A. Proof for Theorem 1

To prove Theorem 1, we first prove the following theorem:
Theorem 3. If (1) $\overline{\mathbf{w}}=\Phi \theta^{*}$, (2) the prior on θ^{*} is $N\left(0, \lambda^{2} I\right)$, and (3) the noises are i.i.d. sampled from $N\left(0, \sigma^{2}\right)$, then under CombLinTS algorithm with parameter (Φ, λ, σ), then we have

$$
\begin{equation*}
R_{\text {Bayes }}(n) \leq 1+K \lambda \min \left\{\sqrt{\ln \left(\frac{\lambda L n}{\sqrt{2 \pi}}\right)}, \sqrt{d \ln \left(\frac{2 d K n \lambda}{\sqrt{2 \pi}}\right)}\right\} \sqrt{\frac{2 d n \ln \left(1+\frac{n K \lambda^{2}}{d}\right)}{\ln \left(1+\frac{\lambda^{2}}{\sigma^{2}}\right)}} . \tag{10}
\end{equation*}
$$

Notice that Theorem 1 follows immediately from Theorem 3. Specifically, if $\lambda \geq \sigma$, then we have

$$
\begin{align*}
B_{\text {Bayes }}(n) & \leq 1+K \lambda \min \left\{\sqrt{\ln \left(\frac{\lambda L n}{\sqrt{2 \pi}}\right)}, \sqrt{d \ln \left(\frac{2 d K n \lambda}{\sqrt{2 \pi}}\right)}\right\} \sqrt{2 d n \log _{2}\left(1+\frac{n K \lambda^{2}}{d}\right)} \\
& =\tilde{O}(K \lambda \sqrt{d n \min \{\ln (L), d\}}) . \tag{11}
\end{align*}
$$

We now outline the proof of Theorem 3, which is based on (Russo \& Van Roy, 2013; Dani et al., 2008). Let \mathcal{H}_{t} denote the "history" (i.e. all the available information) by the start of episode t. Note that from the Bayesian perspective, conditioning on $\mathcal{H}_{t}, \theta^{*}$ and θ_{t} are i.i.d. drawn from $N\left(\bar{\theta}_{t}, \Sigma_{t}\right)$ (see (Russo \& Van Roy, 2013)). This is because that conditioning on \mathcal{H}_{t}, the posterior belief in θ^{*} is $N\left(\bar{\theta}_{t}, \Sigma_{t}\right)$ and based on Algorithm 2, θ_{t} is independently sampled from $N\left(\bar{\theta}_{t}, \Sigma_{t}\right)$. Since ORACLE is a fixed combinatorial optimization algorithm (even though it can be independently randomized), and E, \mathcal{A}, Φ are all fixed, then conditioning on \mathcal{H}_{t}, A^{*} and A^{t} are also i.i.d., furthermore, A^{*} is conditionally independent of θ_{t}, and A^{t} is conditionally independent of θ^{*}.
To simplify the exposition, $\forall \theta \in \mathbb{R}^{d}$ and $\forall A \subseteq E$, we define

$$
\begin{equation*}
g(A, \theta)=\sum_{e \in A}\left\langle\phi_{e}, \theta\right\rangle, \tag{12}
\end{equation*}
$$

then we have $\mathbb{E}\left[f\left(A^{*}, \mathbf{w}_{t}\right) \mid \mathcal{H}_{t}, \theta^{*}, \theta_{t}, A^{*}, A^{t}\right]=g\left(A^{*}, \theta^{*}\right)$ and $\mathbb{E}\left[f\left(A^{t}, \mathbf{w}_{t}\right) \mid \mathcal{H}_{t}, \theta^{*}, \theta_{t}, A^{*}, A^{t}\right]=g\left(A^{t}, \theta^{*}\right)$, hence we have $\mathbb{E}\left[R_{t} \mid \mathcal{H}_{t}\right]=\mathbb{E}\left[g\left(A^{*}, \theta^{*}\right)-g\left(A^{t}, \theta^{*}\right) \mid \mathcal{H}_{t}\right]$. We also define the upper confidence bound (UCB) function $U_{t}: 2^{E} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
U_{t}(A)=\sum_{e \in A}\left[\left\langle\phi_{e}, \bar{\theta}_{t}\right\rangle+c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right] \tag{13}
\end{equation*}
$$

where $c>0$ is a constant to be specified. Notice that conditioning on \mathcal{H}_{t}, U_{t} is a deterministic function and A^{*}, A^{t} are i.i.d., then $\mathbb{E}\left[U_{t}\left(A^{t}\right)-U_{t}\left(A^{*}\right) \mid \mathcal{H}_{t}\right]=0$ and

$$
\begin{equation*}
\mathbb{E}\left[R_{t} \mid \mathcal{H}_{t}\right]=\mathbb{E}\left[g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right) \mid \mathcal{H}_{t}\right]+\mathbb{E}\left[U_{t}\left(A^{t}\right)-g\left(A^{t}, \theta^{*}\right) \mid \mathcal{H}_{t}\right] . \tag{14}
\end{equation*}
$$

One key observation is that

$$
\begin{align*}
& \mathbb{E}\left[U_{t}\left(A^{t}\right)-g\left(A^{t}, \theta^{*}\right) \mid \mathcal{H}_{t}\right] \stackrel{(a)}{=} \sum_{e \in E} \mathbb{E}\left[\mathbb{1}\left\{e \in A^{t}\right\}\left[\left\langle\phi_{e}, \bar{\theta}_{t}-\theta^{*}\right\rangle+c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right] \mid \mathcal{H}_{t}\right] \\
& \stackrel{(b)}{=} \sum_{e \in E} \mathbb{E}\left[\mathbb{1}\left\{e \in A^{t}\right\} \mid \mathcal{H}_{t}\right] \mathbb{E}\left[\left\langle\phi_{e}, \bar{\theta}_{t}-\theta^{*}\right\rangle \mid \mathcal{H}_{t}\right]+c \mathbb{E}\left[\sum_{e \in A^{t}} \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \mid \mathcal{H}_{t}\right] \\
& \stackrel{(c)}{=} c \mathbb{E}\left[\sum_{e \in A^{t}} \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \mid \mathcal{H}_{t}\right], \tag{15}
\end{align*}
$$

where (b) follows from the fact that A^{t} and θ^{*} are conditionally independent, and (c) follows from $\mathbb{E}\left[\theta^{*} \mid \mathcal{H}_{t}\right]=$ $\bar{\theta}_{t}$. Hence $B_{\text {Bayes }}(n)=\sum_{t=1}^{n} \mathbb{E}\left[g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right)\right]+c \sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{t}} \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right]$. We can show that (1)
$\sum_{t=1}^{n} \mathbb{E}\left[g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right)\right] \leq 1$ if we choose

$$
\begin{equation*}
c \geq \min \left\{\sqrt{\ln \left(\frac{\lambda L n}{\sqrt{2 \pi}}\right)}, \sqrt{d \ln \left(\frac{2 d K n \lambda}{\sqrt{2 \pi}}\right)}\right\} \tag{16}
\end{equation*}
$$

and (2) $\sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{t}} \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right] \leq K \lambda \sqrt{2 d n \ln \left(1+\frac{n K \lambda^{2}}{d}\right) / \ln \left(1+\frac{\lambda^{2}}{\sigma^{2}}\right)}$. Thus, the bound in Theorem 3 holds. Please refer to the remainder of this section for the full proof.
A.1. Bound on $\sum_{t=1}^{n} \mathbb{E}\left[g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right)\right]$

We first prove that if we choose

$$
\begin{equation*}
c \geq \min \left\{\sqrt{\ln \left(\frac{\lambda L n}{\sqrt{2 \pi}}\right)}, \sqrt{d \ln \left(\frac{2 d K n \lambda}{\sqrt{2 \pi}}\right)}\right\} \tag{17}
\end{equation*}
$$

then $\sum_{t=1}^{n} \mathbb{E}\left[g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right)\right] \leq 1$. To prove this result, we use the following inequality for truncated Gaussian distribution.

