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Abstract
Subspace clustering separates data points ap-
proximately lying on union of affine subspaces
into several clusters. This paper presents a
novel nonparametric Bayesian subspace cluster-
ing model that infers both the number of sub-
spaces and the dimension of each subspace from
the observed data. Though the posterior infer-
ence is hard, our model leads to a very effi-
cient deterministic algorithm, DP-space, which
retains the nonparametric ability under a small-
variance asymptotic analysis. DP-space mono-
tonically minimizes an intuitive objective with an
explicit tradeoff between data fitness and model
complexity. Experimental results demonstrate
that DP-space outperforms various competitors
in terms of clustering accuracy and at the same
time it is highly efficient.

1. Introduction
Given a collection of data points x1, · · · ,xn ∈ RD, sub-
space clustering is the task that groups the data points into
K components by finding K affine subspaces of dimen-
sions d1, · · · , dK < D such that each data point lies in (or
near) a particular subspace. Subspace clustering has found
many applications in computer vision, including motion
segmentation (Vidal et al., 2008) and face clustering (Ho
et al., 2003). See (Vidal, 2010) for an excellent review.

Many subspace clustering methods have been developed.
One particularly interesting example is the mixture of prob-
abilistic PCAs (MPPCA) (Tipping & Bishop, 1999), which
represents each affine subspace by a probabilistic PCA
(pPCA) model and posits that each data point comes from
a mixture of pPCA models. Compared to alternative alge-
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braic and geometry solutions (Ma et al., 2007; Fischler &
Bolles, 1981; Elhamifar & Vidal, 2013), the MPPCA for-
mulation enjoys the advantage of being more tolerate to
noisy and outlier values. Model parameters of MPPCA
could be learned via Expectation-Maximization (EM) (Tip-
ping & Bishop, 1999). However, a major drawback of MP-
PCA is that both the number of clusters K and the dimen-
sion of each subspace dk must be specified a priori (Vidal,
2010). This causes difficult model selection problems, be-
cause unlike PCA, we need to select both K and dk at the
same time. When K or D is large, model selection soon
becomes intractable due to an exponential number of sub-
space dimension configurations.

In this paper, we present Dirichlet process mixture of PCAs
(DP-PCA), a novel nonparametric Bayesian model for sub-
space clustering that automatically resolves model com-
plexity from data. One challenge of DP-PCA is on defin-
ing proper priors that take the nonparametric requirements
of clustering as well as unknown subspace dimensions into
consideration. For clustering, we adopt the commonly used
Chinese restaurant process (CRP (Aldous, 1985; Pitman,
1995), a marginalization of Dirichlet process) prior on clus-
ter assignment variables. In addition, we propose a novel
hierarchical prior to facilitate a nonparametric treatment on
subspace dimensions, which is significantly different from
the mixture of factor analysis (MFA) (Chen et al., 2010)
model. More importantly, though the posterior inference is
hard, our carefully designed model leads to an efficient de-
terministic algorithm, named DP-space, which resembles
the EM algorithm for MPPCA but still possesses the non-
parametric nature of DP-PCA to resolve model complexity.
DP-space is provable to converge by monotonically mini-
mizing an intuitive objective during iterations, and empir-
ically it achieves increased efficiency and clustering accu-
racy on synthetic and real-world datasets.

Technically, we first derive a partially collapsed Gibbs
(PCG) sampler (van Dyk & Park, 2008) for the DP-PCA
model. The PCG sampler is elegant in theory but unfortu-
nately impractical in computation. By carefully perform-
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ing the small-variance asymptotics (SVA) analysis (Kulis
& Jordan, 2012), our PCG sampler leads to the DP-space
algorithm. Compared to existing SVA analysis for many
popular nonparametric Bayesian models (Kulis & Jordan,
2012; Jiang et al., 2012; Broderick et al., 2013; Roychowd-
hury et al., 2013; Wang & Zhu, 2014), our work makes
novel contributions by presenting a new nonparametric
model as well as a non-trivial generalization of existing
SVA methods for the challenging task of subspace cluster-
ing. Furthermore, we note that there are subspace cluster-
ing methods that do not require full knowledge of K and
dk. We discuss such methods in Sec. 5 and show that they
are less accurate, not as efficient as DP-space, or cannot
handle both unknown K and dk settings.

