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Abstract

Multi-task feature learning (MTFL) is a pow-
erful technique in boosting the predictive per-
formance by learning multiple related classifica-
tion/regression/clustering tasks simultaneously.
However, solving the MTFL problem remains
challenging when the feature dimension is
extremely large. In this paper, we propose a
novel screening rule—that is based on the dual
projection onto convex sets (DPC)—to quickly
identify the inactive features—that have zero
coefficients in the solution vectors across all
tasks. One of the appealing features of DPC is
that: it is safe in the sense that the detected in-
active features are guaranteed to have zero coef-
ficients in the solution vectors across all tasks.
Thus, by removing the inactive features from
the training phase, we may have substantial sav-
ings in the computational cost and memory us-
age without sacrificing accuracy. To the best of
our knowledge, it is the first screening rule that
is applicable to sparse models with multiple data
matrices. A key challenge in deriving DPC is to
solve a nonconvex problem. We show that we
can solve for the global optimum efficiently via a
properly chosen parametrization of the constraint
set. Moreover, DPC has very low computational
cost and can be integrated with any existing
solvers. We have evaluated the proposed DPC
rule on both synthetic and real data sets. The
experiments indicate that DPC is very effective in
identifying the inactive features—especially for
high dimensional data—which leads to a speedup
up to several orders of magnitude.
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1. Introduction
Empirical studies have shown that learning multiple
related tasks (MTL) simultaneously often provides supe-
rior predictive performance relative to learning each tasks
independently (Ando & Zhang, 2005; Argyriou et al., 2008;
Bakker & Heskes, 2003; Evgeniou et al., 2005; Zhang
et al., 2006; Chen et al., 2013). This observation also has
solid theoretical foundations (Ando & Zhang, 2005; Bax-
ter, 2000; Ben-David & Schuller, 2003; Caruana, 1997), e-
specially when the training sample size is small for each
task. One popular MTL method especially for high-
dimensional data is multi-task feature learning (MTFL),
which uses the group Lasso penalty to ensure that all tasks
select a common set of features (Argyriou et al., 2007).
MTFL has found great success in many real-world appli-
cations including but not limited to: breast cancer classi-
fication (Zhang et al., 2010), disease progression predic-
tion (Zhou et al., 2012), gene data analysis (Kim & X-
ing, 2009), and neural semantic basis discovery (Liu et al.,
2009a). A major issue in MTFL—that is of great practi-
cal importance—is to develop efficient solvers (Liu et al.,
2009b; Sra, 2012; Wang et al., 2013a; Gong et al., 2014).
However, it remains challenging to apply the MTFL mod-
els to large-scale problems.

The idea of screening has been shown to be very effective
in scaling the data and improving the efficiency of many
popular sparse models, e.g., Lasso (El Ghaoui et al., 2012;
Wang et al., 2013b; Wang et al.; Xiang et al., 2011; Tibshi-
rani et al., 2012), nonnegative Lasso (Wang & Ye, 2014),
group Lasso (Wang et al., 2013b; Wang et al.; Tibshirani
et al., 2012), mixed-norm regression (Wang et al., 2013a),
`1-regularized logistic regression (Wang et al., 2014b),
sparse-group Lasso (Wang & Ye, 2014), support vector ma-
chine (SVM) (Ogawa et al., 2013; Wang et al., 2014a), and
least absolute deviations (LAD) (Wang et al., 2014a). Es-
sentially, screening aims to quickly identify the zero com-
ponents in the solution vectors such that the correspond-
ing features—called inactive features (e.g., Lasso)—or da-
ta samples—called non-support vectors (e.g., SVM)—can
be removed from the optimization. Therefore, the size of
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the data matrix and the number of variables to be computed
can be significantly reduced, which may lead to substantial
savings in the computational cost and memory usage with-
out sacrificing accuracy. Compared to the solvers without
screening, the speedup gained by the screening methods
can be several orders of magnitude.

However, we note that all the existing screening methods
are only applicable to sparse models with a single da-
ta matrix. Therefore, motivated by the challenges posed
by large-scale data and the promising performance of ex-
isting screening methods, we propose a novel framework
for developing effective and efficient screening rules for a
popular MTFL model via the dual projection onto convex
sets (DPC). The framework of DPC extends the state-of-
the-art screening rule, called EDPP (Wang et al.), for the
standard Lasso problem (Tibshirani, 1996)—that assumes
a single data matrix—to a popular MTFL model—that in-
volves multiple data matrices across different tasks. To the
best of our knowledge, DPC is the first screening rule that
is applicable to sparse models with multiple data matrices.