Lemma 1. If $X \sim N\left(\mu, s^{2}\right)$, then we have

$$
\mathbb{E}[X \mathbb{1}\{X \geq 0\}]=\mu\left[1-\Phi_{G}\left(\frac{-\mu}{s}\right)\right]+\frac{s}{\sqrt{2 \pi}} \exp \left(-\frac{\mu^{2}}{2 s^{2}}\right)
$$

where Φ_{G} is the cumulative distribution function (CDF) of the standard Gaussian distribution $N(0,1)$. Furthermore, if $\mu \leq 0$, we have $\mathbb{E}[X \mathbb{1}\{X \geq 0\}] \leq \frac{s}{\sqrt{2 \pi}} \exp \left(-\frac{\mu^{2}}{2 s^{2}}\right)$.

Based on Lemma 1, we can prove the following lemmas:
Lemma 2. If $c \geq \sqrt{\ln \left(\frac{\lambda L n}{\sqrt{2 \pi}}\right)}$, then we have $\sum_{t=1}^{n} \mathbb{E}\left[g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right)\right] \leq 1$.

Proof. We have the following naive bound:

$$
\begin{aligned}
g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right) & =\sum_{e \in A^{*}}\left[\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right] \\
& \leq \sum_{e \in A^{*}}\left[\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right] \mathbb{1}\left\{\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \geq 0\right\} \\
& \leq \sum_{e \in E}\left[\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right] \mathbb{1}\left\{\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \geq 0\right\}
\end{aligned}
$$

Notice that conditioning on $\mathcal{H}_{t},\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}$ is a Gaussian random variable with mean $-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}$ and variance $\phi_{e}^{T} \Sigma_{t} \phi_{e}$. Thus, from Lemma 1, we have

$$
\begin{align*}
& \quad \mathbb{E}_{\theta^{*}, A^{*}}\left[g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right) \mid \mathcal{H}_{t}\right] \\
& \stackrel{(a)}{\leq} \sum_{e \in E} \mathbb{E}_{\theta^{*}}\left[\left[\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right] \mathbb{1}\left\{\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \geq 0\right\} \mid \mathcal{H}_{t}\right] \\
& \stackrel{(b)}{\leq} \sum_{e \in E} \sqrt{\frac{\phi_{e}^{T} \Sigma_{t} \phi_{e}}{2 \pi}} \exp \left(-\frac{c^{2}}{2}\right) \\
& \stackrel{(c)}{\leq} \exp \left(-\frac{c^{2}}{2}\right) \sum_{e \in E} \frac{\lambda\left\|\phi_{e}\right\|}{\sqrt{2 \pi}} \leq \exp \left(-\frac{c^{2}}{2}\right) \frac{\lambda L}{\sqrt{2 \pi}} \tag{18}
\end{align*}
$$

where the last two inequalities follow from the fact that $\phi_{e}^{T} \Sigma_{t} \phi_{e} \leq \phi_{e}^{T} \Sigma_{1} \phi_{e} \leq \lambda^{2}\left\|\phi_{e}\right\|^{2} \leq \lambda^{2}$, since $\left\|\phi_{e}\right\| \leq 1$ by assumption ${ }^{8}$. Thus we have

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t=1}^{n}\left[g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right)\right]\right] \leq \exp \left(-\frac{c^{2}}{2}\right) \frac{n \lambda L}{\sqrt{2 \pi}} \tag{19}
\end{equation*}
$$

If we choose $c \geq \sqrt{2 \ln \left(\frac{\lambda L n}{\sqrt{2 \pi}}\right)}$, then we have $\mathbb{E}\left[\sum_{t=1}^{n}\left[g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right)\right]\right] \leq 1$.

Lemma 3. If $c \geq \sqrt{d \ln \left(\frac{2 d K n \lambda}{\sqrt{2 \pi}}\right)}$, then we also have $\sum_{t=1}^{n} \mathbb{E}\left[g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right)\right] \leq 1$.

Proof. We use v_{1}, \ldots, v_{d} to denote a fixed set of d orthonormal eigenvectors of Σ_{t}, and $\Lambda_{1}^{2}, \ldots, \Lambda_{d}^{2}$ to denote the associated eigenvalues. Notice that for $i \neq j$, we have $v_{i}^{T} \Sigma_{t} v_{j}=\Lambda_{i}^{2} v_{i}^{T} v_{j}=0 . \forall i=1, \ldots, d$, we define $v_{i+d}=-v_{i}$ and $\Lambda_{i+d}=\Lambda_{i}$, which allows us to define the following conic decomposition:

$$
\phi_{e}=\sum_{i=1}^{2 d} \alpha_{e i} v_{i}, \quad \forall e \in E
$$

subject to the constraints that $\alpha_{e i} \geq 0, \forall(e, i)$. Notice that $\alpha_{e i}$'s are uniquely determined. Furthermore, for i and j s.t. $|i-j|=d$, by definition of conic decomposition, we have $\alpha_{e i} \alpha_{e j}=0$. In other words, α_{e} is a d-sparse vector.
Since we assume that $\left\|\phi_{e}\right\| \leq 1$, we have that $\sum_{i=1}^{2 d} \alpha_{e i}^{2} \leq 1, \forall e \in E$. Thus, for any e, we have that $\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle=$ $\sum_{i=1}^{2 d} \alpha_{e i}\left\langle v_{i}, \theta^{*}-\bar{\theta}_{t}\right\rangle$ and

$$
\begin{align*}
\phi_{e}^{T} \Sigma_{t} \phi_{e} & =\left(\sum_{i=1}^{2 d} \alpha_{e i} v_{i}^{T}\right) \Sigma_{t}\left(\sum_{j=1}^{2 d} \alpha_{e i} v_{j}\right) \\
& =\sum_{i=1}^{2 d} \sum_{j=1}^{2 d} \alpha_{e i} \alpha_{e_{j}} v_{i}^{T} \Sigma_{t} v_{j} \tag{20}
\end{align*}
$$

Notice that for $i \neq j$, if $|i-j| \neq d$, then $v_{i}^{T} \Sigma_{t} v_{j}=0$; on the other hand, if $|i-j|=d, \alpha_{e i} \alpha_{e j}=0$. Thus, if $i \neq j$, we have $\alpha_{e i} \alpha_{e_{j}} v_{i}^{T} \Sigma_{t} v_{j}=0$. Consequently,

$$
\phi_{e}^{T} \Sigma_{t} \phi_{e}=\sum_{i=1}^{2 d} \alpha_{e i}^{2} v_{i}^{T} \Sigma_{t} v_{i}=\sum_{i=1}^{2 d} \alpha_{e i}^{2} \Lambda_{i}^{2}
$$

