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Abstract
We investigate the bilinear model, which is a ma-
trix form linear model with the rank 1 constraint.
A new online learning algorithm is proposed to
train the model parameters. Our algorithm runs
in the manner of online mirror descent, and gra-
dients are computed by the power iteration. To
analyze it, we give a new second order approxi-
mation of the squared spectral norm, which helps
us to get a regret bound. Experiments on two se-
quential labelling tasks give positive results.

1. Introduction
In supervised classification, linear models are important
and fundamental. Features are packed into a vector, and
a weight in the same vector space is used to vote the im-
portance of different features. However, in some applica-
tions of computer vision (Pirsiavash et al., 2009), natural
language processing (Lei et al., 2014) and recommender
systems (Rendle, 2010), matrices are more natural and in-
formative than vectors to express features They can help to
explore latent structures of the input space (e.g., semantic
relations among features), which can potentially improve
the classification performance. In this work, as a specific
case, we will study the bilinear model, which is a matrix
form linear model with the rank 1 constraint.

The rank constraint brings difficulties both on designing
and analyzing learning algorithms. We introduce a sim-
ple and fast online algorithm for the bilinear model which
tries to overcome those difficulties. First, models with
low rank constraints usually need singular value decompo-
sition (SVD). The full SVD is computationally unafford-
able for large scale matrices. In the case of our bilinear
model, we will rely on the power iteration to compute the
leading singular vectors. By the carefully selected initial
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value and normalization factor, we get an efficient update
of singular vectors. Second, since the rank constraint is
non-convex, the framework of online convex optimization
(Shalev-Shwartz, 2012) is not directly applicable for ana-
lyzing the learning problem. We give a second order ap-
proximation of the squared spectral norm (Proposition 3).
It serves as a complement of the strong smoothness re-
sult on the squared Schatten norm (Ball et al., 1994; Duchi
et al., 2010; Kakade et al., 2012). Equipped with this result,
we derive a regret bound of the algorithm.

We conduct experiments on two sequential labelling tasks:
word segmentation and text chunking. The results show
that the prior knowledge expressed by the matrix form fea-
ture and the new online learning algorithm can help to build
efficient and competitive models.

2. Related Work
Bilinear models have been applied in computer vision
(Tenenbaum & Freeman, 2000; Pirsiavash et al., 2009).
Major motivations of these works are that it is more natural
to represent images by matrices, and the bilinear formula-
tion can help to reduce the number of parameters and the
risk of overfitting. In natural language processing, although
the matrix feature representation is not as obvious as the in-
tensity matrix of an image, the bilinear models could also
have clear physical interpretations. For example, a tensor
model has been recently proposed by Lei et al. (2014) for
dependency parsing. Different from their work, we give a
solid formulation and analysis of the learning problem.

There are many works on low rank approximations in col-
laborative filtering (Srebro et al., 2005; Rennie & Sre-
bro, 2005; Wang et al., 2013). It is popular to use the
trace norm as a convex surrogate of rank constraints. In
this work, we deal with a special case of hard rank con-
straints (rank = 1). The analysis of our learning algo-
rithm will show the relation to the trace norm regulariza-
tion. Shalev-Shwartz et al. (2011) considered the general
low rank constrained optimization problem with convex
objectives. Compared with that work, we investigate the
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dual problem which might be more efficient in the case of
rank = 1: instead of computing the leading singular vec-
tors of a “big” gradient matrix, we incrementally compute
singular vectors for a sequence of matrices, and each step
only involves sparse matrix operations.

Another closely related topic is online mirror descent
(Duchi et al., 2010; Kakade et al., 2012; Shalev-Shwartz,
2012). By using different strongly convex functions, it uni-
fies many existing online learning algorithms. In fact, our
algorithm (Eq. 8) runs in the manner of mirror descent.
However, due to the non-convexity of rank constraints,
tools from the online mirror descent framework are not
readily applicable to analyzing our algorithm. To proceed,
we turn to view the proposed method as a dual coordinate
ascent approach (Shalev-Shwartz & Singer, 2006; Shalev-
Shwartz & Kakade, 2008; Shalev-Shwartz & Zhang, 2013).
It increases the dual objective incrementally, and the loss
could be bounded by the weak duality.