The DPC screening rule detects the inactive features by
maximizing a convex function over a convex set contain-
ing the dual optimal solution, which is a nonconvex prob-
lem. To find the region containing the dual optimal solu-
tion, we show that the corresponding dual problem can be
formulated as a projection problem—which admits many
desirable geometric properties—by utilizing the bilinearity
of the inner product. Then, by a carefully chosen param-
eterization of the constraint set, we transform the noncon-
vex problem to a quadratic programming problem over one
quadratic constraint (QP1QC) (Gay, 1981), which can be
solved for the global optimum efficiently. Experiments on
both synthetic and real data sets indicate that the speedup
gained by DPC can be orders of magnitude. Moreover,
DPC shows better performance as the feature dimension
increases, which makes it a very competitive candidate for
the applications of very high-dimensional data.

We organize this paper as follows. In Section 2, we briefly
review some basics of a popular MTFL model. Then, we
derive the dual problem in Section 3. Based on an indepth
analysis of the geometric properties of the dual problem
and the dual feasible set, we present the proposed DPC
screening rule in Section 4. In Section 5, we evaluate the
DPC rule on both synthetic and real data sets. We conclude
this paper in Section 6. Please refer to the journal version
(Wang & Ye, 2015) for proofs not included in the main text.

Notation: Denote the `2 norm by ‖ · ‖. For x ∈ Rn, let
its ith component be xi, and the diagonal matrix with the
entries of x on the main diagonal be diag(x). For a set of
positive integers {Nt : t = 1, . . . , T,

∑T
t=1Nt = N}, we

denote the tth subvector of x ∈ RN by xt such that x =
(xT1 , . . . ,x

T
T )T , where xt ∈ RNt for t = 1, . . . , T . For

vectors x,y ∈ Rn, we use 〈x, y〉 and xTy interchange-
ably to denote the inner product. For a matrix M ∈ Rm×n,
let mi, mj , and mij be its ith row, jth column and (i, j)th

entry, respectively. We define the (2, 1)-norm of M by
‖M‖2,1 =

∑m
i=1 ‖mi‖. For two matrices A,B ∈ Rm×n,

we define their inner product by 〈A,B〉 = tr(ATB). Let I
be the identity matrix. For a convex function f(·), let ∂f(·)
be its subdifferential. For a vector x and a convex set C, the
projection operator is:

PC(x) := argminy∈C
1
2‖y − x‖.

2. Basics
In this section, we briefly review some basics of a popular
MTFL model and mention several equivalent formulations.

Suppose that we have T learning tasks {(Xt,yt) : t =
1, . . . , T}, where Xt ∈ RNt×d is the data matrix of the
tth task with Nt samples and d features, and yt ∈ RNt is
the corresponding response vector. A widely used MTFL
model (Argyriou et al., 2007) takes the form of

min
W∈Rd×T

∑T

t=1

1
2‖yt −Xtwt‖2 + λ‖W‖2,1, (1)

where wt ∈ Rd is the weight vector of the tth task and
W = (w1, . . . ,wT ). Because the ‖ · ‖2,1-norm induces
sparsity on the rows of W , the weight vectors across all
tasks share the same sparse pattern. We note that the model
in (1) is equivalent to several other popular MTFL models.

The first example introduces a positive weight parameter ρt
for t = 1, . . . , T to each term in the loss function:

min
W∈Rd×T

∑T

t=1

1
2ρt
‖yt −Xtwt‖2 + λ‖W‖2,1,

which reduces to (1) by setting ỹt = yt√
ρt

and X̃t = Xt√
ρt

.

The second example introduces another regularizer to (1):

min
W∈Rd×T

∑T

t=1

1
2‖yt −Xtwt‖2 + λ‖W‖2,1 + ρ‖W‖2F ,

where ρ is a positive parameter and ‖ · ‖F is the Frobenius
norm. Let I ∈ Rd×d be the identity matrix and 0 be the
d-dimensional vector with all zero entries. By letting

X̄t = (XT
t ,
√

2ρtI)T , ȳt = (yTt ,0
T )T , t = 1, . . . , T,

we can also simplify the above MTFL model to (1).

In this paper, we focus on developing the DPC screening
rule for the MTFL model in (1).

3. The Dual Problem
In this section, we show that we can formulate the dual
problem of the MTFL model in (1) as a projection problem
by utilizing the bilinearity of the inner product.
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We first introduce a new set of variables:

zt = yt −Xtwt, t = 1, . . . , T. (2)

Then, the MTFL model in (1) can be written as

min
W,z

∑T

t=1

1
2‖zt‖

2 + λ‖W‖2,1, (3)

s.t. zt = yt −Xtwt, t = 1, . . . , T.

Let λθ ∈ RN be the vector of Lagrangian multipliers.
Then, the Lagrangian of (1) is

L(W, z; θ) =
∑T

t=1

1
2‖zt‖

2 + λ‖W‖2,1 (4)

+ λ
∑T

t=1
〈θt,yt −Xtwt − zt〉.