Thus we have

$$
\begin{equation*}
\sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}=\sqrt{\sum_{i=1}^{2 d} \alpha_{e i}^{2} \Lambda_{i}^{2}} \geq \frac{1}{\sqrt{d}} \sum_{i=1}^{2 d} \alpha_{e i} \Lambda_{i} \tag{21}
\end{equation*}
$$

where the inequality follows from Cauchy-Schwartz inequality, specifically, define $s_{i}=1$ if $\alpha_{e i} \Lambda_{i} \neq 0$, and $s_{i}=0$ if $\alpha_{e i} \Lambda_{i}=0$, then we have

$$
\sum_{i=1}^{2 d} \alpha_{e i} \Lambda_{i}=\sum_{i=1}^{2 d} \alpha_{e i} \Lambda_{i} s_{i} \leq \sqrt{\sum_{i=1}^{2 d} s_{i}^{2}} \sqrt{\sum_{i=1}^{2 d} \alpha_{e i}^{2} \Lambda_{i}^{2}} \leq \sqrt{d} \sqrt{\sum_{i=1}^{2 d} \alpha_{e i}^{2} \Lambda_{i}^{2}}
$$

[^0]where the last inequality follows from the fact that α_{e} is d-sparse. Thus, for any e, we have that
\[

$$
\begin{equation*}
\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \leq \sum_{i=1}^{2 d} \alpha_{e i}\left\langle v_{i}, \theta^{*}-\bar{\theta}_{t}\right\rangle-\frac{c}{\sqrt{d}} \sum_{i=1}^{2 d} \alpha_{e i} \Lambda_{i} . \tag{22}
\end{equation*}
$$

\]

Consequently, we have

$$
\begin{equation*}
\sum_{e \in A^{*}}\left[\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right] \leq \sum_{i=1}^{2 d}\left(\left\langle v_{i}, \theta^{*}-\bar{\theta}_{t}\right\rangle-\frac{c \Lambda_{i}}{\sqrt{d}}\right)\left(\sum_{e \in A^{*}} \alpha_{e i}\right) \tag{23}
\end{equation*}
$$

Define $X_{i}=\left\langle v_{i}, \theta^{*}-\bar{\theta}_{t}\right\rangle-\frac{c \Lambda_{i}}{\sqrt{d}}$, notice that conditioning on \mathcal{H}_{t}, we have $X_{i} \left\lvert\, \mathcal{H}_{t} \sim N\left(-\frac{c \Lambda_{i}}{\sqrt{d}}, \Lambda_{i}^{2}\right)\right.$. Hence we have

$$
\begin{aligned}
\sum_{e \in A^{*}}\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} & \stackrel{(a)}{\leq}
\end{aligned} \sum_{i=1}^{2 d} X_{i}\left[\sum_{e \in A^{*}} \alpha_{e i}\right] \quad \text { (b) }{ }^{2 d} \sum_{i=1}^{2 d} X_{i} \mathbb{1}\left\{X_{i} \geq 0\right\}\left[\sum_{e \in A^{*}} \alpha_{e i}\right], ~ \$, ~
$$

where the inequality (b) follows from the fact that $X_{i} \leq X_{i} \mathbb{1}\left\{X_{i} \geq 0\right\}$ and $\left[\sum_{e \in A^{*}} \alpha_{e i}\right] \geq 0$. On the other hand, notice that $\left|A^{*}\right| \leq K$

$$
\sum_{e \in A^{*}} \alpha_{e i} \leq \sqrt{\left|A^{*}\right|} \sqrt{\sum_{e \in A^{*}} \alpha_{e i}^{2}} \leq \sqrt{\left|A^{*}\right|} \sqrt{\sum_{e \in A^{*}} \sum_{j=1}^{d} \alpha_{e j}^{2}} \leq \sqrt{\left|A^{*}\right|} \sqrt{\sum_{e \in A^{*}} 1}=\left|A^{*}\right| \leq K
$$

Since $X_{i} \mathbb{1}\left\{X_{i} \geq 0\right\} \geq 0$, we have

$$
\sum_{e \in A^{*}}\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \leq K \sum_{i=1}^{2 d} X_{i} \mathbb{1}\left\{X_{i} \geq 0\right\}
$$

notice that the RHS does not include A^{*}. Hence we have

$$
\begin{aligned}
\mathbb{E}_{\theta^{*}}\left[g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right) \mid \mathcal{H}_{t}\right] & =\mathbb{E}_{\theta^{*}}\left[\sum_{e \in A^{*}}\left\langle\phi_{e}, \theta^{*}-\bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \mid \mathcal{H}_{t}\right] \\
& \leq K \sum_{i=1}^{2 d} \mathbb{E}_{\theta^{*}}\left[X_{i} \mathbb{1}\left\{X_{i} \geq 0\right\} \mid \mathcal{H}_{t}\right] \\
& \leq K \sum_{i=1}^{2 d} \frac{\Lambda_{i}}{\sqrt{2 \pi}} \exp \left(-\frac{c^{2}}{2 d}\right) \leq \frac{2 d K \lambda}{\sqrt{2 \pi}} \exp \left(-\frac{c^{2}}{2 d}\right)
\end{aligned}
$$

where the last inequality follows from the fact that $\Lambda_{i} \leq \lambda$. Hence we have

$$
\sum_{t=1}^{n} \mathbb{E}\left[g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right)\right] \leq \frac{2 d K n \lambda}{\sqrt{2 \pi}} \exp \left(-\frac{c^{2}}{2 d}\right)
$$

if we choose $c \geq \sqrt{2 d \ln \left(\frac{2 d K n \lambda}{\sqrt{2 \pi}}\right)}$, then we have $\sum_{t=1}^{n} \mathbb{E}\left[f\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right)\right] \leq 1$.

Combining the results from Lemma 2 and 3, we have proved that if

$$
c \geq \min \left\{\sqrt{\ln \left(\frac{\lambda L n}{\sqrt{2 \pi}}\right)}, \sqrt{d \ln \left(\frac{2 d K n \lambda}{\sqrt{2 \pi}}\right)}\right\}
$$

then $\sum_{t=1}^{n} \mathbb{E}\left[g\left(A^{*}, \theta^{*}\right)-U_{t}\left(A^{*}\right)\right] \leq 1$.
A.2. Bound on $\sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{t}} \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right]$

In this subsection, we derive a bound on $\sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{t}} \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right]$. Our analysis is motivated by the analysis in (Dani et al., 2008). Specifically, we provide a worst-case bound on $\sum_{t=1}^{n} \sum_{e \in A^{t}} \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}$, for any realization of random variable w_{t} 's, θ_{t} 's, A^{t} 's, A^{*}, and θ^{*}.

Lemma 4. $\sum_{t=1}^{n} \sum_{e \in A^{t}} \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \leq K \lambda \sqrt{\frac{d n \log \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right)}{\log \left(1+\frac{\lambda}{\sigma^{2}}\right)}}$.