3. The Model
3.1. Notations

For a matrix A ∈ Rm×n, let σ(A) = [σ1(A), . . . , σl(A)]
⊺

be A’s singular values, where σ1(A) ≥ · · · ≥ σl(A),
l = min{m,n}. Denote ∥A∥F as the Frobenius norm,
∥A∥2 = σ1 as the spectral norm, ∥A∥s(p) = ∥σ(A)∥p as
the Schatten p-norm, and ∥A∥k(k) =

∑k
i=1 σi as the Ky

Fan k-norm. The inner product ⟨A,B⟩ = Tr(A⊺B). A⊗B
is the Kronecher product. Let F be a real-valued function,
and its Fenchel conjugate is denoted by F ∗.

3.2. The Bilinear Model

We consider the matrix form linear classifier h : X 7→ Y :

h(x) = argmax
y∈Y

Tr(W ⊺Φ(x, y)),

where X is the input space, Y is the class label set, Φ :
X×Y 7→ Rm×n is the matrix-valued feature function, and
W ∈ Rm×n is the model parameter. When n = 1, we get
the vector form linear model.

In practice, instead of using free W , we may be interested
in models with additional constraints. On the one hand, in
some applications, we have prior knowledge about seman-
tic relations among features, which can help to improve the
classification performances. We would like to encode such
information both in Φ(x, y) and W . On the other hand, by
imposing different matrix constraints on W , we can tailor
parameters to meet the structure of the input space, which
may result in more efficient and compact models.

In this paper, we will explore a specific constraint on W :

the rank 1 constraint, and a bilinear model:

h(x) = argmax
y∈Y

α⊺Φ(x, y)β, (1)

where α ∈ Rm, β ∈ Rn. The model parameter W = αβ⊺

is a rank 1 matrix.

The following section contains a concrete example of the
bilinear formulation for sequential labelling, which is a
baseline of many natural language processing tasks. We
show that the rank 1 constraint appears naturally by prior
knowledge, and helps to reduce the number of parameters.

3.3. An Example

For an input sentence x, the sequential labelling task out-
puts a label sequence y = y1y2 . . . y|y| ∈ Y , where Y con-
tains all possible such sequences. Let S be the label set,
where yi ∈ S. For simplicity, assume S = {B, I,O} 1.

We first review the vector form linear model:

h(x) = argmax
y∈Y

w⊺Φ̂(x, y). (2)

With the first order Markov assumption, let Φ̂(x, y) =∑|y|
i=1 Φ̂(x, yi, yi−1), and h(x) is computed by the standard

Viterbi algorithm.

In natural language processing, Φ̂(x, yi, yi−1) are usually
sparse vectors in a high dimensional vector space. They
could be instantiated by a set of feature templates. For ex-
ample, a template could be “whether ith word of x is v”. It
will expand to a vector, which is indexed by all possible as-
signments of (yi, yi−1)

2. Here, if position i of x is indeed
v and yi = B, yi−1 = O, the template will expand to

[ BB BI BO IB II IO OB OI OO

0 0 1 0 0 0 0 0 0
]
. (3)

Formally, a feature template is a function φ̂ : X×S×S 7→
{0, 1}|S|2 ,

φ̂u,v = P (x) · I (yi = u, yi−1 = v) , (4)

where (u, v) is an index of vector φ̂(x, yi, yi−1), P (x) is a
boolean function, and I is the indicator function. Given K
templates, Φ̂(x, yi, yi−1) is a blocked feature vector:

Φ̂(x, yi, yi−1) = [φ̂1(x, yi, yi−1)
⊺, . . . , φ̂K(x, yi, yi−1)

⊺]⊺.

Next, we show how to use a blocked diagonal matrix to
represent features, and then exploit a rank 1 constraint to

1“B”: begin, “I”: inside, “O”: outside.
2There are |V | such templates, where V is the vocabulary.

Hence, for each x, we have a sparse (only |x| ≈ 101 active en-
tries) high dimension (|V ||S|2 ≈ 104) feature vector. For bigram
features (whether v1, v2 appears), the dimension will be in order
of 107.
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get a bilinear model. A simple observation on the feature
template (4) is that φ̂u,v can be decomposed:

φ̂u,v = P (x)I(yi = u) · P (x)I(yi−1 = v). (5)

Accordingly, we have two separated “views” on a single
feature: one from the current label, the other from the
previous label. It implies that the corresponding weight
could also be decomposed. Furthermore, for a template
φ̂(x, yi, yi−1), different instantiations of (yi, yi−1) can
share weights if their “views” overlap, so the total number
of parameters is reduced. The following are the details.