To get the dual problem, we need to minimize L(W, z; θ)
over W and z. We can see that

0 = ∇z L(W, z; θ)⇒ argminz L(W, z; θ) = λθ. (5)

For notational convenience, let

f(W ) = λ‖W‖2,1 − λ
∑T

t=1
〈θt, Xtwt〉.

Thus, to minimize L(W, z; θ) with respect to W , it is
equivalent to minimize f(W ), i.e.,

{Ŵ : 0 ∈ ∂W L(Ŵ , z; θ)} = {Ŵ : 0 ∈ ∂ f(Ŵ )}.

By the bilinearity of the inner product, we can decouple
f(W ) into a set of independent subproblems. Indeed, we
can rewrite the second term of f(W ) as∑T

t=1
〈θt, Xtwt〉 =

∑T

t=1
〈XT

t θt,wt〉 = 〈M,W 〉, (6)

where M = (XT
1 θ1, . . . , X

T
T θT ). Eq. (6) expresses

〈M,W 〉 by the sum of the inner products of the corre-
sponding columns. By the bilinearity of the inner product,
we can also express 〈M,W 〉 by the sum of the inner prod-
ucts of the corresponding rows:∑T

t=1
〈θt, Xtwt〉 = 〈M,W 〉 =

∑d

`=1
〈m`,w`〉. (7)

Denote the jth column of Xt by x
(t)
j . We can see that

m` = (〈x(1)
` , θ1〉, 〈x(2)

` , θ2〉, . . . , 〈x(T )
` , θT 〉). (8)

Moreover, as ‖W‖2,1 =
∑d
`=1 ‖w`‖, Eqs. (7) implies that:

f(W ) = λ
∑d

`=1
f (`)(w`),

where f (`)(w`) = ‖w`‖ − 〈m`,w`〉. Thus, to minimize
f(W ), we can minimize each f (`)(w`) separately. The

subdifferential counterpart of the Fermat’s rule (Bauschke
& Combettes, 2011), i.e., 0 ∈ ∂f (`)(ŵ`), yields:

m` ∈

{
ŵ`/‖ŵ`‖, if ŵ` 6= 0,

{u ∈ Rd : ‖u‖ ≤ 1}, if ŵ` = 0,
(9)

where ŵ` is the minimizer of f (`)(·).

We note that Eq. (9) implies ‖m`‖ ≤ 1. If this is not the
case, then f `(·) is not lower bounded (see the supplements
for discussions), i.e., minw` f `(w`) = −∞. Thus, by E-
qs. (5) and (9), the dual function is

q(θ) = minW,z L(W, z; θ) (10)

=

{
−λ

2

2 ‖θ‖
2 + λ〈θ,y〉, ‖m`‖ ≤ 1, ∀ ` ∈ {1, . . . , d},

−∞, otherwise.

Maximizing q(θ) yields the dual problem of (1) as follows:

max
θ

1
2‖y‖

2 − λ2

2

∥∥y
λ − θ

∥∥2
, (11)

s.t.
∑T

t=1
〈x(t)
` , θt〉2 ≤ 1, ` = 1, . . . , d.

It is evident that the problem in (11) is equivalent to

min
θ

1
2

∥∥y
λ − θ

∥∥2
, (12)

s.t.
∑T

t=1
〈x(t)
` , θt〉2 ≤ 1, ` = 1, . . . , d.

In view of (12), it is indeed a projection problem. Let F be
the feasible set of (12). Then, the optimal solution of (12),
denoted by θ∗(λ), is the projection of y/λ onto F , namely,

θ∗(λ) = PF
(

y
λ

)
. (13)

4. The DPC Rule
In this section, we present the proposed DPC screening rule
for the MTFL model in (1). Inspired by the Karush-Kuhn-
Tucker (KKT) conditions (Güler, 2010), in Section 4.1, we
first present the general guidelines. The most challenging
part lies in two folds: 1) we need to estimate the dual opti-
mal solution as accurately as possible; 2) we need to solve
a nonconvex optimization problem. In Section 4.2, we give
an accurate estimation of the dual optimal solution based on
the geometric properties of the projection operators. Then,
in Section 4.3, we show that we can efficiently solve for the
global optimum to the nonconvex problem. We present the
DPC rule for the MTFL model (1) in Section 4.4.