2. Preliminaries
We briefly review some preliminary knowledge and present
a proposition that will be used later.

2.1. Projection onto subspaces

A d-dimensional affine subspace S ⊆ RD, d < D can be
expressed as

S = S(W,µ) = {x ∈ RD : x = Wy + µ,y ∈ Rd},
(1)

where W ∈ RD×d is a subspace projection matrix andµ ∈
RD specifies the offset of S. Without loss of generality,
we assume W has full column rank. By singular value
decomposition we know that there exist l′1 ≥ · · · ≥ l′d > 0,
Ud ∈ RD×d with orthonormal columns and an orthogonal
matrix R ∈ Rd×d such that

W = Uddiag(l′1, · · · , l′d)R>. (2)

For a vector x ∈ RD and a subspace S ⊆ RD, define the
distance between x and S as

d(x, S) := inf
y∈S
‖x− y‖2. (3)

Proposition 1 provides an easy way to compute d(x, S).
We defer the proof to Appendix A.

Proposition 1. Fix a d-dimensional affine subspace
S(W,µ) and let U = [Ud,UD−d] ∈ RD×D be an or-
thogonal matrix associated with W. Here Ud is defined in
Eq. (2) and UD−d ∈ RD×(D−d) can be any orthonormal
basis complementing Ud. Then for all x ∈ RD, we have

d(x, S)2 =
D∑

j=d+1

[
U>(x− µ)

]2
j
. (4)

One consequence of Proposition 1 is that d(·, S(W,µ))
does not depend on the eigenvalues l′1, · · · , l′d of W. We
shall use this important property in the small-variance
asymptotic analysis later.

2.2. Mixtures of probabilistic PCA models

A mixture of probabilistic PCA (MPPCA) model (Tipping
& Bishop, 1999) M posits that a data point is generated
via a mixture of K subspace clusters. Mathematically, it
can be represented asM = (π, {Wk,µk, σ

2
k}Kk=1) where

Wk ∈ RD×dk and µk ∈ RD specify the subspace for the
kth cluster, σ2

k indicates the variance and π is a mixture
probability distribution over the K clusters. Let zi ∈ [K]
denote the cluster assignment of data xi and define W =
{Wk}, µ = {µk}. Then, the likelihood of xi is:

p(xi|M) =
K∑

k=1

p(zi = k)p(xi|zi = k,W,µ), (5)

where p(zi = k) = πk and the per-subspace likelihood
model (conditioned on W and µ) is defined as

p(xi|zi = k) =

∫

Rdk

N (xi; Wkyi + µk, σ
2
kI)dp0(yi)

=N (xi;µk,WkW
>
k + σ2

kI); (6)

here we assume the prior p0(yk) is a standard Gaussian.

Given the number of subspaces K, the dimensions of sub-
spaces {dk}Kk=1 and a collection of data points {xi}ni=1,
an EM procedure (Tipping & Bishop, 1999) can be used
to learn the model parameters {Wk,µk, σ

2
k}Kk=1. π could

also be inferred from learnt parameters.

3. Dirichlet Process Mixtures of PCAs
We now present Dirichlet process mixtures of PCAs (DP-
PCA), a novel nonparametric Bayesian subspace clustering
model that could handle an arbitrary number of subspaces.
Furthermore, the dimension of each subspace does not need
to be known a priori either.

3.1. The DP-PCA Model

DP-PCA is a Bayesian mixture model that adopts the same
mixture model as in Eq. (5), but with several changes.
First, for simplicity, we assume the same variance parame-
ter σ2 is shared among all subspaces and serves as a hyper-
parameter. This assumption greatly simplifies the small-
variance analysis and it does not cause performance deteri-
oration, as shown in the experiments.

Second, we need to specify a prior distribution
p0(z,W,µ) where z = {zi}ni=1. To simplify deriva-
tion, we impose an improper non-informative prior
N (0, ρ2ID×D) with ρ2 →∞ on subspace offsets µk. The
prior on the cluster assignment variables z is a Chinese
Restaurant Process (CRP) (Aldous, 1985; Pitman, 1995)
in order to facilitate a nonparametric treatment of clusters.
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More specifically, denoting z−i as {zj}j 6=i, we have

p0(zi = k|z−i) =

{
n−i,k/Z, if n−i,k > 0;
α/Z, otherwise. (7)

where n−i,k =
∑
j 6=i δ

k
zj , δkz = I[zj = k] and Z is a

normalization constant. α is a hyper-parameter of CRP.

The prior distribution on Wk is much more delicate, due
to two reasons: 1) we do not have easy conjugate priors for
Wk, and 2) we need to facilitate a nonparametric treatment
on the dimension of each Wk. Our solution is a hierarchi-
cal prior:

p0(Wk) =
D−1∑

dk=0

p0(Wk|dk)p0(dk). (8)

First, once the dimension dk of Wk is given, we define the
prior p0(Wk|dk) as follows.1 Using the strategy in (Minka,
2000; Zhang et al., 2004), we can express Wk as

Wk = U
(k)
dk

(L
(k)
dk
− σ2Idk×dk)1/2R

(k)
dk
, (9)

where U
(k)
dk

∈ RD×dk has orthonormal columns,

R
(k)
dk
∈ Rdk×dk is an orthogonal matrix and L

(k)
dk

=

diag(l
(k)
1 , · · · , l(k)

dk
). Note that Eq. (9) is identical to Eq.