Proof. To simplify the exposition, we define

$$
\begin{equation*}
z_{t, k}=\sqrt{\phi_{a_{k}^{t}}^{T} \Sigma_{t} \phi_{a_{k}^{t}}} \tag{24}
\end{equation*}
$$

First, notice that Σ_{t}^{-1} is the Gramian matrix and satisfies

$$
\begin{equation*}
\Sigma_{t+1}^{-1}=\Sigma_{t}^{-1}+\frac{1}{\sigma^{2}} \sum_{k=1}^{\left|A^{t}\right|} \phi_{a_{k}^{t}} \phi_{a_{k}^{t}}^{T} \tag{25}
\end{equation*}
$$

Hence for any t, k, we have that

$$
\begin{align*}
\operatorname{det}\left[\Sigma_{t+1}^{-1}\right] & \geq \operatorname{det}\left[\Sigma_{t}^{-1}+\frac{1}{\sigma^{2}} \phi_{a_{k}^{t}} \phi_{a_{k}^{t}}^{T}\right]=\operatorname{det}\left[\Sigma_{t}^{-\frac{1}{2}}\left(I+\frac{1}{\sigma^{2}} \Sigma_{t}^{\frac{1}{2}} \phi_{a_{k}^{t}} \phi_{a_{k}^{t}}^{T} \Sigma_{t}^{\frac{1}{2}}\right) \Sigma_{t}^{-\frac{1}{2}}\right] \\
& =\operatorname{det}\left[\Sigma_{t}^{-1}\right] \operatorname{det}\left[I+\frac{1}{\sigma^{2}} \Sigma_{t}^{\frac{1}{2}} \phi_{a_{k}^{t}} \phi_{a_{k}^{t}}^{T} \Sigma_{t}^{\frac{1}{2}}\right]=\operatorname{det}\left[\Sigma_{t}^{-1}\right]\left(1+\frac{1}{\sigma^{2}} \phi_{a_{k}^{t}}^{T} \Sigma_{t} \phi_{a_{k}^{t}}\right) \\
& =\operatorname{det}\left[\Sigma_{t}^{-1}\right]\left(1+\frac{z_{t, k}^{2}}{\sigma^{2}}\right) \tag{26}
\end{align*}
$$

Hence we have that

$$
\begin{equation*}
\left(\operatorname{det}\left[\Sigma_{t+1}^{-1}\right]\right)^{\left|A^{t}\right|} \geq\left(\operatorname{det}\left[\Sigma_{t}^{-1}\right]\right)^{\left|A^{t}\right|} \prod_{k=1}^{\left|A^{t}\right|}\left(1+\frac{z_{t, k}^{2}}{\sigma^{2}}\right) \tag{27}
\end{equation*}
$$

Remark 1. This is where the extra $O(\sqrt{K})$ factor arises. Notice that this extra factor is purely due to linear generalization. Specifically, if $\Phi=I$, then Σ_{t} 's and Σ_{t}^{-1} 's will be diagonal, and we have

$$
\begin{equation*}
\operatorname{det}\left[\Sigma_{t+1}^{-1}\right]=\operatorname{det}\left[\Sigma_{t}^{-1}\right] \prod_{k=1}^{\left|A^{t}\right|}\left(1+\frac{z_{t, k}^{2}}{\sigma^{2}}\right) \tag{28}
\end{equation*}
$$

Notice that Equation 27 further implies that

$$
\begin{equation*}
\left(\operatorname{det}\left[\Sigma_{t+1}^{-1}\right]\right)^{K} \geq\left(\operatorname{det}\left[\Sigma_{t}^{-1}\right]\right)^{K} \prod_{k=1}^{\left|A^{t}\right|}\left(1+\frac{z_{t, k}^{2}}{\sigma^{2}}\right) \tag{29}
\end{equation*}
$$

since det $\left[\Sigma_{t+1}^{-1}\right] \geq \operatorname{det}\left[\Sigma_{t}^{-1}\right]$ and $\left|A^{t}\right| \leq K$. Recall that $\operatorname{det}\left[\Sigma_{1}^{-1}\right]=\left(\frac{1}{\lambda^{2}}\right)^{d}$, we have that

$$
\begin{equation*}
\left(\operatorname{det}\left[\Sigma_{n+1}^{-1}\right]\right)^{K} \geq\left(\operatorname{det}\left[\Sigma_{1}^{-1}\right]\right)^{K} \prod_{t=1}^{n} \prod_{k=1}^{\left|A^{t}\right|}\left(1+\frac{z_{t, k}^{2}}{\sigma^{2}}\right)=\frac{1}{\lambda^{2 d K}} \prod_{t=1}^{n} \prod_{k=1}^{\left|A^{t}\right|}\left(1+\frac{z_{t, k}^{2}}{\sigma^{2}}\right) \tag{30}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\operatorname{trace}\left[\Sigma_{n+1}^{-1}\right]=\operatorname{trace}\left[\frac{1}{\lambda^{2}} I+\frac{1}{\sigma^{2}} \sum_{t=1}^{n} \sum_{k=1}^{\left|A^{t}\right|} \phi_{a_{k}^{t}} \phi_{a_{k}^{t}}^{T}\right]=\frac{d}{\lambda^{2}}+\frac{1}{\sigma^{2}} \sum_{t=1}^{n} \sum_{k=1}^{\left|A^{t}\right|}\left\|\phi_{a_{k}^{t}}\right\|^{2} \leq \frac{d}{\lambda^{2}}+\frac{n K}{\sigma^{2}}, \tag{31}
\end{equation*}
$$

where the last inequality follows from the assumption that $\left\|\phi_{e}\right\| \leq 1, \forall e \in E$ and $\left|A^{t}\right| \leq K$. From the trace-determinant inequality, we have

$$
\frac{1}{d} \operatorname{trace}\left[\Sigma_{n+1}^{-1}\right] \geq\left(\operatorname{det}\left[\Sigma_{n+1}^{-1}\right]\right)^{\frac{1}{d}}
$$

which implies that

$$
\left(\frac{1}{\lambda^{2}}+\frac{n K}{d \sigma^{2}}\right)^{d K} \geq\left(\frac{1}{d} \operatorname{trace}\left[\Sigma_{n+1}^{-1}\right]\right)^{d K} \geq\left(\operatorname{det}\left[\Sigma_{n+1}^{-1}\right]\right)^{K} \geq \frac{1}{\lambda^{2 d K}} \prod_{t=1}^{n} \prod_{k=1}^{\left|A^{t}\right|}\left(1+\frac{z_{t, k}^{2}}{\sigma^{2}}\right)
$$

Taking the logarithm, we have

$$
\begin{equation*}
d K \log \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right) \geq \sum_{t=1}^{n} \sum_{k=1}^{\left|A^{t}\right|} \log \left(1+\frac{z_{t, k}^{2}}{\sigma^{2}}\right) \tag{32}
\end{equation*}
$$

Notice that $z_{t, k}^{2}=\phi_{a_{k}^{t}}^{T} \Sigma_{t} \phi_{a_{k}^{t}}$, hence we have that $0 \leq z_{t, k}^{2} \leq \phi_{a_{k}^{t}}^{T} \Sigma_{1} \phi_{a_{k}^{t}} \leq \lambda^{2}\left\|\phi_{a_{k}^{t}}\right\|^{2} \leq \lambda^{2}$. We have the following technical lemma:

Lemma 5. For any real number $x \in\left[0, \lambda^{2}\right]$, we have $x \leq \frac{\lambda^{2}}{\log \left(1+\frac{\lambda^{2}}{\sigma^{2}}\right)} \log \left(1+\frac{x}{\sigma^{2}}\right)$.

Proof. Define $h(x)=\frac{\lambda^{2}}{\log \left(1+\frac{\lambda^{2}}{\sigma^{2}}\right)} \log \left(1+\frac{x}{\sigma^{2}}\right)-x$, thus we only need to prove $h(x) \geq 0$ for $x \in\left[0, \lambda^{2}\right]$. Notice that $h(x)$ is a strictly concave function for $x \geq 0$, and $h(0)=0, h\left(\lambda^{2}\right)=0$. From Jensen's inequality, for any $x \in\left(0, \lambda^{2}\right)$, we have $h(x)>0$.