4.1. Guidelines for Developing DPC

We present the general guidelines to develop screening
rules for the MTFL model (1) via the KKT conditions.
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LetW ∗(λ) = (w∗1(λ), . . . ,w∗T (λ)) be the optimal solution
(1). By Eqs. (2), (5) and (9), the KKT conditions are:

yt = Xtw
∗
t (λ) + λθ∗t (λ), t = 1, . . . , T, (14)

g`(θ
∗(λ)) ∈

{
1, if (w`)∗(λ) 6= 0,

[−1, 1], if (w`)∗(λ) = 0,
` = 1, . . . , d. (15)

where (w`)∗(λ) is the `th row of W ∗(λ), and

g`(θ) =
∑T

t=1
〈x(t)
` , θt〉2, ` = 1, . . . , d. (16)

For ` = 1, . . . , d, Eq. (15) yields

g`(θ
∗(λ)) < 1⇒ (w`)∗(λ) = 0. (R)

The rule in (R) provides a method to identify the rows in
W ∗(λ) that have only zero entries. However, (R) is not
applicable to real applications, as it assumes knowledge
of θ∗(λ), and solving the dual problem (12) could be as
expensive as solving the primal problem (1). Inspired by
SAFE (El Ghaoui et al., 2012), we can first estimate a set
Θ that contains θ∗(λ), and then relax (R) as follows:

maxθ∈Θ g`(θ) < 1⇒ (w`)∗(λ) = 0, ` = 1, . . . , d. (R∗)

Therefore, to develop a screening rule for the MTFL mod-
el in (1), (R∗) implies that: 1) we need to estimate a re-
gion Θ—that turns out to be a ball (please refer to Section
4.2)—containing θ∗(λ); 2) we need to solve the maximiza-
tion problem—that turns out to be nonconvex (please refer
to Section 4.3)—on the left hand side of (R∗).

4.2. Estimation of the Dual Optimal Solution

Based on the geometric properties of the dual problem (12)
that is a projection problem, we first derive the closed for-
m solutions of the primal and dual problems for specific
values of λ in Section 4.2.1, and then give an accurate esti-
mation of θ∗(λ) for the general cases in Section 4.2.2.

4.2.1. CLOSED FORM SOLUTIONS

The primal and dual optimal solutions W ∗(λ) and θ∗(λ)
are generally unknown. However, when the value of λ is
sufficiently large, we expect that W ∗(λ) = 0, and θ∗(λ) =
y
λ by Eq. (14). The following theorem confirms this.
Theorem 1. For the MTFL model in (1), let

λmax = max
`=1,...,d

√∑T

t=1
〈x(t)
` ,y〉2. (17)

Then, the following statements are equivalent:
y
λ ∈ F ⇔ θ∗(λ) = y

λ ⇔W ∗(λ) = 0⇔ λ ≥ λmax.
Remark 1. Theorem 1 indicates that: both the primal and
dual optimal solutions of the MTFL model (1) admit closed
form solutions for λ ≥ λmax. Thus, we will focus on the
cases with λ ∈ (0, λmax) in the rest of this paper.

4.2.2. THE GENERAL CASES

Theorem 1 gives a closed form solution of θ∗(λ) for λ ≥
λmax. Therefore, we can estimate θ∗(λ) with λ < λmax

in terms of a known θ∗(λ0). Specifically, we can simply
set λ0 = λmax and utilize the result θ∗(λmax) = y/λmax.
To make this paper self-contained, we first review some
geometric properties of projection operators.
Theorem 2. (Ruszczyński, 2006) Let C be a nonempty
closed convex set. Then, for any point ū, we have

u = PC(u)⇔ u− u ∈ NC(u),

where NC(u) = {v : 〈v,u′ − u〉 ≤ 0, ∀u′ ∈ C} is called
the normal cone to C at u ∈ C.

Another useful property of the projection operator in esti-
mating θ∗(λ) is the so-called firmly nonexpansiveness.
Theorem 3. (Bauschke & Combettes, 2011) Let C be a
nonempty closed convex subset of a Hilbert space H. The
projection operator with respect to C is firmly nonexpan-
sive, namely, for any u1,u2 ∈ H,

‖PC(u1)− PC(u2)‖2 + ‖(I − PC)(u1)− (I − PC)(u2)‖2

≤ ‖u1 − u2‖2. (18)

The firmly nonexpansiveness of projection operators leads
to the following useful result.
Corollary 4. Let C be a nonempty closed convex subset of
a Hilbert spaceH and 0 ∈ C. For any u ∈ H, we have:

1. ‖PC(u)‖2 + ‖u− PC(u)‖2 ≤ ‖u‖2.

2. 〈u,u− PC(u)〉 ≥ 0.
Remark 2. Part 1 of Corollary 4 indicates that: if a closed
convex set C contains the origin, then, for any point u, the
norm of its projection with respect to C is upper bounded by
the norm of ‖u‖. The second part is a useful consequence
of the first part and plays a crucial role in the estimation of
the dual optimal solution (see Theorem 5).