(2) if define l(k)
j = l′j + σ2. Hence, there exists an orthog-

onal matrix U(k) =
[
U

(k)
dk
,U

(k)
D−dk

]
∈ RD×D such that

Σk := WkW
>
k + σ2ID×D

= U(k)diag(l
(k)
1 , · · · , l(k)

dk
, σ2, · · · , σ2)U(k)>. (10)

To simplify notations, we will omit the superscript (k) in
the sequel when the meanings of the cluster assignments
are clear from the context.

To ensure identifiability, we assume following (Zhang
et al., 2004) that l1 > l2 > · · · > ldk > σ2, and hence
the prior distribution over l1, · · · , ldk can be written as

p0(l1, · · · , ldk |σ2) = dk!

dk∏

j=1

p0(lj)·I[l1 > · · · > ldk > σ2],

and the prior on l−1
j is assumed to be a Gamma distribution

with hyper-parameters a and b:

p0(lj |a, b) = Γ(l−1
j ; a, b) =

ba

Γ(a)
(l−1
j )a−1e−bl

−1
j . (11)

Finally, we assume an improper non-informative prior on
the orthonormal matrix U.

1If the dimension or rank of Wk does not agree with d then
p0(Wk|d) should be zero. In addition, if dk = 0 then Wk = 0
with probability 1.

For the prior on the dimension, we simply use a truncated
geometric distribution:

p0(dk) =
1− r

1− rD · r
dk , ∀dk = 0, 1, · · · , D − 1, (12)

where r ∈ (0, 1) is a hyper-parameter. This prior formu-
lates the intuition that we favor smaller subspace dimen-
sions because smaller dimension means lower model com-
plexity. In the sequel, we use d = (d1, · · · , dK) to denote
all subspace dimensions.

3.2. A Partially Collapsed Gibbs Sampler

Let X = {xi}ni=1 denote the training data. We need to
infer the posterior distribution of variables W,d,µ, z:

p(W,d,µ, z|X) =
1

Z(X)
p0(z)

K+∏

k=1

(
p0(µk)p0(dk)

· p0(Wk|dk)
) n∏

i=1

p(xi|zi,Wk,µk), (13)

where K+ is the number of active subspaces and we drop
the hyper-parameters (α, r, ρ, a, b, σ) for notational sim-
plicity. Unsurprisingly, the posterior is intractable. Fur-
thermore, a standard Gibbs sampler is not applicable either
because we cannot sample dk assuming the other variables
(e.g., Wk) are fixed, since by definition this will give us
dk = rank(Wk) almost surely, which is not acceptable.

Below, we present a partially collapsed Gibbs (PCG) sam-
pler (van Dyk & Park, 2008) which circumvents the above-
mentioned challenges for an ordinary Gibbs sampler. PCG
sampling often improves the convergence by replacing
some of the conditional distributions of an ordinary Gibbs
sampler with some marginal distributions. The sampler it-
eratively performs the following steps:

Update of d: This is the collapsed step of our PCG sam-
pler. Specifically, we sample dk from its conditional distri-
bution with Wk integrated out; that is,

p(dk|X, z,µ, a, b, r) ∝ p(X|dk, z,µ, a, b)p0(dk|r)

= p0(dk|r) ·
∫
p(X|W,µ, z)dp0(W|dk, a, b). (14)

Update of µ: Because both the prior and likelihood of µk
are Gaussian, the posterior distribution of µk is Gaussian,
too. Furthermore, since we impose a non-informative prior
on µk, its conditional distribution can be simplified as

p(µk|W, z,X) = N (µk; x̄,Σk), (15)

where x̄ = 1
nk

∑n
i=1 1[zi=k] · xi, with nk the number of

instances assigned to the kth cluster, and Σk is defined in
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Eq. (10). Intuitively, the mean of the posterior distribution
x̄ is the sample mean of all data points in cluster k.