Hence we have that

$$
\begin{equation*}
\sum_{t=1}^{n} \sum_{k=1}^{\left|A^{t}\right|} z_{t, k}^{2} \leq \frac{\lambda^{2}}{\log \left(1+\frac{\lambda^{2}}{\sigma^{2}}\right)} \sum_{t=1}^{n} \sum_{k=1}^{\left|A^{t}\right|} \log \left(1+\frac{z_{t, k}^{2}}{\sigma^{2}}\right) \leq \frac{d K \lambda^{2} \log \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right)}{\log \left(1+\frac{\lambda^{2}}{\sigma^{2}}\right)} \tag{33}
\end{equation*}
$$

Finally, we have that

$$
\begin{equation*}
\sum_{t=1}^{n} \sum_{k=1}^{\left|A^{t}\right|} z_{t, k} \leq \sqrt{n K} \sqrt{\sum_{t=1}^{n} \sum_{k=1}^{\left|A^{t}\right|} z_{t, k}^{2}} \leq K \lambda \sqrt{\frac{d n \log \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right)}{\log \left(1+\frac{\lambda^{2}}{\sigma^{2}}\right)}} \tag{34}
\end{equation*}
$$

Recall that the above bound holds for any realization of random variables, thus, we have

$$
\mathbb{E}\left[\sum_{t=1}^{n}\left[U_{t}\left(A^{t}\right)-g\left(A^{t}, \theta^{*}\right)\right]\right]=c \mathbb{E}\left[\sum_{t=1}^{n} \sum_{k=1}^{\left|A^{t}\right|} z_{t, k}\right] \leq c K \lambda \sqrt{\frac{d n \log \left(1+\frac{n K \lambda^{2}}{d}\right)}{\log \left(1+\frac{\lambda^{2}}{\sigma^{2}}\right)}} .
$$

With

$$
\begin{equation*}
c=\min \left\{\sqrt{\ln \left(\frac{\lambda L n}{\sqrt{2 \pi}}\right)}, \sqrt{d \ln \left(\frac{2 d K n \lambda}{\sqrt{2 \pi}}\right)}\right\} \tag{35}
\end{equation*}
$$

and combining the results in the previous subsection, we have proved Theorem 3.

B. Proof for Theorem 2

We start by writing an alternative formula for Σ_{t} and $\bar{\theta}_{t}$. Notice that based on Algorithm 1, we have:

$$
\begin{align*}
\Sigma_{t}^{-1} & =\frac{1}{\lambda^{2}} I+\frac{1}{\sigma^{2}} \sum_{\tau=1}^{t-1} \sum_{k=1}^{\left|A^{\tau}\right|} \phi_{a_{k}^{\tau}} \phi_{a_{k}^{\tau}}^{T} \\
\Sigma_{t}^{-1} \bar{\theta}_{t} & =\frac{1}{\sigma^{2}} \sum_{\tau=1}^{t-1} \sum_{k=1}^{\left|A^{\tau}\right|} \phi_{a_{k}^{\tau}} \mathbf{w}_{\tau}\left(a_{k}^{\tau}\right) \tag{36}
\end{align*}
$$

Interested readers might refer to Appendix C for the derivation of Equation (36). The proof proceeds as follows. We first construct a confidence set of θ^{*} based on the "self normalized bound" developed in (Abbasi-Yadkori et al., 2011). Then we derive a regret bound based on Lemma 4 derived above.

B.1. Confidence Set

Our construction of confidence set is motivated by the analysis in (Agrawal \& Goyal, 2013). We start by defining some useful notation. Specifically, for any $t=1,2, \ldots, n$, any $k=1,2, \ldots,\left|A^{t}\right|$, we define

$$
\eta_{t, k}=\mathbf{w}_{t}\left(a_{k}^{t}\right)-\overline{\mathbf{w}}\left(a_{k}^{t}\right)
$$

One key observation is that $\eta_{t, k}$'s form a Martingale difference sequence (MDS) ${ }^{9}$ since $\mathbf{w}(e)$'s are statistically independent under P. Moreover, since $\mathbf{w}_{t}\left(a_{k}^{t}\right)$ is bounded in interval $[0,1], \eta_{t, k}$'s are sub-Gaussian with constant $R=1$. We further define

$$
\begin{aligned}
V_{t} & =\frac{\sigma^{2}}{\lambda^{2}} I+\sum_{\tau=1}^{t-1} \sum_{k=1}^{\left|A^{\tau}\right|} \phi_{a_{k}^{\tau}} \phi_{a_{k}^{\tau}}^{T} \\
\xi_{t} & =\sum_{\tau=1}^{t-1} \sum_{k=1}^{\left|A^{\tau}\right|} \phi_{a_{k}^{\tau}} \eta_{\tau, k}
\end{aligned}
$$

As we will see later, we define V_{t} and ξ_{t} to use the "self normalized bound" developed in (Abbasi-Yadkori et al., 2011) (see Theorem 1 of (Abbasi-Yadkori et al., 2011)). Notice that based on the above definition, we have $\Sigma_{t}^{-1}=\frac{1}{\sigma^{2}} V_{t}$, and

$$
\bar{\theta}_{t}-\theta^{*}=\Sigma_{t}\left(\frac{1}{\sigma^{2}} \xi_{t}-\frac{1}{\lambda^{2}} \theta^{*}\right)
$$

[^1]To see why the second equality holds, notice that

$$
\begin{aligned}
\Sigma_{t}^{-1} \bar{\theta}_{t} & =\frac{1}{\sigma^{2}} \sum_{\tau=1}^{t-1} \sum_{k=1}^{\left|A^{\tau}\right|} \phi_{a_{k}^{\tau}}\left(\phi_{a_{k}^{\tau}}^{T} \theta^{*}+\eta_{\tau, k}\right) \\
& =\left(\Sigma_{t}^{-1}-\frac{1}{\lambda^{2}} I\right) \theta^{*}+\frac{1}{\sigma^{2}} \xi_{t} .
\end{aligned}
$$

Hence, for any $e \in E$, we have

$$
\begin{aligned}
\left|\left\langle\phi_{e}, \bar{\theta}_{t}-\theta^{*}\right\rangle\right| & =\left|\phi_{e}^{T} \Sigma_{t}\left(\frac{1}{\sigma^{2}} \xi_{t}-\frac{1}{\lambda^{2}} \theta^{*}\right)\right| \\
& \leq\left\|\phi_{e}\right\|_{\Sigma_{t}}\left\|\frac{1}{\sigma^{2}} \xi_{t}-\frac{1}{\lambda^{2}} \theta^{*}\right\|_{\Sigma_{t}} \\
& \leq\left\|\phi_{e}\right\|_{\Sigma_{t}}\left[\frac{1}{\sigma^{2}}\left\|\xi_{t}\right\|_{\Sigma_{t}}+\frac{1}{\lambda^{2}}\left\|\theta^{*}\right\|_{\Sigma_{t}}\right]
\end{aligned}
$$

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality follows from the triangular inequality. Notice that

$$
\left\|\theta^{*}\right\|_{\Sigma_{t}} \leq\left\|\theta^{*}\right\|_{\Sigma_{1}}=\lambda\left\|\theta^{*}\right\|_{2}
$$

hence we have

$$
\left|\left\langle\phi_{e}, \bar{\theta}_{t}-\theta^{*}\right\rangle\right| \leq\left\|\phi_{e}\right\|_{\Sigma_{t}}\left[\frac{1}{\sigma^{2}}\left\|\xi_{t}\right\|_{\Sigma_{t}}+\frac{1}{\lambda}\left\|\theta^{*}\right\|_{2}\right]
$$