We are now ready to present an accurate estimation of the
dual optimal solution θ∗(λ).
Theorem 5. For the MTFL model in (1), suppose that
θ∗(λ0) is known with λ0 ∈ (0, λmax]. Let g` be given by
Eq. (16) for ` = 1, . . . , d, and

`∗ ∈
{

argmax`=1,...,d g`(y)
}
. (19)

For any λ ∈ (0, λ0), we define

n(λ0) =


y
λ0
− θ∗(λ0), if λ0 ∈ (0, λmax),

∇g`∗
(

y
λmax

)
, if λ0 = λmax.

(20)

r(λ, λ0) = y
λ − θ

∗(λ0), (21)

r⊥(λ, λ0) = r(λ, λ0)− 〈n(λ0), r(λ, λ0)〉
‖n(λ0)‖2

n(λ0). (22)
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Then, the following holds:

1. n(λ) ∈ NF (θ∗(λ)),

2. 〈y,n(λ0)〉 ≥ 0,

3. 〈r(λ, λ0),n(λ0)〉 ≥ 0,

4.
∥∥θ∗(λ)−

(
θ∗(λ0) + 1

2r⊥(λ, λ0)
)∥∥ ≤ 1

2‖r
⊥(λ, λ0)‖.

Consider Theorem 5. Part 1 characterizes θ∗(λ) via the
normal cone. Parts 2 and 3 illustrate key geometric identi-
ties that lead to the accurate estimation of θ∗(λ) in part 4
(see supplement for details).

Remark 3. The estimation of the dual optimal solution in
DPC and EDPP (Wang et al.)—that is for Lasso—are both
based on the geometric properties of the projection opera-
tors. Thus, the formulas of the estimation in Theorem 5 are
similar to that of EDPP. However, we note that the estima-
tions in DPC and EDPP are determined by the complete-
ly different geometric structures of the corresponding dual
feasible sets. Problem (12) implies that the dual feasible
set of the MTFL model (1) is much more complicated than
that of Lasso—which is a polytope (the intersection of a set
of closed half spaces). Therefore, the estimation of the du-
al optimal solution in DPC is much more challenging than
that of EDPP, e.g., we need to find a vector in the normal
cone to the dual feasible set at y/λmax [see n(λmax)].

For notational convenience, let

o(λ, λ0) = θ∗(λ0) +
1

2
r⊥(λ, λ0). (23)

Theorem 5 implies that θ∗(λ) lies in the ball:

Θ(λ, λ0) =

{
θ : ‖θ − o(λ, λ0)‖ ≤ 1

2
‖r⊥(λ, λ0)‖

}
. (24)

4.3. Solving the Nonconvex Problem

In this section, we solve the optimization problem in (R∗)
with Θ given by Θ(λ, λ0) [see Eq. (24)], namely,

s`(λ, λ0) = max
θ∈Θ(λ,λ0)

{
g`(θ) =

∑T

t=1
〈x(t)
` , θt〉2

}
. (25)

Although g`(·) and Θ(λ, λ0) are convex, problem (25) is
nonconvex, as it is a maximization problem. However, we
can efficiently solve for the global optimal solutions to (25)
by transforming it to a QP1PC via a parametrization of the
constraint set. We first cite the following result.

Theorem 6. (Gay, 1981) LetH be a symmetric matrix and
D be a positive definite matrix. Consider

min
‖Du‖≤∆

ψ(u) =
1

2
uTHu + qTu, (26)

where ∆ > 0. Then, u∗ minimizes ψ(u) over the constraint
set if and only if there exists α∗ ≥ 0—that is unique—such
that (H + α∗DTD)u∗ is positive semidefinite,

(H + α∗DTD)u∗ = −q, (27)
‖Du∗‖ = ∆, ifα∗ > 0. (28)

We are now ready to solve for s`(λ, λ0).

Theorem 7. Let o = o(λ, λ0) and u∗ be the optimal solu-
tion of problem (26) with ∆ = 1

2‖r
⊥(λ, λ0)‖, D = I ,

H = −diag(2‖x‖(1)
` , . . . , 2‖x‖(T )

` ),

q = −
(

2‖x(1)
` ‖|〈x

(1)
` ,o1〉|, . . . , 2‖x(T )

` ‖|〈x
(T )
` ,oT 〉|

)T
,

namely, there exists a α∗ ≥ 0 such that α∗ and u∗ solve
Eqs. (27) and (28). Let
ρ` = maxt=1,...,T ‖x(t)

` ‖, I` =
{
t∗ : ‖x(t∗)

` ‖ = ρ`

}
.

Then, the following hold:
1. α∗ is unique, and α∗ ≥ 2ρ`.
2. We define ū ∈ RT by

ūt =

{
−qt/(htt + 2ρ`), if t /∈ I`,
0, otherwise.

