A. Proof of Proposition 1

Proof. We only prove the proposition for $\mu = 0$. If $\mu \neq 0$, we could simply take the mapping $x \rightarrow x - \mu$, $y \rightarrow y - \mu$ and complete the proof in a similar manner.

When W is full rank, it is well known that the projected vector $y \in S \subseteq \mathbb{R}^D$ has the following form:

$$oldsymbol{y} = \mathbf{W}(\mathbf{W}^{ op}\mathbf{W})^{-1}\mathbf{W}^{ op}oldsymbol{x} = (\mathbf{U}_d\mathbf{U}_d^{ op})oldsymbol{x}.$$

Next, note that

$$\mathbf{U}_{d}\mathbf{U}_{d}^{\top} = \mathbf{U}\mathbf{diag}(\mathbf{I}_{d}, \mathbf{O})\mathbf{U}^{\top}.$$
(32)

Therefore,

$$\begin{split} \|\boldsymbol{x} - \boldsymbol{y}\|^2 &= \|\boldsymbol{x} - (\mathbf{U}_d \mathbf{U}_d^{\top}) \boldsymbol{x}\|^2 \\ &= \|\boldsymbol{x} - \mathbf{U} \mathbf{diag}(1, \cdots, 1, 0, \cdots, 0) \mathbf{U}^{\top} \boldsymbol{x}\|^2 \\ &= \|\mathbf{U}^{\top} \boldsymbol{x} - \mathbf{diag}(1, \cdots, 1, 0, \cdots, 0) \mathbf{U}^{\top} \boldsymbol{x}\|^2 \\ &= \sum_{j=d+1}^{D} [\mathbf{U}^{\top} \boldsymbol{x}]_j^2. \end{split}$$

B. Technical details of SVA analysis

B.1. Derivation of the update rule for *z*

For creating a new cluster, we use Laplace approximation to approximate the integration. We first write the conditional distribution as

$$p(z_{i} = k_{new} | \mathbf{X}, \rho, a, b, r, \alpha) = \frac{\alpha}{Z} \sum_{d=1}^{D} p_{0}(d|r) \int p(\boldsymbol{x}_{i} | \mathbf{W}, \boldsymbol{\mu}, \sigma^{2}) dp_{0}(\mathbf{W}, \boldsymbol{\mu} | d, \rho, a, b) =: \frac{1}{Z} \sum_{d=1}^{D} p_{0}(d|r) J_{d}.$$
(33)

Subsequently, the scaled conditional distribution can be written as

$$p(z_i = k_{new} | \mathbf{X}, \rho, a, b, r, \alpha, \beta) = \frac{\alpha}{Z} \sum_{d=1}^{D} p_0(d | r, \beta') J_d(\beta),$$
(34)

where

$$J_d(\beta) = \int p(\boldsymbol{x}_i | \mathbf{W}, \boldsymbol{\mu}, \sigma^2, \beta) dp_0(\mathbf{W}, \boldsymbol{\mu} | d, \rho, a, b, \beta).$$
(35)

Define $\boldsymbol{\theta}_d := (\mathbf{W}, \boldsymbol{\mu})$ with $\mathbf{W} \in \mathbb{R}^{D \times d}$ and

$$f_{d,\beta}(\boldsymbol{\theta}_d) := \beta^{-1} \cdot p(\boldsymbol{x}_i | \mathbf{W}, \boldsymbol{\mu}, \sigma^2, \beta) p_0(\mathbf{W}, \boldsymbol{\mu} | d, a, b, \rho, \beta).$$
(36)

Using Laplace's approximation, we have (as $\beta \to \infty$)

$$J_{d}(\beta) = \int \exp(-\beta f_{d,\beta}(\boldsymbol{\theta}_{d})) \mathrm{d}\boldsymbol{\theta}_{d} = \frac{\exp(-\beta f_{d,\beta}(\hat{\boldsymbol{\theta}}_{d}))}{(2\pi/\beta)^{-D(d+1)/2}} \left(\left| \frac{\partial^{2} f_{d,\beta}(\hat{\boldsymbol{\theta}}_{d})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}} \right|^{-1/2} + o(1) \right),$$
(37)

where $\hat{\boldsymbol{\theta}}_d = \operatorname{argmin}_{\boldsymbol{\theta}_d} f_{d,\beta}(\boldsymbol{\theta}_d)$. Note that ⁷

$$\lim_{\beta \to \infty} f_{d,\beta}(\boldsymbol{\theta}_d) = \exp\left(-\sigma^{-2} \cdot \sum_{j=d+1}^{D} \left[\mathbf{U}^{\top}(\boldsymbol{x}_i - \boldsymbol{\mu})\right]_j^2\right) = \exp\left(-\frac{d(\boldsymbol{x}_i, S)^2}{\sigma^2}\right).$$
(38)

⁷Recall that $\lim_{x\to\infty} f(x) = g(x)$ means $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$.

