An Online Learning Algorithm for Bilinear Models (Supplementary)

Yuanbin Wu
 Shiliang Sun

YBWU@CS.ECNU.EDU.CN
SLSUN@CS.ECNU.EDU.CN
Shanghai Key Laboratory of Multidimensional Information Processing
Department of Computer Science and Technology, East China Normal University

Details of Algorithm 2

Several technical notes on power iteration are about $\left\|\alpha_{t}\right\|,\left\|\beta_{t}\right\|$ and σ_{1}.
First, when the iteration stops, $\bar{\alpha}_{t}^{(\tau)}, \bar{\beta}_{t}^{(\tau)}$ may not have unit length. To normalize them, we also need to compute their norms. Observing that

$$
\left\|\alpha_{t}\right\|^{2}=\left\|\alpha_{t-1}\right\|^{2}+2\left\langle\alpha_{t-1}, \Delta \alpha_{t}^{(\tau)}\right\rangle+\left\|\Delta \alpha_{t}^{(\tau)}\right\|^{2}
$$

and the last two terms only involve manipulations on sparse vectors, we can maintain the norms efficiently.
Second, it is also possible to avoid explicit normalization $\frac{\alpha_{t}^{(\tau)}}{\left\|\alpha_{t}^{(\tau)}\right\|}$ by further refining update equations (9)-(12) with $\left\|\alpha_{t-1}\right\|,\left\|\beta_{t-1}\right\|$ involved.

$$
\begin{align*}
\Delta \alpha^{(\tau)} & =\frac{\left\|\alpha_{t-1}\right\|}{\sigma_{1}\left\|\beta_{t-1}\right\|}\left(C\left(\Delta \Phi^{t}\right) \beta_{t-1}+\Theta_{t} \Delta \beta^{(\tau-1)}\right) \tag{1}\\
\bar{\alpha}_{t}^{(\tau)} & =\alpha_{t-1}+\Delta \alpha^{(\tau)} \tag{2}\\
\Delta \beta^{(\tau)} & =\frac{\left\|\beta_{t-1}\right\|}{\sigma_{1}\left\|\alpha_{t-1}\right\|}\left(C\left(\Delta \Phi^{t}\right)^{\top} \alpha_{t-1}+\Theta_{t}^{\top} \Delta \alpha^{(\tau)}\right) \tag{3}\\
\bar{\beta}_{t}^{(\tau)} & =\beta_{t-1}+\Delta \beta^{(\tau)} \tag{4}
\end{align*}
$$

When the power iteration stops, we can simply set α_{t}, β_{t} as follows (without explicit normalization):

$$
\begin{aligned}
\alpha_{t} & =\alpha_{t-1}+\Delta \alpha^{(R)} \\
\beta_{t} & =\beta_{t-1}+\Delta \beta^{(R)}
\end{aligned}
$$

Finally, for σ_{1}, simple algebra manipulations gives the updates:

$$
\sigma_{1}^{t}=\frac{1}{\left\|\alpha_{t}\right\|\left\|\beta_{t}\right\|}\left(\sigma_{1}^{t-1}\left\|\alpha_{t-1}\right\|\left\|\beta_{t-1}\right\|+C \beta_{t-1}^{\top} \Delta \Phi \alpha_{t-1}+\Delta \beta^{\top} \Theta_{t} \alpha_{t-1}+\beta_{t-1}^{\top} \Theta_{t} \Delta \alpha+\Delta \beta^{\top} \Theta_{t} \Delta \alpha\right)
$$