Then, we have

α∗ ∈

{
2ρ`, if ‖ū‖ ≤ ∆, and 〈x(t∗)

` ,ot∗〉 = 0, for t∗ ∈ I`,
(2ρ`,∞), otherwise.

3. Let V = {v ∈ RT : vt = 0 for t /∈ I`, ‖ū + v‖ = ∆}.
Then, we have

u∗ ∈

{
ū + v, v ∈ V, if α∗ = 2ρ`,

−(H + α∗I)−1q, otherwise.

4. The maximum value of problem (25) is given by

s`(λ, λ0) =
∑T
t=1〈x

(t)
` ,ot〉2 + α∗

2 ∆2 − 1
2qTu∗.

Proof. We first transform problem (25) to a QP1PC by a
parameterization of Θ(λ, λ0):

Θ(λ, λ0)

=


 o1 + u1θ1

...
oT + uT θT

 : ‖u‖ ≤ r, ‖θt‖ ≤ 1, , t = 1, . . . , T

 ,

where u = (u1, . . . , uT )T . We define

h`(u, θ) = g`


 o1 + u1θ1

...
oT + uT θT


 .

Thus, problem (25) becomes

s`(λ, λ0) = max
‖u‖≤∆

{
max

{θ:‖θt‖≤1,t=1,...,T}
h`(u, θ)

}
.
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By the Cauchy-Schwartz inequality, for a fixed u, we have

φ(u) = max
{θ:‖θt‖≤1,t=1,...,T}

h`(u, θ)

=
∑T

t=1
u2
t‖x

(t)
` ‖

2 + 2|ut|‖x(t)
` ‖|〈x

(t)
` ,ot〉|+ 〈x(t)

` ,ot〉2.

Let−ψ(u) =
∑T
t=1 u

2
t‖x

(t)
` ‖2 +2ut‖x(t)

` ‖|〈x
(t)
` ,ot〉|. We

can see that

max‖u‖≤r φ(u) = max‖u‖≤r −ψ(u) +
∑T

t=1
〈x(t)
` ,ot〉2.

Thus, problem (25) becomes
s`(λ, λ0) = −min‖u‖≤r ψ(u) +

∑T
t=1〈x

(t)
` ,ot〉2.

Therefore, to solve (25), it suffices to solve problem (26)
with ∆, D, H , and q as in the theorem.

The statement follows immediately from Theorem 6.

Remark 4. To develop the DPC rule, (R∗) implies that we
only need the maximum value of problem (25). Thus, The-
orem 6 does not show the global optimal solutions. How-
ever, in view of the proof, we can easily compute the global
optimal solutions in terms of α∗ and u∗.

Computing α∗ and u∗ Consider Theorem 7. If ‖ū‖ ≤ ∆

and 〈x(t∗)
` ,ot∗〉 = 0 for t∗ ∈ I`, then α∗ and u∗ admit

closed form solutions. Otherwise, α∗ is strictly larger than
2ρ`, which implies that H + α∗I is positive definite and
invertible. If this is the case, we apply Newton’s method
(Gay, 1981) to find α∗ as follows. Let

ϕ(α) = ‖(H + αI)−1q‖−1 −∆−1.

Because ϕ(·) is strictly increasing on (2ρ`,∞), α∗ is the
unique root of ϕ(·) on (2ρ`,∞). Let α0 = 2ρ`. Then, the
kth iteration of Newton’s method to solve ϕ(α∗) = 0 is:

uk =− (H + αk−1I)−1q, (29)

αk =αk−1 + ‖uk‖2
‖uk‖ −∆

∆uTk (H + αk−1I)−1uk
. (30)

As pointed out by Moré & Sorensen (1983), Newton’s
method is very efficient to find α∗ as ϕ(α) is almost linear
on (2ρ`,∞). Our experiments indicates that five iterations
usually leads to an accuracy higher than 10−15.

4.4. The Proposed DPC Rule

As implied by R∗, we present the proposed screening rule,
DPC, for the MTFL model (1) in the following theorem.

Theorem 8. For the MTFL model (1), suppose that θ∗(λ0)
is known with λ0 ∈ (0, λmax]. Then, we have

s`(λ, λ0) < 1⇒ (w`)∗(λ) = 0, λ ∈ (0, λ0),

where s`(λ, λ0) is given by Theorem 7.