Update of z: We need to consider two cases. First, for an
existing component k, we have

p(zi = k|z−i,Wk,µk,xi) ∝ n−i,k · N (xi;µk,Σk),

where n−i,k is the number of data instances other than i
that are assigned to the k-th cluster. Second, for a new
component knew, we have

p(zi = knew|α,xi) ∝ α ·
∫
p(xi|W,µ)dp0(W,µ). (16)

Update of W: Once z is given, we can sample each Wk

separately. Specifically, when the dimension dk is fixed,
we can sample the matrix Wk by sampling its associated
orthonormal matrix U and l1, · · · , ldk as in Eq. (10). Let

Ŝ =
1

nk

n∑

i,j=1

δkziδ
k
zj (xi − µk)(xj − µk)> (17)

be the sample covariance matrix and Ŝ = AGA> be its
eigen decomposition. Here δkzi is an indicator variable
that equals 1 if zi = k and 0 otherwise. Because a non-
informative prior is imposed on U, we can take U to be
the maximum likelihood estimation 2 , which is the eigen-
matrix A of the covariance matrix Ŝ (Zhang et al., 2004).
After U is determined, we use Gibbs sampling to sample
l1, · · · , ldk separately from their conditional distribution
(Zhang et al., 2004): (assuming ldk+1 = σ2 and l0 = +∞)

p(lj |l−j ,X, z, a, b) = Γ

(
l−1
j ;

D

2
+ a,

(
DGjj

2
+ b

)−1
)

· I[lj+1 < lj < lj−1],

4. Small-variance asymptotic analysis
Though the PCG sampler is elegant, the integrals in (14)
and (16) are unfortunately very hard to evaluate due to non-
conjugacy. Below, we develop an efficient algorithm with
provable convergence guarantees by performing small-
variance asymptotic (SVA) analysis to both the PCG sam-
pler and the target posterior.

4.1. SVA behavior of the PCG sampler

We first analyze the behavior of the PCG sampler when the
variance of the likelihood model goes to zero. Specifically,
we consider the likelihood model with scaled variance pa-
rameter σ̃2 = σ2/β, where β > 0 is a scaling constant.

2This is in fact an approximation of the PCG sampler. Nev-
ertheless, in Section 4 we show that the MLE corresponds to the
update rule after applying small-variance asymptotic analysis.

Intuitively, once we take the limit β → ∞ the posterior
variance diminishes. Similarly, we need to scale the hyper-
parameter b as b̃ = b/β so that the variance of the prior dis-
tribution of l−1 goes to zero. For the prior distribution over
d, we scale its hyper-parameter r using a different scaling
constant β′ as r̃ = r exp(−β′) and establish a connection
between β and β′ as β′ = s/δ2 · β for some constant s.

Update of µ: Under the scaling σ̃2 = σ2/β, we have

p(µk|W, z,X, β) = N (µk; x̄,WkW
>
k + σ2/β · I).(18)

Recall that Σk = WkW
>
k + σ2I. Suppose Σk =

U(k)diag(l1, · · · , ldk , σ2, · · · , σ2)U(k)> . As β →∞, the
update rule becomes

µk = x̄+ U(k)w, (19)

where wj ∼ N (0, lj) for j ≤ dk and wj = 0 for j > dk.
Alternatively, we could simply take µk = x̄ if a determin-
istic update rule is desired.

Update of z: Define vi,k = U(k)>(xi − µk).
Then the likelihood N (xi;µk,Σk) can be rewritten as
N (vi,k; 0,diag(l1, · · · , ldk , σ2, · · · , σ2)). Consequently,
as β →∞, we have (for existing k)

p(zi = k|z−i,xi,µk,Wk)

→ 1

Z
· exp


−β/σ2 ·

D∑

j=dk+1

[vi,k]2j + o(β)




=
1

Z
exp

(
−β · d(xi, Sk)2

σ2
+ o(β)

)
, (20)

where Sk = S(Wk,µk) denotes the kth subspace and the
last equality holds due to Proposition 1. Through a more
involved analysis (see Appendix B.1), we derive a similar
limiting result for the probability of creating a new cluster:

p(zi = knew|α,xi)→
α

Z
exp(o(β)). (21)

Finally, scale the hyper-parameter α as α = exp(−βλ/σ2)
and define a cost function Qi(k) as

Qi(k) :=

{
d(xi, Sk)2, n−i,k > 0;
λ. otherwise. (22)

By Eq. (20) and (21), when β →∞ the posterior distribu-
tion of zi will concentrate on the cluster k∗ with the small-
est cost Qi(k∗). In other words, we could deterministically
update zi using

z′i = argmin
k=1:K++1

Qi(k). (23)

Intuitively, the cost Qi(k) measures how close the given
data point xi is to an existing subspace Sk, and Eq. (23)
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says we should always put xi into the cluster whose sub-
space is the closest to xi. Furthermore, if xi is far away
from any existing subspaces, a new cluster is created with
only one data point, xi. This type of updates can be seen
in a number of recent development of fast inference algo-
rithms derived using SVA analysis (Kulis & Jordan, 2012;
Jiang et al., 2012; Wang & Zhu, 2014).

