectories.
The TT approach (dotted lines) perform in-between the CI
and BCa approaches, as expected (since the t-test tends to
produce overly conservative lower bounds for distributions
with heavy upper tails).

Next, consider the different values of ‡. Using k-fold cross-
validation provides an early boost in performance by limit-
ing overfitting when there are few trajectories in the train-
ing set. Although the results are not shown, we experi-
mented with using ‡ = k-fold for the entire runtime (rather
than just until the first policy improvement), but found that
while it did increase the runtime significantly, it did not
produce much improvement.

Next, we computed the empirical error rates—the probabil-
ity that a policy was incorrectly declared safe. In the grid-
world and digital marketing domains, the empirical error
rates were zero (no errors were made in any trials). In the
Mountain Car domain the empirical error rates were below
0.6% for all † and ‡, which is far below the allowed 5%
error rate. Also, although there are often concerns about
the performance of off-policy evaluation methods as poli-
cies become deterministic, we observed no complications
or instabilities as the policies produced by DAEDALUS2†‡
approached the deterministic optimal policies.

Lastly, notice that using n trajectories with
POLICYIMPROVEMENT†None tends to result in a worse
policy than using DAEDALUS2†None for n trajectories.
For example, when † ∈ {TT, BCa} and n = 200,
POLICYIMPROVEMENT†None achieves a mean normal-
ized return of approximately 0.6 (see Fig. 3), while
DAEDALUS2†None achieves a mean normalized return
between 0.7 and 0.86 (see Fig. 4(b)). This is because
DAEDALUS2†‡ collects trajectories from increasingly good
regions of policy space, which allows it to produce tighter
lower bounds on the performance of even better policies.

7. Conclusion
We have presented batch and incremental policy improve-
ment algorithms that provide (exact and approximate) sta-
tistical guarantees about the performance of policies that
they propose. These guarantees can be tuned by the user to
account for the acceptable level of risk in each application.
We showed on a real world digital marketing problem that
our algorithms can use a realistic amount of data to provide
guaranteed policy improvements with confidence 95%.

Acknowledgments
We would like to thank everyone who assisted with this
work, particularly Bruno Scherrer, Alessandro Lazaric, An-
drew Barto, Sridhar Mahadevan, Lucas Janson, and the re-
viewers.

High Confidence Policy Improvement

References
Benjamin, Y. and Hochberg, Y. Controlling the false dis-

covery rate: A practical and powerful approach to mul-
tiple testing. Journal of the Royal Statistical Society, 57
(1):289–300, 1995.

Bottou, L., Peters, J., Quiñonero-Candela, J., Charles,
D. X., Chickering, D. M., Portugaly, E., Ray, D., Simard,
P., and Snelson, E. Counterfactual reasoning and learn-
ing systems: The example of computational advertising.
Journal of Machine Learning Research, 14:3207–3260,
2013.

Carpenter, J. and Bithell, J. Bootstrap confidence intervals:
when, which, what? a practical guide for medical statis-
ticians. Statistics in Medicine, 19:1141–1164, 2000.

Champless, L. E., Folsom, A. R., Sharrett, A. R., Sorlie,
P., Couper, D., Szklo, M., and Nieto, F. J. Coronary
heard disease risk prediction in the atherosclerosis risk
in communities (ARIC) study. Journal of Clinical Epi-
demiology, 56(9):880–890, 2003.

Davison, A. C. and Hinkley, D. V. Bootstrap Methods and
their Application. Cambridge University Press, Cam-
bridge, 1997.

Efron, B. Better bootstrap confidence intervals. Journal of
the American Statistical Association, 82(397):171–185,
1987.

Efron, B. and Tibshirani, R. J. An Introduction to the Boot-
strap. Chapman and Hall, London, 1993.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based
batch mode reinforcement learning. Journal of Machine
Learning Research, 6:503–556, 2005.

Folsom, A. R., Chambless, L. E., Duncan, B. B., Gilbert,
A. C., and Pankow, J. S. Prediction of coronary heart
disease in middle-aged adults with diabetes. Diabetes
Care, 26(10):2777–2784, 2003.

Hansen, N. The CMA evolution strategy: a comparing re-
view. In Lozano, J.A., Larranaga, P., Inza, I., and Ben-
goetxea, E. (eds.), Towards a new evolutionary computa-
tion. Advances on estimation of distribution algorithms,
pp. 75–102. Springer, 2006.

Jonker, J., Piersma, N., and den Poel, D. Van. Joint opti-
mization of customer segmentation and marketing policy
to maximize long-term profitability. Expert Systems with
Applications, 27(2):159–168, 2004.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. Rein-
forcement learning: A survey. Journal of Artificial Intel-
ligence Research, 4:237–285, 1996.

Kakade, S. On the Sample Complexity of Reinforcement
Learning. PhD thesis, University College London, 2003.

Kakade, S. and Langford, J. Approximately optimal ap-
proximate reinforcement learning. In Proceedings of the
Nineteenth International Conference on Machine Learn-
ing, pp. 267–274, 2002.

Konidaris, G. D., Osentoski, S., and Thomas, P. S. Value
function approximation in reinforcement learning us-
ing the Fourier basis. In Proceedings of the Twenty-
Fifth Conference on Artificial Intelligence, pp. 380–395,
2011.

Lagoudakis, M. and Parr, R. Model-free least-squares pol-
icy iteration. In Neural Information Processing Systems:
Natural and Synthetic, pp. 1547–1554, 2001.

Moore, B., Panousis, P., Kulkarni, V., Pyeatt, L., and Do-
ufas, A. Reinforcement learning for closed-loop propo-
fol anesthesia: A human volunteer study. In Innovative
Applications of Artificial Intelligence, pp. 1807–1813,
2010.

Pirotta, M., Restelli, M., Pecorino, A., and Calandriello,
D. Safe policy iteration. In Proceedings of the 30th

International Conference on Machine Learning, 2013.

Precup, D., Sutton, R. S., and Singh, S. Eligibility traces
for off-policy policy evaluation. In Proceedings of the
17th International Conference on Machine Learning, pp.
759–766, 2000.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

Thomas, P. S., Theocharous, G., and Ghavamzadeh, M.
High confidence off-policy evaluation. In Proceedings of
the Twenty-Ninth Conference on Artificial Intelligence,
2015.