As a result, $f_{d,\beta}(\hat{\boldsymbol{\theta}}_d) = 0$ (taking $\boldsymbol{\mu} = \boldsymbol{x}_i$) and

$$\lim_{\beta \to \infty} J_d(\beta) = (2\pi/\beta)^{D(d+1)/2} \cdot g_d(\boldsymbol{x}_i), \tag{39}$$

where $g_d(x_i)$ only depends on d and x_i . Therefore,

$$\lim_{\beta \to \infty} p(z_i = k_{new}) = \lim_{\beta \to \infty} \frac{\alpha}{Z} \sum_{d=0}^{D} \exp(-\beta' d + o(\beta)) = \frac{\alpha}{Z} \exp(o(\beta)).$$
(40)

B.2. Derivation of the update rule for W_k

Define

$$K_{d_k}(\beta) := \int p(\mathbf{X} | \mathbf{W}, \boldsymbol{\mu}, \boldsymbol{z}, \sigma^2, \beta) p_0(\mathbf{W} | d_k, a, b, \beta) \mathrm{d}\mathbf{W}.$$
(41)

Then the (scaled) posterior distribution of d_k can be written as

$$p(d_k | \mathbf{X}, \boldsymbol{z}, \boldsymbol{\mu}, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{r}, \boldsymbol{\beta}) = \frac{1}{Z(\mathbf{X})} p_0(d_k | \boldsymbol{r}, \boldsymbol{\beta}') K_{d_k}(\boldsymbol{\beta}).$$
(42)

Next, define

$$F_{d_k,\beta}(\mathbf{W}) := \beta^{-1} p(\mathbf{X}|\mathbf{W}, \boldsymbol{\mu}, \boldsymbol{z}, \sigma^2, \beta) p_0(\mathbf{W}|d_k, a, b, \beta).$$
(43)

Using Laplace approximation, we have

$$K_{d_k}(\beta) = \int \exp(-\beta F_{d_k,\beta}(\mathbf{W})) \mathrm{d}\mathbf{W} = \frac{\exp(-\beta F_{d_k,\beta}(\hat{\mathbf{W}}))}{(2\pi/\beta)^{-Dd_k/2}} \left(\left| \frac{\partial^2 F_{d_k,\beta}(\hat{\mathbf{W}})}{\partial \mathbf{W} \partial \mathbf{W}^{\top}} \right|^{-1/2} + o(1) \right), \tag{44}$$

where $\hat{\mathbf{W}}$ is the minimizer of $F_{d_k,\beta}(\cdot)$. Note that for any full-rank $\mathbf{W} \in \mathbb{R}^{D \times d_k}$,

$$\lim_{\beta \to \infty} F_{d_k,\beta}(\mathbf{W}) = \exp\left(-\sum_{i=1}^n \mathbb{1}_{[z_i=k]} \sum_{j=d_k+1}^D \frac{[\mathbf{U}^\top(\boldsymbol{x}_i - \boldsymbol{\mu}_k)]_j^2}{\sigma^2} - \sum_{j=1}^{d_k} \frac{l_j^{-1}}{b}\right).$$
(45)

Taking $l_j \to \infty$, it is then clear that

$$\lim_{\beta \to \infty} F_{d_k,\beta}(\hat{\mathbf{W}}) = \exp\left(-\inf_{\mathbf{U}} \sum_{i=1}^n \mathbb{1}_{[z_i=k]} \sum_{j=d_k+1}^D \frac{[\mathbf{U}^\top (\boldsymbol{x}_i - \boldsymbol{\mu}_k)]_j^2}{\sigma^2}\right)$$
(46)

$$= \exp\left(-\inf_{\mathbf{W}\in\mathbb{R}^{D\times d_{k}}}\sum_{i=1}^{n} \mathbb{1}_{[z_{i}=k]} \cdot \frac{d(\boldsymbol{x}_{i}, S(\mathbf{W}, \boldsymbol{\mu}_{k}))^{2}}{\sigma^{2}}\right).$$
(47)

Here the second equation is due to the fact that $d(\cdot, S(\mathbf{W}, \boldsymbol{\mu}))$ does not depend on eigenvalues of \mathbf{W} , and hence optimization over \mathbf{U} is equivalent to optimization over \mathbf{W} .

B.3. Proof of Theorem 1

Proof. We first prove that for each cluster $k \in [K]$, after updating the subspace projection matrix \mathbf{W}_k (along with its dimension d_k) and the offset $\boldsymbol{\mu}_k$, the loss function \mathcal{L} does not increase. When subspace dimension $d_k = d$ is fixed, the update rule

$$\boldsymbol{\mu}_{k} = \frac{1}{n_{k}} \sum_{z_{i}=k} \boldsymbol{x}_{i}, \quad \mathbf{U}_{d_{k}}^{(k)} = \mathbf{A}_{d}$$
(48)

is exactly the same with principle component analysis (PCA) for the top d_k principle directions. As a result, the subspace S_k given by $S(\mathbf{W}_k, \boldsymbol{\mu}_k)$ minimizes the total squared distance of data points and S_k within the k-th cluster (i.e., $\sum_{z_i=k} d(\boldsymbol{x}_i, S_k)^2$). Note again that the distance $d(\boldsymbol{x}_i, S(\boldsymbol{W}_k, \boldsymbol{\mu}_k))$ only depends on $\boldsymbol{\mu}_k$ and the orthogonal matrix $\mathbf{U}_d^{(k)}$ associated with \mathbf{W}_k . The eigenvalues of \mathbf{W}_k do not affect the distance.