Define the matrix feature template φ(x, yi, yi−1) =
ζ1(x, yi)⊗ ζ2(x, yi−1), where ζ1(x, ·), ζ2(x, ·) : X ×S 7→
{0, 1}|S| have elements

ζu1 (x, yi) = P (x) · I(yi = u)

ζv2 (x, yi−1) = P (x) · I(yi−1 = v).

The new feature template will expand to a matrix, rather
than a vector. For example, now (3) is


B I O

B 0 0 1
I 0 0 0
O 0 0 0

=
B 1

I 0
O 0

 [ B I O

0 0 1
]
.

φ(x, yi, yi−1) ζ1(x, yi) ζ⊺2 (x, yi−1)

Define the matrix-valued feature function as

Φ(x, yi, yi−1)≜ diag(φ1(x, yi, yi−1), . . . , φK(x, yi, yi−1)).

Denoting Φ(x, y) =
∑n

i=1 Φ(x, yi, yi−1), we have the ma-
trix form linear model

h(x)= argmax
y∈Y

Tr(W ⊺Φ(x, y)). (6)

Until now, we haven’t changed the linear model. Indeed,
(6) is equal to (2) if W is unconstrained. But it is inter-
esting to investigate W with additional structures. For ex-
ample, driven by the feature template decomposition (5), it
is natural to question whether we can also decompose the
weight matrix W . In other words, whether it is possible
to assign weights on ζ1(x, ·), ζ2(x, ·), rather than φ(x, ·, ·).
These questions lead to a W with rank = 1 constraint, and
we get a bilinear model as (1).

To clarify the decomposition of W , let’s expand the two
discriminant functions (1) and (2) on a single template:∑

(u,v)∈S×S

αu · βv · P (x) · I(yi = u) · I(yi−1 = v),

∑
(u,v)∈S×S

wu,vP (x) · I(yi = u, yi−1 = v).

Algorithm 1 Blockwise Coordinate Descent
1: α(0) = 1

∥1∥ ;β
(0) = 1

∥1∥ ; R: number of iterations
2: for r = 0 to R do
3: α(r+1) = SVMsolver(α(r), β(r))

4: β(r+1) = SVMsolver(β(r), α(r+1))
5: end for
6: return α(R), β(R)

Thus, wu,v = αu · βv . Since α, β ∈ R|S|K , the number of
parameters is 2|S|K, which is less than |S|2K in the case
of the original linear model (assume |S| > 2).

The low rank constraint on W provides a mechanism to
capture special structures of sequential labelling problems
(e.g., the decomposition of feature templates). It is also a
sparsity requirement on the model parameters, which is not
obvious when linear models are otherwise used.

4. Online Learning of the Bilinear Model
4.1. The Algorithm

Let {(xj , yj)}Nj=1 be a training set. Consider an SVM with
the bilinear formulation,

min
W=αβ⊺∈Ω1

1

2
∥W∥2F + C

N∑
j=1

L(W ;xj , yj), (7)

where L(W ;xj , yj) = [1 − ⟨W,∆Φj⟩]+, ∆Φj ≜
Φ(xj , yj) − Φ(xj , ȳj), and ȳj = h(xj). Let Ωk = {W ∈
R|S|K×|S|K , rank(W ) ≤ k}, and P(W ) be the primal
problem with optimal value p∗.

Different from the usual linear SVM, (7) is not convex, but
a biconvex problem (Gorski et al., 2007). To solve it, the
straightforward method is blockwise coordinate descent.
When β is fixed, (7) is a linear SVM with parameter α,
and vise versa. The blockwise coordinate descent works
by solving the two SVMs alternately (Algorithm 1).

Blockwise coordinate descent has been widely used for
bilinear problems (Gorski et al., 2007; Pirsiavash et al.,
2009). It suffers the common local optimum problem. As-
sume that, in an extreme case, (α(1), β(0)) has been a local
optimum and no further update on β is needed. Then the
algorithm only solves a linear model. We develop a new
algorithm which solve α, β simultaneously. It incremen-
tally increases the dual function of (7). The idea is builds
on (Shalev-Shwartz & Singer, 2006) and (Shalev-Shwartz
& Kakade, 2008), but now the problem is non-convex and
more work is needed to compute the gradient and bound
the regret. Furthermore, solving from the dual space also
provides some insights on the learning problem.