Update of W: When dk is fixed and b̃ → 0, the update of
U(k) remains unchanged while the update of l(k)

j becomes

l
(k)
j =

Gjj

1 + 2(a− 1)/D
. (24)

With U(k) and l(k), we calculate Wk as:

Wk = U
(k)
dk

diag

(√
l
(k)
1 , · · · ,

√
l
(k)
dk

)
, (25)

where U
(k)
dk
∈ RD×dk is the left dk columns of U(k).

Update of d: Under the SVA setting, the conditional dis-
tribution of dk is

p(dk|X, z,µ, a, b, r, β, β′) =
1

Z(X)
p0(dk|r, β′)

∫
p(X|W,µ, z, σ2, β)dp0(W|dk, a, b, β) =: q(dk|β, β′).

Through a careful limiting analysis presented in Appendix
B.2, we can show that 3

lim
β→∞

q(dk|β, β′) =
1

Z
exp

(
−β ·

(
sdk
σ2

+ inf
W∈RD×dk

n∑

i=1

δkzi
d(xi, S(W,µk))2

σ2

)
+ o(β)

)
. (26)

Here hyper-parameter s is defined as β′ = s/δ2 · β, which
works as a parameter of connection between β and β′.

Let U be an orthogonal matrix associated with W, as
defined in Eq. (10). As we have mentioned in previ-
ous sections, when the offset µk is fixed the distance
d(xi, S(W,µk)) only depends on the projection matrix U.
By PCA, for a fixed d, the optimal U can be obtained as
U = Ad where Ad is the matrix of top d eigenvectors of
the Ŝ. By Eq. (26), as β →∞ the posterior distribution of
dk will concentrate on one specific value and subsequently
we get a deterministic update rule for dk:

dk = argmin
d=0:D−1

{
s · d+

n∑

i=1

δkzi · d(xi, S(Ad,µk))2

}
.(27)

Intuitively, the update rule (27) strikes for a balance be-
tween model complexity and data fitness as measured by

3limβ→∞ f(β) = g(β) means limβ→∞ f(β)/g(β) = 1.

Algorithm 1 The DP-space algorithm
1: Input: data X = {xi}ni=1, parameters a, λ, s.
2: Initialize: K+ = 1 cluster, with d1 = 0, µ1 = X̄.
3: while not converge do
4: Update µ: µk = 1

nk

∑n
i=1 δ

k
zi · xi, k ∈ [K+].

5: for each k ∈ [K+] do
6: Compute Ŝk using Eq. (17);
7: Compute the diagonalization Ŝk = AGA>.
8: Update U(k): U(k) = A.
9: Update dk using Eq. (27)

10: Update l(k)
j using Eq. (24), j ∈ [dk];

11: Update Wk using Eq. (25);
12: end for
13: Update z: set each zi using Eq. (23);
14: Remove empty clusters and re-calculate K+.
15: end while
16: Output: K+, {Wk, dk,µk}K

+

k=1 and {zi}ni=1.

the term
∑
i δ
k
zi · d(xi, S(Ad,µk))2. When the subspace

dimension d increases the distance decreases and hence the
model better fits the training data. It contrasts the first term
s · d, which controls the model complexity by imposing a
linear penalty on subspace dimension d.

4.2. SVA of the posterior

We now derive a deterministic loss function defined on the
training data set via SVA analysis on the posterior distribu-
tion and shows that Algorithm 1 converges by decreasing
the loss function at each iteration. To begin with, we write
the CRP prior as an exchange partition probability function
(Aldous, 1985; Pitman, 1995):

p0(z|α) = αK
+−1 Γ(α+ 1)

Γ(α+ n)

K+∏

k=1

(nk − 1)!, (28)

where K+ is the number of non-empty clusters and nk is
the number of instances in cluster k. Subsequently, the pos-
terior of DP-PCA can be expressed as:

p(z,W,d,µ|X) =
1

Z(X)
αK

+

ψ(n)

K+∏

k=1

(
p0(µk|ρ)p0(dk|r)

·p0(Wk|dk, a, b)
) n∏

i=1

p(xi|zi = k,Wk,µk). (29)

Here ψ(n) =
∏K+

k=1 (nk − 1)!. Γ(α+1)
αΓ(α+n) is absorbed in

Z(X) because it does not depend on model parameters.
With a = 1 and the scaling σ̃2 = σ2/β, r̃ = r exp(−s/δ2 ·
β), α = exp(−λ/δ2 · β), b̃ = b/β, we have

p(z,W,d,µ|X, β) = 1/Z(X, β) exp
(
−β/σ2

(
λK+
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+s
K+∑

k=1

dk +
n∑

i=1

d(xi, Szi)
2


+ o(β)