Moreover, we have

$$
\frac{1}{\sigma^{2}}\left\|\xi_{t}\right\|_{\Sigma_{t}}=\frac{1}{\sigma^{2}}\left\|\xi_{t}\right\|_{\sigma^{2} V_{t}^{-1}}=\frac{1}{\sigma}\left\|\xi_{t}\right\|_{V_{t}^{-1}}
$$

So we have

$$
\begin{equation*}
\left|\left\langle\phi_{e}, \bar{\theta}_{t}-\theta^{*}\right\rangle\right| \leq\left\|\phi_{e}\right\|_{\Sigma_{t}}\left[\frac{1}{\sigma}\left\|\xi_{t}\right\|_{V_{t}^{-1}}+\frac{1}{\lambda}\left\|\theta^{*}\right\|_{2}\right] . \tag{37}
\end{equation*}
$$

The above inequality always holds. We now provide a high probability bound on $\left\|\xi_{t}\right\|_{V_{t}^{-1}}$, based on the "self normalized bound" proposed in (Abbasi-Yadkori et al., 2011). From Theorem 1 of (Abbasi-Yadkori et al., 2011), we know for any $\delta \in(0,1)$, with probability at least $1-\delta$,

$$
\left\|\xi_{t}\right\|_{V_{t}^{-1}} \leq \sqrt{2 \log \left(\frac{\operatorname{det}\left(V_{t}\right)^{1 / 2} \operatorname{det}\left(V_{1}\right)^{-1 / 2}}{\delta}\right)} \quad \forall t=1,2, \ldots
$$

Obviously, $\operatorname{det}\left(V_{1}\right)=\left[\frac{\sigma^{2}}{\lambda^{2}}\right]^{d}$, on the other hand, we have

$$
\left[\operatorname{det}\left(V_{t}\right)\right]^{1 / d} \leq \frac{\operatorname{trace}\left(V_{t}\right)}{d}=\frac{\sigma^{2}}{\lambda^{2}}+\frac{1}{d} \sum_{\tau=1}^{t-1} \sum_{k=1}^{\left|A^{\tau}\right|}\left\|\phi_{a_{k}^{\tau}}\right\|^{2} \leq \frac{\sigma^{2}}{\lambda^{2}}+\frac{(t-1) K}{d}
$$

where the last inequality follows from the assumption that $\left\|\phi_{e}\right\| \leq 1$. Hence, for $t \leq n$, we have

$$
\left[\operatorname{det}\left(V_{t}\right)\right]^{1 / d} \leq \frac{\sigma^{2}}{\lambda^{2}}+\frac{n K}{d}
$$

Thus, with probability at least $1-\delta$, we have

$$
\left\|\xi_{t}\right\|_{V_{t}^{-1}} \leq \sqrt{d \log \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right)+2 \log \left(\frac{1}{\delta}\right)} \quad \forall t=1,2, \ldots, n
$$

Thus, we have the following lemma:
Lemma 6. For any $\lambda, \sigma>0$ and any $\delta \in(0,1)$, with probability at least $1-\delta$, we have

$$
\begin{equation*}
\left|\left\langle\phi_{e}, \bar{\theta}_{t}-\theta^{*}\right\rangle\right| \leq\left\|\phi_{e}\right\|_{\Sigma_{t}}\left[\frac{1}{\sigma} \sqrt{d \log \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right)+2 \log \left(\frac{1}{\delta}\right)}+\frac{\left\|\theta^{*}\right\|_{2}}{\lambda}\right] \tag{38}
\end{equation*}
$$

for all $t=1,2, \ldots, n$, and for all $e \in E$.

Notice that $\left\|\phi_{e}\right\|_{\Sigma_{t}}=\sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}$, thus, the above lemma immediately implies the following lemma:
Lemma 7. For any $\lambda, \sigma>0$, any $\delta \in(0,1)$, and any

$$
c \geq \frac{1}{\sigma} \sqrt{d \log \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right)+2 \log \left(\frac{1}{\delta}\right)}+\frac{\left\|\theta^{*}\right\|_{2}}{\lambda}
$$

with probability at least $1-\delta$, we have

$$
\left\langle\phi_{e}, \bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \leq\left\langle\phi_{e}, \theta^{*}\right\rangle \leq\left\langle\phi_{e}, \bar{\theta}_{t}\right\rangle+c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}
$$

for all $e \in E$ and $t=1,2, \ldots n$.

Notice that

$$
\left\langle\phi_{e}, \theta^{*}\right\rangle \leq\left\langle\phi_{e}, \bar{\theta}_{t}\right\rangle+c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}
$$

is exactly $\overline{\mathbf{w}}(e) \leq \hat{\mathbf{w}}_{t}(e)$.

B.2. Regret Analysis

We define event G as

$$
\begin{equation*}
G=\left\{\left\langle\phi_{e}, \bar{\theta}_{t}\right\rangle-c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \leq\left\langle\phi_{e}, \theta^{*}\right\rangle \leq\left\langle\phi_{e}, \bar{\theta}_{t}\right\rangle+c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \forall e \in E, \forall t=1, \ldots, n\right\} \tag{39}
\end{equation*}
$$

and use \bar{G} to denote the complement of event G. Recall that Lemma 7 states that if

$$
\begin{equation*}
c \geq \frac{1}{\sigma} \sqrt{d \log \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right)+2 \log \left(\frac{1}{\delta}\right)}+\frac{1}{\lambda}\left\|\theta^{*}\right\|_{2} \tag{40}
\end{equation*}
$$

then $\mathbb{P}(G) \geq 1-\delta$. Moreover, by definition, under event G, we have $\overline{\mathbf{w}}(e) \leq \hat{\mathbf{w}}_{t}(e)$, for all $t=1, \ldots, n$ and any $e \in E$. Notice that

$$
\begin{aligned}
R(n) & =\sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{*}} \mathbf{w}_{t}(e)-\sum_{e \in A^{t}} \mathbf{w}_{t}(e)\right] \\
& =\sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{*}} \overline{\mathbf{w}}(e)-\sum_{e \in A^{t}} \overline{\mathbf{w}}(e)\right] \\
& =\mathbb{P}(G) \sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{*}} \overline{\mathbf{w}}(e)-\sum_{e \in A^{t}} \overline{\mathbf{w}}(e) \mid G\right]+\mathbb{P}(\bar{G}) \sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{*}} \overline{\mathbf{w}}(e)-\sum_{e \in A^{t}} \overline{\mathbf{w}}(e) \mid \bar{G}\right] \\
& \leq \sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{*}} \overline{\mathbf{w}}(e)-\sum_{e \in A^{t}} \overline{\mathbf{w}}(e) \mid G\right]+\mathbb{P}(\bar{G}) n K,
\end{aligned}
$$

where the last inequality follows from the naive bound on the realized regret. If c satisfies inequality (40), we have $\mathbb{P}(\bar{G}) \leq \delta$, hence we have

$$
R(n) \leq \sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{*}} \overline{\mathbf{w}}(e)-\sum_{e \in A^{t}} \overline{\mathbf{w}}(e) \mid G\right]+n K \delta
$$