In real applications, the optimal parameter value of λ is
generally unknown. Commonly used approaches to deter-
mine an appropriate value of λ, such as cross validation
and stability selection, need to solve the MTFL model over
a grid of tuning parameter values λ1 > λ2 > . . . > λK,
which is very time consuming. Inspired by the ideas of
Strong Rule (Tibshirani et al., 2012) and SAFE (El Ghaoui
et al., 2012), we develop the sequential version of DPC.
Specifically, suppose that the optimal solution W ∗(λk) is
known. Then, we apply DPC to identify the inactive fea-
tures of MTFL model (1) at λk+1 via W ∗(λk). We repeat
this process until all W ∗(λk), k = 1, . . . ,K are computed.

Corollary 9. DPC For the MTFL model (1), suppose that
we are given a sequence of parameter values λmax = λ0 >
λ1 > . . . > λK. Then, for any k = 1, 2, . . . ,K − 1, if
W ∗(λk) is known, we have

s`(λk+1, λk) < 1⇒ (w`)∗(λk+1) = 0,

where s`(λ, λ0) is given by Theorem 7.

We omit the proof of Corollary 9 as it is a direct application
of Theorem 8.

5. Experiments
We evaluate DPC on both synthetic and real data sets. To
measure the performance of DPC, we report the rejection
ratio, namely, the ratio of the number of inactive features i-
dentified by DPC to the actual number of inactive features.
We also report the speedup, i.e., the ratio of the running
time of solver without screening to the running time of
solver with DPC. The solver is from the SLEP package (Liu
et al., 2009c). For each data set, we solve the MTFL model
in (1) along a sequence of 100 tuning parameter values of λ
equally spaced on the logarithmic scale of λ/λmax from 1.0
to 0.01. We only evaluate DPC since no existing screening
rule is applicable for the MTFL model in (1).

5.1. Synthetic Studies

We perform experiments on two synthetic data sets, called
Synthetic 1 and Synthetic 2, that are commonly used in
the literature (Tibshirani et al., 2012; Zou & Hastie, 2005).
Both synthetic 1 and Synthetic 2 have 50 tasks. Each task
contains 50 samples. For t = 1, . . . , 50, the true model is

yt = Xtw
∗
t + 0.01ε, ε ∼ N(0, 1).

For Synthetic 1, the entries of each data matrix Xt are
i.i.d. standard Gaussian with pairwise correlation zero, i.e.,
corr

(
x

(t)
i ,x

(t)
j

)
= 0. For Synthetic 2, the entries of each

data matrix Xt are drawn from i.i.d. standard Gaussian
with pairwise correlation 0.5|i−j|, i.e., corr

(
x

(t)
i ,x

(t)
j

)
=

0.5|i−j|. To construct w∗t , we first randomly select 10% of
the features. Then, the corresponding components of w∗t
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(a) Synthetic 1, d = 10000
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(b) Synthetic 1, d = 20000
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(c) Synthetic 1, d = 50000
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(d) Synthetic 2, d = 10000
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(f) Synthetic 2, d = 50000

Figure 1. Rejection ratios of DPC on two synthetic data sets with different feature dimensions.

are populated from a standard Gaussian, and the remaining
ones are set to 0. For both Synthetic 1 and Synthetic 2,
we set the feature dimension to 10000, 20000, and 50000,
respectively. For each setting, we run 20 trials and report
the average performance in Fig. 1 and Table 1. Fig. 1 shows
the rejection ratios of DPC on Synthetic 1 and Synthetic
2. For all the six settings, the rejection ratios of DPC are
higher than 90%, even for small parameter values. This
demonstrates one of the advantages of DPC, as previous
empirical studies (El Ghaoui et al., 2012; Tibshirani et al.,
2012; Wang et al.) indicate that the capability of screen-
ing rules in identifying inactive features usually decreases
as the parameter value decreases. Moreover, Fig. 1 also
shows that as the feature dimension increases, the rejection
ratios of DPC become higher—that is very close to 1. This
implies that the potential capability of DPC in identifying
the inactive features on high-dimensional data sets would
be even more significant.

Table 1 presents the running time of the solver with and
without DPC. The speedup is very significant, which is
up to 60 times. Take Synthetic 1 for example. When the
feature dimension is 50000, the solver without DPC takes
about 40.68 hours to solve problem (1) at 100 paramater
values. In contrast, combined with DPC, the solver only
takes less than one hour to solve the same 100 problems—
which leads to a speedup about 60 times. Table 1 also
shows that the computational cost of DPC is very low—
which is negligible compared to that of the solver with-
out screening. Moreover, as the rejection ratios of DPC

increases with feature dimension growth (see Fig. 1), Table
1 shows that the speedup by DPC increases as well.

5.2. Experiments on Real Data Sets

We perform experiments on three real data sets: 1) the
TDT2 text data set (Cai et al., 2009); 2) the animal data
set (Lampert et al., 2009); 3) the Alzheimers Disease Neu-
roimaging Initiative (ADNI) data set (http://adni.
loni.usc.edu/).