 . (30)

As a result, when we take β → ∞ the posterior distri-
bution will concentrate on its mode, that is, the model
θ∗ = (z∗,W∗,d∗,µ∗) that minimizes the loss

L(z,W,d,µ) := λK+ + s
K+∑

k=1

dk +
n∑

i=1

d(xi, Szi)
2.(31)

The loss function has an intuitive tradeoff between data fit-
ness measured by the last term and model complexity mea-
sured by (K+, {dk}). It also reveals practical interpreta-
tions of the two hyper-parameters λ and s. For example, λ
could be viewed as the distance threshold between a data
point and the subspace it is associated with. similarly, the
parameter s characterizes the residue after PCA for each
subspace and the algorithm is encouraged to increase dk
once the residue exceeds s. In some applications (e.g. clus-
tering gene sequences) hyper-parameters could be directly
set according to their physical meanings.

Theorem 1 states that the DP-space algorithm monotoni-
cally decreases this loss function at each iteration. We defer
its proof to Appendix B.3.

Theorem 1. Let W(t),d(t), µ(t) and z(t) be model pa-
rameters output by Algorithm 1 after iteration t. Then
for all t we have L(W(t+1),d(t+1),µ(t+1), z(t+1)) ≤
L(W (t),d(t),µ(t), z(t)).

5. Related work
The Agglomerative Lossy Compression (ALC) (Ma et al.,
2007) algorithm builds a clustering solution by first creat-
ing one cluster for each data point, and then combining ex-
isting clusters in a greedy manner. The algorithm does not
need prior knowledge of the number of clusters and sub-
space dimensions. Instead, a distortion parameter δ is re-
quired to reflect the distortion level in the underlying data.
ALC is different from DP-space in two ways: first, ALC
minimizes the coding length needed to fit data points in-
stead of finding solutions near MLE; second, unlike ALC,
DP-space first puts all instances into a giant cluster and tries
to create new clusters in the process.

The Random Sample Consensus (RANSAC) (Fischler &
Bolles, 1981) algorithm fits a subspace of dimension d by
randomly sampling d + 1 points from the training data. It
does not need to know the number of subspaces. However,
the algorithm does require the knowledge of subspace di-
mensions, and a drawback of RANSAC is that it generally
performs bad when there are many subspaces or the sub-
space dimensions are incorrectly set (Yang et al., 2006).

The Sparse Subspace Clustering (SSC) (Elhamifar & Vi-

dal, 2013) algorithm solves a LASSO regression problem
for each data point to form a similarity graph. Then spectral
clustering methods are used to cluster data into subspaces.
SSC performs well on real-world data sets (Vidal, 2010)
and in general K and dk do not need to be known a pri-
ori. However, SSC is based on `1 optimization techniques,
which could be slow on large data sets. Our experiments
show that DP-space is much faster than SSC while achiev-
ing slightly worse performance.

(Chen et al., 2010) proposed a nonparametric Bayesian
mixture of factor analysis (MFA). Similar to ours, both the
mixture number and subspace rank can be inferred from
data. However, the nonparametric treatments of subspace
dimension are different. In (Chen et al., 2010) an auxiliary
indicator vector z is introduced with a Beta process prior
while in our model we place a geometric prior directly on
the subspace rank. Our method is arguably more direct,
though it results in non-conjugacy. Furthermore, by SVA
analysis we obtain a new efficient algorithm.

Finally, small-variance asymptotic (SVA) analysis is a
powerful method that speeds up the inference of non-
parametric Bayesian models, with many recent advances
on performing SVA analysis to the popular nonparametric
models, including Dirichlet process mixture models (Kulis
& Jordan, 2012; Jiang et al., 2012), nonparametric la-
tent factor models (Broderick et al., 2013), infinite HMMs
(Roychowdhury et al., 2013) and infinite SVMs (Wang &
Zhu, 2014). Our work contributes by presenting a novel
nonparametric Bayesian model as well as a non-trivial ex-
tension of existing SVA methods to the challenging task of
subspace clustering.

6. Experiments
We compare DP-space with several competitors on both
synthetic and real-world datasets. All methods are imple-
mented in Matlab. Throughout the experiments we always
set the hyper-parameter a to be 1, under which no shrinkage
on lj is imposed. The other hyper-parameters are selected
via cross-validation.

6.1. Synthetic examples

We first analyze how DP-space uses subspaces of different
dimensions to cluster synthetic data. The dataset contains
10, 000 data points from R3. They are divided into 4 clus-
ters with equal probability. Among the 4 clusters, two lie
on 1-d affine subspaces and the other two lie on 2-d affine
subspaces. A Gaussian white noiseN (0, 0.05ID×D) is im-
posed on each data point. We show the clustering results of
DP-space under different settings of hyper-parameters, and
also compare it with K-means and the ground truth.