Finally, we bound $\sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{*}} \overline{\mathbf{w}}(e)-\sum_{e \in A^{t}} \overline{\mathbf{w}}(e) \mid G\right]$ using a worst-case bound conditioning on G (worst-case over all the possible random realizations), notice that conditioning on G, we have

$$
\sum_{e \in A^{*}} \overline{\mathbf{w}}(e) \leq \sum_{e \in A^{*}} \hat{\mathbf{w}}_{t}(e) \leq \sum_{e \in A^{t}} \hat{\mathbf{w}}_{t}(e)
$$

where the first inequality follows from the definition of event G, and the second inequality follows from that A^{t} is the exact solution of the combinatorial optimization problem $\left(E, \mathcal{A}, \hat{\mathbf{w}}_{t}\right)$. Thus we have

$$
\begin{aligned}
\sum_{e \in A^{*}} \overline{\mathbf{w}}(e)-\sum_{e \in A^{t}} \overline{\mathbf{w}}(e) & \leq \sum_{e \in A^{t}} \hat{\mathbf{w}}_{t}(e)-\sum_{e \in A^{t}} \overline{\mathbf{w}}(e) \\
& =\sum_{e \in A^{t}}\left[\left\langle\phi_{e}, \bar{\theta}_{t}-\theta^{*}\right\rangle+c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right] \\
& \leq 2 c \sum_{e \in A^{t}} \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}
\end{aligned}
$$

where the last inequality follows from the definition of G. Recall that from Lemma 4, we have

$$
\sum_{t=1}^{n} \sum_{e \in A^{t}} \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \leq K \lambda \sqrt{\frac{d n \log \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right)}{\log \left(1+\frac{\lambda^{2}}{\sigma^{2}}\right)}}
$$

Thus we have

$$
\sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{*}} \overline{\mathbf{w}}(e)-\sum_{e \in A^{t}} \overline{\mathbf{w}}(e) \mid G\right] \leq 2 c \mathbb{E}\left[\sum_{t=1}^{n} \sum_{e \in A^{t}} \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right] \leq 2 c K \lambda \sqrt{\frac{d n \log \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right)}{\log \left(1+\frac{\lambda^{2}}{\sigma^{2}}\right)}}
$$

which implies

$$
R(n) \leq 2 c K \lambda \sqrt{\frac{d n \log \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right)}{\log \left(1+\frac{\lambda^{2}}{\sigma^{2}}\right)}}+n K \delta
$$

C. Technical Lemma

In this section, we derive Equation (36). We first prove the following technical lemma:

Lemma 8. For any $\phi, \bar{\theta} \in \mathbb{R}^{d}$, any positive definite $\Sigma \in \mathbb{R}^{d \times d}$, any $\sigma>0$, and any $w \in \mathbb{R}$, if we define

$$
\begin{aligned}
\Sigma_{\text {new }} & =\Sigma-\frac{\Sigma \phi \phi^{T} \Sigma}{\phi^{T} \Sigma \phi+\sigma^{2}} \\
\bar{\theta}_{\text {new }} & =\left[I-\frac{\Sigma \phi \phi^{T}}{\phi^{T} \Sigma \phi+\sigma^{2}}\right] \bar{\theta}+\left[\frac{\Sigma \phi}{\phi^{T \Sigma} \phi+\sigma^{2}}\right] w
\end{aligned}
$$

then we have

$$
\begin{align*}
\Sigma_{\text {new }}^{-1} & =\Sigma^{-1}+\frac{1}{\sigma^{2}} \phi \phi^{T} \tag{41}\\
\Sigma_{\text {new }}^{-1} \bar{\theta}_{\text {new }} & =\Sigma^{-1} \bar{\theta}+\frac{1}{\sigma^{2}} \phi w . \tag{42}
\end{align*}
$$

Proof. Notice that Equation (41) follows directly from the Woodbury matrix identity (matrix inversion lemma). We now prove Equation (42). Notice that we have

$$
\begin{aligned}
\bar{\theta}_{\text {new }} & =\left[I-\frac{\Sigma \phi \phi^{T}}{\phi^{T} \Sigma \phi+\sigma^{2}}\right] \bar{\theta}+\left[\frac{\Sigma \phi}{\phi^{T} \Sigma \phi+\sigma^{2}}\right] w \\
& =\left[\Sigma-\frac{\Sigma \phi \phi^{T} \Sigma}{\phi^{T} \Sigma \phi+\sigma^{2}}\right] \Sigma^{-1} \bar{\theta}+\left[\frac{\Sigma \phi}{\phi^{T} \Sigma \phi+\sigma^{2}}\right] w \\
& =\Sigma_{\text {new }} \Sigma^{-1} \bar{\theta}+\left[\frac{\Sigma \phi}{\phi^{T} \Sigma \phi+\sigma^{2}}\right] w
\end{aligned}
$$

that is,

$$
\begin{equation*}
\Sigma_{\text {new }}^{-1} \bar{\theta}_{\text {new }}=\Sigma^{-1} \bar{\theta}+\left[\frac{\Sigma_{\text {new }}^{-1} \Sigma \phi}{\phi^{T} \Sigma \phi+\sigma^{2}}\right] w \tag{43}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\Sigma_{\text {new }}^{-1} \Sigma \phi=\left[\Sigma^{-1}+\frac{1}{\sigma^{2}} \phi \phi^{T}\right] \Sigma \phi=\phi+\frac{\phi^{T} \Sigma \phi}{\sigma^{2}} \phi=\frac{\sigma^{2}+\phi^{T} \Sigma \phi}{\sigma^{2}} \phi \tag{44}
\end{equation*}
$$

Plug Equation (44) into Equation (43), we have Equation (42).

Based on Lemma 8, by mathematical induction, we have

$$
\begin{aligned}
\Sigma_{t}^{-1} & =\Sigma_{1}^{-1}+\frac{1}{\sigma^{2}} \sum_{\tau=1}^{t-1} \sum_{k=1}^{\left|A^{\tau}\right|} \phi_{a_{k}^{\tau}} \phi_{a_{k}^{\tau}}^{T} \\
\Sigma_{t}^{-1} \bar{\theta}_{t} & =\Sigma_{1}^{-1} \bar{\theta}_{1} \frac{1}{\sigma^{2}} \sum_{\tau=1}^{t-1} \sum_{k=1}^{\left|A^{\tau}\right|} \phi_{a_{k}^{\tau}} \mathbf{w}_{\tau}\left(a_{k}^{\tau}\right),
\end{aligned}
$$

further noting that $\Sigma_{1}=\lambda^{2} I$ and $\bar{\theta}_{1}=0$, we can derive Equation (36).