We have proved that given $d_k = d$, the update rule given in Eq. (48) chooses \mathbf{W}_k and $\boldsymbol{\mu}_k$ that minimizes the total squared distance for each instance. The update rule for d_k given in Eq. (27) shows that we want to select the dimension d that minimizes the sum of total squared distance and a linear penalty term $s \cdot d$. This is consistent with the deterministic loss function \mathcal{L} shown in Eq. (31). So after updates of \mathbf{W} , d and $\boldsymbol{\mu}$ the loss function does not increase.

Next, we turn to the update of cluster assignments z. We want to prove that after each update of z_i for some data point x_i the loss function does not increase. This part of analysis resembles the analysis of K-means and DP-means algorithm (Kulis & Jordan, 2012). When we assign z_i to an existing cluster it is clear the distance $d(x_i, S_k)$ does not increase and neither does the total loss. When z_i is assigned to a new cluster, we lose a $d(x_i, S_k)$ cost and gains a λ cost because of creating a new cluster. This does not increase the total loss function \mathcal{L} , however, by the definition of $Q_i(k)$ and the update rule of z_i shown in Eq. (23). Note that the new cluster will have a dimension of zero, so no extra penalty term is incurred.

C. Details of Hopkins-155 experiments

C.1. Some statistics of the Hopkins-155 dataset

Table 4 gives some statistics of the Hopkins-155 dataset, including the number of sequences (n), the number of points (P) and the number of frames (F) per sequence. In Table 4 the notation *Check-2* refers to all checker board video sequences that contain 2 motions.

Table 4. Some statistics of the mopkins 155 dataset (mon & yidal, 200	Table 4. Some statistics of the Ho	pkins 155 dataset	(Tron & Vidal,	2007)
---	------------------------------------	-------------------	----------------	-------

Dataset	n	P	F
Check-2	78	291	28
Check-3	26	437	28
Traffic-2	31	241	30
Traffic-3	7	332	31
Articul1	11	155	40
Articul2	2	122	31
All	155	vary	vary

C.2. Detailed performance comparison

In Table 5 we provide detailed performance comparison for the DP-space algorithm and its competitors, including both the mean and median classification error on each of the video sequence groups. Note that the results for EM-MPPCA-m are only included for reference because they are not directly comparable with other performance results.

Table 5. Classification error (%) of several algorithms on the Hopkins 155 dataset

	Che	ck-2	Che	ck-3	Traf	fic-2	Traf	fic-3	Artic	cul2	Artic	cul3	A	.11
	Mean	Med.												
GPCA (5)	6.09	1.03	31.95	32.93	1.41	0.00	19.83	19.55	2.88	0.00	16.85	16.85	10.34	2.54
GPCA (4N)	4.78	0.51	36.99	36.26	1.63	0.00	39.68	40.92	6.18	3.20	29.62	29.62	11.55	1.36
RANSAC (5)	6.52	1.75	25.78	26.00	2.55	0.21	12.83	11.45	7.25	2.64	21.38	21.38	9.76	3.21
ALC (5)	2.56	0.00	6.78	0.92	2.83	0.30	4.01	1.35	6.90	0.89	7.25	7.25	3.76	0.26
ALC (SP)	1.49	0.27	5.00	0.66	1.75	1.51	8.86	0.51	10.70	0.95	21.08	21.08	3.37	0.49
EM-MPPCA (5,a)	18.13	17.48	29.07	30.10	12.84	13.32	18.98	20.32	13.54	15.21	23.49	23.49	18.56	17.56
EM-MPPCA (4N,a)	24.85	24.75	37.01	38.07	18.46	18.15	29.03	26.04	12.90	14.11	32.11	32.11	24.88	23.44
DP-space (5)	2.13	0.48	9.86	7.26	0.53	0.20	4.31	2.57	3.79	1.90	1.75	1.75	3.32	0.53
DP-space (4N)	2.08	0.38	8.77	3.94	1.33	0.78	7.01	7.27	2.07	0.43	16.95	16.95	3.29	0.57
EM-MPPCA (5,m)	2.95	0.00	10.76	10.37	0.52	0.00	1.96	0.99	0.46	0.00	9.33	9.33	3.49	0.00
EM-MPPCA (4N,m)	6.56	3.55	19.35	19.96	0.81	0.00	12.03	9.39	0.18	0.00	16.14	16.14	7.28	1.09