Fig. 1 shows the ground truth (with subspaces depicted in
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Figure 1. (a) the ground truth; and (b) the clustering result of K-
means with K = 4.

different colors) and the clustering results of K-means with
K = 4. As shown in Figure 1(b), K-means does not cap-
ture the concept of subspace well. For instance, the last few
instances lying on the green line are misclassified because
they are closer to the center of another cluster in Euclidean
distance. Consequently, the Normalized Mutual Informa-
tion (NMI) 4 score is as low as 0.610, much worse than
DP-space shown in Figure 2.

Fig. 2 shows the clustering results on the synthetic
dataset by DP-space with different hyper-parameter set-
tings. When λ and s are set properly as in Fig. 2(a) the
clustering result is very close to the ground truth. Both the
number of clusters K and subspace dimensions dk are in-
ferred correctly. When λ increases as in Figure 2(b), we ex-
pect to get a smaller number of clusters because we place a
larger penalty on K+. In particular, the two 1-d subspaces
are merged into a single 2-d subspace cluster. On the other
hand, smaller s would result in subspaces of higher dimen-
sion. This is shown in Fig. 2(c): we still get 4 clusters,
but now all subspaces are of dimension two. Furthermore,
s also controls the number of clusters in an indirect way
because for any additional cluster we add a penalty on its
subspace dimension. For instance, in Fig. 2(d) the λ pa-
rameter remains 1.5 but s is as large as 10.0. We can see
that again the number of clusters returned decreases to 3.

We next turn to larger synthetic datasets. The dataset now
contains 100, 000 data points from R10. Data points are
divided with equal probability into K = 6 clusters. The
underlying subspace dimensions of the K clusters are set
as d = (d1, · · · , d6) = (2, 2, 3, 3, 4, 4). A similar Gaus-
sian white noise is imposed on each data point. We re-
port the clustering performance and running time for DP-
space and other baseline algorithms on 10 i.i.d. generated
synthetic datasets. Similar to (Kulis & Jordan, 2012), we
use NMI to evaluate clustering performance with different
cluster numbers. The hyper-parameters of non-parametric

4Let A = {a1, · · · , an}, B = {b1, · · · , bm} be the
output and ground truth clusterings. The NMI score is de-
fined as NMI(A,B) := I(A;B)

[H(A)+H(B)]/2
, where I(A;B) =

∑
j,k

|ωj∩ck|
N

log
N|ωj∩ck|
|ωj ||ck| and H(A) = −∑

j

|ωj |
N

log
|ωj |
N

. N
is the total number of examples.

(a) λ = 1.5, s = 1; K = 4,
NMI: 0.910

(b) λ = 5, s = 1; K = 3,
NMI: 0.744

(c) λ = 1.5, s = 0.5; K = 4,
NMI: 0.898

(d) λ = 1.5, s = 10; K = 3,
NMI: 0.727

Figure 2. Clustering results of DP-space under different settings
of λ and s, where K is the number of recovered clusters.

Table 1. Average NMI, running time (seconds), cluster number
and subspace dimension on synthetic datasets. For parametric
models the number of clusters and subspace dimensions are fixed.

Algorithm NMI Time Cluster no. Dim.

K-means .713 2.6 6 -
DP-means .697 23.6 26.3 -
MPPCA, d = 2 .847 43.6 6 2
MPPCA, d = 4 .924 32.6 5 4
MPPCA, d = 4 .999 19.8 6 4
DP-space .972 12.5 6.3 4.2

models are selected on one tenth of the data set using NMI.
We can see that DP-space achieves similar NMI scores with
EM-MPPCA while being faster. Furthermore, DP-space
correctly selects the number of clusters and subspace di-
mensions. On the other hand, when K or dk is incorrectly
specified, the performance of EM-MPPCA deteriorates.

6.2. Application to Motion Segmentation

Motion segmentation usually refers to the task of sepa-
rating the movements of multiple rigid-body objects from
video sequences. Subspace clustering methods are popu-
lar in this task by simultaneously clustering the point tra-
jectory data, which can be extracted using tracking meth-
ods, into multiple subspaces and finding a low-dimensional
subspace fitting each group of points. See (Vidal, 2010; El-
hamifar & Vidal, 2013) for a comprehensive treatment.

