An Online Learning Algorithm for Bilinear Models (Supplementary)

Yuanbin Wu Shiliang Sun

Shanghai Key Laboratory of Multidimensional Information Processing Department of Computer Science and Technology, East China Normal University

Details of Algorithm 2

Several technical notes on power iteration are about $\|\alpha_t\|, \|\beta_t\|$ and σ_1 .

First, when the iteration stops, $\bar{\alpha}_t^{(\tau)}, \bar{\beta}_t^{(\tau)}$ may not have unit length. To normalize them, we also need to compute their norms. Observing that

$$\|\alpha_t\|^2 = \|\alpha_{t-1}\|^2 + 2\langle \alpha_{t-1}, \Delta \alpha_t^{(\tau)} \rangle + \|\Delta \alpha_t^{(\tau)}\|^2,$$

and the last two terms only involve manipulations on sparse vectors, we can maintain the norms efficiently.

Second, it is also possible to avoid explicit normalization $\frac{\alpha_t^{(\tau)}}{\|\alpha_t^{(\tau)}\|}$ by further refining update equations (9)-(12) with $\|\alpha_{t-1}\|, \|\beta_{t-1}\|$ involved.

$$\Delta \alpha^{(\tau)} = \frac{\|\alpha_{t-1}\|}{\sigma_1 \|\beta_{t-1}\|} \left(C(\Delta \Phi^t) \beta_{t-1} + \Theta_t \Delta \beta^{(\tau-1)} \right), \tag{1}$$

$$\bar{\alpha}_t^{(\tau)} = \alpha_{t-1} + \Delta \alpha^{(\tau)}, \tag{2}$$

$$\Delta \beta^{(\tau)} = \frac{\|\beta_{t-1}\|}{\sigma_1 \|\alpha_{t-1}\|} \left(C(\Delta \Phi^t)^{\mathsf{T}} \alpha_{t-1} + \Theta_t^{\mathsf{T}} \Delta \alpha^{(\tau)} \right),\tag{3}$$

$$\bar{\beta}_t^{(\tau)} = \beta_{t-1} + \Delta \beta^{(\tau)}. \tag{4}$$

When the power iteration stops, we can simply set α_t , β_t as follows (without explicit normalization):

$$\alpha_t = \alpha_{t-1} + \Delta \alpha^{(R)},$$

$$\beta_t = \beta_{t-1} + \Delta \beta^{(R)}.$$

Finally, for σ_1 , simple algebra manipulations gives the updates:

$$\sigma_1^t = \frac{1}{\|\alpha_t\| \|\beta_t\|} \left(\sigma_1^{t-1} \|\alpha_{t-1}\| \|\beta_{t-1}\| + C\beta_{t-1}^{\mathsf{T}} \Delta \Phi \alpha_{t-1} + \Delta \beta^{\mathsf{T}} \Theta_t \alpha_{t-1} + \beta_{t-1}^{\mathsf{T}} \Theta_t \Delta \alpha + \Delta \beta^{\mathsf{T}} \Theta_t \Delta \alpha \right).$$

YBWU@CS.ECNU.EDU.CN SLSUN@CS.ECNU.EDU.CN