D. A Variant of Theorem 2 for Approximation Algorithms

By suitably redefining the realized regret, we can prove a variant of Theorem 2 in which ORACLE can be an approximation algorithm. Specifically, for a (possibly approximation) algorithm ORACLE, let $A^{*}(\mathbf{w})$ be the solution of ORACLE to the optimization problem $(E, \mathcal{A}, \mathbf{w})$, we say $\gamma \in[0,1)$ is a sub-optimality gap of ORACLE if

$$
\begin{equation*}
f\left(A^{*}(\mathbf{w}), \mathbf{w}\right) \geq(1-\gamma) \max _{A \in \mathcal{A}} f(A, \mathbf{w}), \quad \forall \mathbf{w} \tag{45}
\end{equation*}
$$

Then we define the (scaled) realized regret R_{t}^{γ} as

$$
\begin{equation*}
R_{t}^{\gamma}=f\left(A^{\mathrm{opt}}, \mathbf{w}_{t}\right)-\frac{f\left(A^{t}, \mathbf{w}_{t}\right)}{1-\gamma} \tag{46}
\end{equation*}
$$

where $A^{\text {opt }}$ is the exact solution to the optimization $\operatorname{problem}(E, \mathcal{A}, \overline{\mathbf{w}})$. The (scaled) cumulative regret $R^{\gamma}(n)$ is defined as

$$
R^{\gamma}(n)=\sum_{t=1}^{n} \mathbb{E}\left[R_{t}^{\gamma} \mid \overline{\mathbf{w}}\right]
$$

Under the assumptions that (1) the support of P is a subset of $[0,1]^{L}$ (i.e. $\mathbf{w}_{t}(e) \in[0,1] \forall t$ and $\forall e \in E$), (2) the item weight $\mathbf{w}(e)$'s are statistically independent under P, and (3) the oracle ORACLE has sub-optimality gap $\gamma \in[0,1$), we have the following variant of Theorem 2 when CombLinUCB is applied to coherent learning cases:

Theorem 4. For any $\lambda, \sigma>0$, any $\delta \in(0,1)$, and any c satisfying

$$
\begin{equation*}
c \geq \frac{1}{\sigma} \sqrt{d \ln \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right)+2 \ln \left(\frac{1}{\delta}\right)}+\frac{\left\|\theta^{*}\right\|_{2}}{\lambda} \tag{47}
\end{equation*}
$$

if $\overline{\mathbf{w}}=\Phi \theta^{*}$ and the above three assumptions hold, then under CombLinUCB algorithm with parameter $(\Phi, \lambda, \sigma, c)$, we have

$$
R^{\gamma}(n) \leq \frac{2 c K \lambda}{1-\gamma} \sqrt{\frac{d n \ln \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right)}{\ln \left(1+\frac{\lambda^{2}}{\sigma^{2}}\right)}}+n K \delta
$$

Proof. Notice that Lemma 7 in Section B. 1 still holds. With G defined in Equation (39), we have

$$
\begin{aligned}
R^{\gamma}(n) & =\sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{\mathrm{opt}}} \mathbf{w}_{t}(e)-\frac{1}{1-\gamma} \sum_{e \in A^{t}} \mathbf{w}_{t}(e)\right] \\
& =\sum_{t=1}^{n} \mathbb{E}\left[\sum_{e \in A^{\mathrm{opt}}} \overline{\mathbf{w}}(e)-\frac{1}{1-\gamma} \sum_{e \in A^{t}} \overline{\mathbf{w}}(e)\right] \\
& =\mathbb{P}(G) \sum_{t=1}^{n} \mathbb{E}\left[\left.\sum_{e \in A^{\mathrm{opt}}} \overline{\mathbf{w}}(e)-\frac{1}{1-\gamma} \sum_{e \in A^{t}} \overline{\mathbf{w}}(e) \right\rvert\, G\right]+\mathbb{P}(\bar{G}) \sum_{t=1}^{n} \mathbb{E}\left[\left.\sum_{e \in A^{\mathrm{opt}}} \overline{\mathbf{w}}(e)-\frac{1}{1-\gamma} \sum_{e \in A^{t}} \overline{\mathbf{w}}(e) \right\rvert\, \bar{G}\right] \\
& \leq \sum_{t=1}^{n} \mathbb{E}\left[\left.\sum_{e \in A^{\mathrm{opt}}} \overline{\mathbf{w}}(e)-\frac{1}{1-\gamma} \sum_{e \in A^{t}} \overline{\mathbf{w}}(e) \right\rvert\, G\right]+\mathbb{P}(\bar{G}) n K,
\end{aligned}
$$

where the last inequality follows from the naive bound on R_{t}^{γ}. If c satisfies inequality (40), we have $\mathbb{P}(\bar{G}) \leq \delta$, hence we have

$$
R^{\gamma}(n) \leq \sum_{t=1}^{n} \mathbb{E}\left[\left.\sum_{e \in A^{\mathrm{opt}}} \overline{\mathbf{w}}(e)-\frac{1}{1-\gamma} \sum_{e \in A^{t}} \overline{\mathbf{w}}(e) \right\rvert\, G\right]+n K \delta .
$$

Finally, we bound $\sum_{t=1}^{n} \mathbb{E}\left[\left.\sum_{e \in A^{\mathrm{opt}}} \overline{\mathbf{w}}(e)-\frac{1}{1-\gamma} \sum_{e \in A^{t}} \overline{\mathbf{w}}(e) \right\rvert\, G\right]$ using a worst-case bound conditioning on G (worstcase over all the possible random realizations), notice that conditioning on G, we have

$$
\sum_{e \in A^{\mathrm{opt}}} \overline{\mathbf{w}}(e) \leq \sum_{e \in A^{\mathrm{opt}}} \hat{\mathbf{w}}_{t}(e) \leq \max _{A \in \mathcal{A}} \sum_{e \in A} \hat{\mathbf{w}}_{t}(e) \leq \frac{1}{1-\gamma} \sum_{e \in A^{t}} \hat{\mathbf{w}}_{t}(e)
$$

where

- The first inequality follows from the definition of event G. Specifically, under event $G, \overline{\mathbf{w}}(e) \leq \hat{\mathbf{w}}_{t}(e)$ for all $t=1, \ldots, n$ and all $e \in E$.
- The second inequality follows from $A^{\mathrm{opt}} \in \mathcal{A}$.
- The last inequality follows from $A^{t} \leftarrow \operatorname{ORACLE}\left(E, \mathcal{A}, \hat{\mathbf{w}}_{t}\right)$ and ORACLE has sub-optimality gap γ (see Equation (45)).

Thus we have

$$
\begin{aligned}
\sum_{e \in A^{\mathrm{opt}}} \overline{\mathbf{w}}(e)-\frac{1}{1-\gamma} \sum_{e \in A^{t}} \overline{\mathbf{w}}(e) & \leq \frac{1}{1-\gamma}\left[\sum_{e \in A^{t}} \hat{\mathbf{w}}_{t}(e)-\sum_{e \in A^{t}} \overline{\mathbf{w}}(e)\right] \\
& =\frac{1}{1-\gamma} \sum_{e \in A^{t}}\left[\left\langle\phi_{e}, \bar{\theta}_{t}-\theta^{*}\right\rangle+c \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}}\right] \\
& \leq \frac{2 c}{1-\gamma} \sum_{e \in A^{t}} \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}},
\end{aligned}
$$

where the last inequality follows from the definition of G. Recall that from Lemma 4, we also have

$$
\sum_{t=1}^{n} \sum_{e \in A^{t}} \sqrt{\phi_{e}^{T} \Sigma_{t} \phi_{e}} \leq K \lambda \sqrt{\frac{d n \log \left(1+\frac{n K \lambda^{2}}{d \sigma^{2}}\right)}{\log \left(1+\frac{\lambda^{2}}{\sigma^{2}}\right)}}
$$

Putting the above inequalities together, we have proved the theorem.

[^0]: ${ }^{8}$ Notice that in the derivation of Inequality (18), we implicitly assume that $\phi_{e}^{T} \Sigma_{t} \phi_{e}>0, \forall e \in E$. It is worth pointing out that the case with $\phi_{e}^{T} \Sigma_{t} \phi_{e}=0$ is a trivial case and this inequality still holds in this case.

[^1]: ${ }^{9}$ Note that the notion of "time" is indexed by a pair (t, k), and follows the lexicographical order.