In Table 2, we compare the performance of several sub-
space clustering algorithms on the Hopkins 155 motion
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Table 2. Average classification error (%) and running time (sec-
onds) on the Hopkins-155 dataset, where “-” means the algorithm
usually doesn’t operate under the specific projection setting.

r = 5 r = 4N/SP
error time error time

GPCA 10.34 13.2 11.55 18.2
RANSAC 9.76 1.4 - -
ALC 3.76 347.8 3.37 352.1
EM-MPPCA-a 18.56 3.8 24.88 6.2
EM-MPPCA-m 3.49 3.8 7.28 6.2
DP-space 3.32 2.1 3.29 2.1
LRR - - 3.74 294.5
SSC-ADMM - - 2.41 542.3

segmentation dataset (Tron & Vidal, 2007). Each sequence
in the dataset contains motions of N = 2 or 3 different
objects. A detailed summary of statistics for the Hopkins-
155 dataset can be found in Appendix C.1. Performance is
measured in terms of classification error, which is the per-
centage of misclassified video sequences. Specifically, we
consider all permutations of cluster assignments and com-
pare them against the ground-truth classification. If more
clusters than the number of objects are returned, all video
sequences in extra clusters will be ruled as misclassified.

We compare the performance of DP-space with EM-
MPPCA and several other baseline algorithms, includ-
ing Generalized PCA (GPCA) (Vidal et al., 2005),
RANSAC (Fischler & Bolles, 1981), ALC (Ma et al.,
2007), LRR (Liu et al., 2013) 5 and SSC (Elhamifar &
Vidal, 2013). Segmentation performance is measured in
terms of classification error, which is the percentage of mis-
classified point trajectories. Following the convention in
(Vidal, 2010), we first project point projectories onto an r-
dimensional subspace using PCA, with r varying from 5
to 4N or a level that preserves sparsity (SP). 6 We run the
EM-MPPCA algorithm using 10 random initializations on
each video sequence and report both the average perfor-
mance (MPPCA-a) and the best performance (MPPCA-m)
over different initializations. Parameters of the DP-space
algorithm are selected using 30% of the ground-truth labels
according to NMI. Values of λ range from 10−3 to 102 and
values of s range from 10−2 to 102. Classification errors
for GPCA, RANSAC, ALC are cited from (Vidal, 2010)
and from (Elhamifar & Vidal, 2013) for LRR and SSC.
Running time for LRR is cited from (Liu et al., 2013) and
running time for SSC is measured using implementations
provided in (hop). For SSC we use the ADMM implemen-

5For LRR a heuristic post-processing step is adopted, as im-
plemented in the code (lrr).

6This requires r ≥ 8 log(2F/r), where F is the number of
frames collected.

Table 3. Clustering error and running time for SSC-ADMM under
constrained number of ADMM iterations (T ).

T 5 10 20 30 40

error 5.03 3.64 3.33 3.20 2.88
time 2.8 5.6 10.9 16.0 21.4

tation because it is faster and also more accurate than the
original CVX implementation (Elhamifar & Vidal, 2013).
For all algorithms the reported running time does not in-
clude the time for parameter selection or cross-validation.

From Table 2 we see that DP-space performs far better than
GPCA, RANSAC and the EM-MPPCA algorithm, and its
performance is comparable to ALC and LRR. Although
DP-space does not perform as good as SSC in terms of
classification accuracy, it is significantly faster than SSC
because SSC is an optimization based algorithm and re-
quires solving P Lasso problems, each with P variables
(where P is the number of points in each video sequence).
For the Hopkins 155 dataset P ranges from 100 to 400,
as shown in Appendix C.1. In Appendix C.2 we present a
more detailed comparison of classification error.

Since optimization based methods like SSC-ADMM are
slower but more accurate, we further investigate the trade-
off between clustering accuracy and running time. In Table
3 we constrain the maximum number of ADMM iterations
for SSC and report the corresponding clustering accuracy
and running time. The results show that when SSC-ADMM
is run with very few iterations its performance suffers. On
the other hand, SSC-ADMM takes much longer to achieve
the same level of clustering accuracy as DP-space does.

6.3. Discussion

Unlike DP-means, the DP-space algorithm always achieves
a significant improvement over the parametric MPPCA
model on real-world datasets, as shown in Table 2. There
could be several reasons for this phenomenon.

First, DP-space enjoys the advantage of selecting differ-
ent subspace dimension for different clusters, while the di-
mension is assumed to be the same for all components in
MPPCA, for which an exhaustive search over all possible
combinations of subspace dimension is simply intractable.
This provides additional modeling flexibility for DP-space.

Second, the EM-MPPCA algorithm is very sensitive to its
initialization (Elhamifar & Vidal, 2013). This fact is veri-
fied in Table 2: when the best performance of EM-MPPCA
over 10 different initializations is reported, the classifica-
tion accuracy is much better than when only the average
performance is reported, and in fact the performance is
comparable with DP-space and ALC.
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