The Animal Data Set The data set consists of 30475 im-
ages of 50 animals classes. By following the experiment
settings in (Kang et al., 2011), we choose 20 animal classes
in the data set: antelope, grizzly-bear, killer-whale, beaver,
Dalmatian, Persiancat, horse, german- shepherd, blue-
whale, Siamese-cat, skunk, ox, tiger, hippopotamus, leop-
ard, moose, spidermonkey, humpback-whale, elephant, and
gorilla. We construct 20 tasks, each of which is a classifi-
cation task of one type of animal against all the others. For
the tth task, we first randomly select 30 samples from the
tth class as the positive samples; and then we randomly s-
elect 30 samples from all the other classes as the negative
samples. We utilize all the seven sets of features kindly pro-
vided by Lampert et al. (2009): color histogram features,
local self-similarity features, PyramidHOG (PHOG) fea-
tures, SIFT features, colorSIFT features, SURF features,
and DECAF features. Thus, each image is represented by
a 15036-dimensional vectors. Hence, the data matrixXt of
the tth task is of 60× 15036, where t = 1, . . . , 20.

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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Figure 2. Rejection ratios of DPC on three real data sets.

Table 1. Running time (in minutes) for solving the MTFL model
(1) along a sequence of 100 tuning parameter values of λ equally
spaced on the logarithmic scale of λ/λmax from 1.0 to 0.01 by
(a): the solver (Liu et al., 2009c) without screening (see the third
column); (b): the solver with DPC (see the fifth column).

d solver DPC DPC+solver speedup

Synthetic 1
10000 405.75 0.7 28.12 14.43
20000 913.70 1.36 37.02 24.68
50000 2441.57 3.50 42.08 58.03

Synthetic 2
10000 406.85 0.70 29.28 13.89
20000 906.09 1.37 36.66 24.72
50000 2435.38 3.46 44.78 54.39

Animal 15036 311.71 0.47 16.36 19.05
TDT2 24262 958.66 1.87 44.11 21.74
ADNI 504095 9625.58 21.13 35.34 272.37

The TDT2 Data Set The original data set contains 9394
documents of 30 categories. Each document is represented
by a 36771-dimensional vector. Similar to the Animal data
set, we construct 30 tasks, each of which is a classifica-
tion task of one category against all the others (Amit et al.,
2007). Also, for the tth task, we first randomly select 50
samples from the tth category as the positive samples, and
then we randomly select 50 samples from all the other cat-
egories as the negative samples. Moreover, we remove the
features that have only zero entries, thus leaving us 24262
features. Hence, the data matrix Xt of the tth task is of
100× 24262, where t = 1, . . . , 30.

The ADNI Data Set The data set consists of 747 patients
with 504095 single nucleotide polymorphisms (SNPs), and
the volume of 93 brain regions for each patient. We first
randomly select 20 brain regions. Then, for each region, we
randomly select 50 patients, and utilize the corresponding
SNPs data as the data matrix and the volumes of that brain
region as the response. Thus, we have 20 tasks, each of
which is a regression task. The data matrix Xt of the tth

task is of 50× 504095, where t = 1, . . . , 20.

Fig. 2 shows the rejection ratios of DPC—that are above

90%—on the aforementioned three real data sets. In par-
ticular, the rejection ratios of DPC on the ADNI data set
are higher than 99% at the 100 parameter values. Table 1
shows that the resulting speedup is very significant—that is
up to 270 times. We note that the feature dimension of the
ADNI data set is more than half million. Without screen-
ing, Table 1 shows that the solver takes about seven days
(approximately one week) to compute the MTFL model (1)
at 100 parameter values. However, integrated with the DPC
screening rule, the solver computes the 100 solutions in
about half an hour. The experiments again indicate that
DPC provides better performance (in terms of rejection ra-
tios and speedup) for higher dimensional data sets.

6. Conclusion
In this paper, we propose a novel screening method for the
MTFL model in (1), called DPC. The DPC screening rule
is based on an indepth analysis of the geometric properties
of the dual problem and the dual feasible set. To the best of
our knowledge, DPC is the first screening rule that is appli-
cable to sparse models with multiple data matrices. DPC
is safe in the sense that the identified features by DPC are
guaranteed to have zero coefficients in the solution vectors
across all tasks. Experiments on synthetic and real data set-
s demonstrate that DPC is very effective in identifying the
inactive features, which leads to a substantial savings in
computational cost and memory usage without sacrificing
accuracy. Moreover, DPC is more effective as the feature
dimension increases, which makes DPC a very competitive
candidate for the applications of very high-dimensional da-
ta. We plan to extend DPC to more general MTFL models,
e.g., the MTFL models with multiple regularizers.
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