Let Fk(W ) = 1
2∥W∥2F with domain Ωk, and Θt =



An Online Learning Algorithm for Bilinear Models∑t
j=1 ηj∆Φj . The dual function of (7) is

D(η)=
N∑
j=1

ηj − max
W∈Ω1

⟨W,
N∑
j=1

ηj∆Φj⟩ − 1

2
∥W∥2F


=

N∑
j=1

ηj − F ∗
1 (ΘN ), where ηj ∈ [0, C].

Denote Dt(η1, . . . , ηt−1) =
∑t−1

j=1 ηj − F ∗
1 (Θt−1). Then

D(η) = DN+1(η1, . . . , ηN ).
Proposition 1. F ∗

1 (Θ) = 1
2∥Θ∥22 = 1

2∥Θ∥2s(∞).

Proof. Let
∑

i σiuiv
⊺
i be the SVD of Θ.

F ∗
1 (Θ)= max

W∈Ω1

⟨W,Θ⟩ − 1

2
∥W∥2F

= − min
W∈Ω1

1

2
∥Θ−W∥2F +

1

2
∥Θ∥2F

= −1

2
∥Θ− σ1u1v

⊺
1∥2F +

1

2
∥Θ∥2F

=
1

2
σ2
1 =

1

2
∥Θ∥22.

The third line is by Eckart-Young-Mirsky theorem.

Similar to the online mirror descent, at round t (1 ≤ t ≤
T ), our online learning algorithm runs as follows 3:

• uses Wt−1 = αt−1β
⊺
t−1 to predict xt, ȳt = h(xt);

• sets the dual variable ηt as

ηt =

{
0 ȳt = yt

C ȳt ̸= yt
; (8)

• updates Wt: Wt = ∇F ∗
1 (Θt) = αtβ

⊺
t .

Note that we need to compute the gradient of F ∗
1 . In gen-

eral, when p = 1 or ∞, the Schatten p-norm is not differen-
tiable if there are singular values with multiplicity greater
than 1. The following proposition from Watson (1992)
will help to compute Wt (see Theorem 2 and Example 1
therein).
Proposition 2. Let Θ have SVD

∑
i σiuiv

⊺
i . If σ1 ̸= σ2,

then F ∗
1 is differentiable at Θ, and ∇F ∗

1 (Θ) = σ1u1v
⊺
1 .

4.2. The Power Iteration

Updates of αt, βt need u1, v1 of Θt. We use the power iter-
ation to compute them. Roughly, for a matrix Θ and an ini-
tial value α(0), if σ1(Θ) ̸= σ2(Θ), the sequence α(τ+1) =

3Rigorously, dual variables are ηt,y , where y is any possible
output sequence of xt. Here we set ηt ≜ ηt,ȳt . Also in (8), we
set ηt,y = 0 for y ̸= ȳt, yt.

Θ⊺Θα(τ) (with normalization α(τ+1)/∥α(τ+1)∥) will con-
verge to u1. Similarly, β(τ+1) = ΘΘ⊺β(τ) will converge
to v1. If β(0) is set to Θα(0), we can also compute u1, v1 at
the same time: α(τ+1) = Θβ(τ), β(τ+1) = Θ⊺α(τ+1). The
convergence speed is determined by σ2(Θ)

σ1(Θ) and α(0), β(0)

(see Golub & Van Loan (1996), Theorem 8.2.1).

The initial value and normalization are two important com-
ponents of the power iteration. The former relates to con-
vergence speed, and the latter affects the numerical stabil-
ity. In the case of Θt, if the feature matrices Φ are sparse
(e.g., the sequential labelling example), instead of choosing
a random initial value and normalizing to the unit ball, we
can have better strategies.

For the initial value, recalling that Θt = Θt−1 + C∆Φt,
one would expect that αt is close to αt−1 if C∆Φt is not a
“big” change. In fact, Wedin sin theorem (Demmel, 1997)
states that sin θ is bounded by ∥C∆Φt∥, where θ ∈ [0, π/2]
is the angle between αt−1 and αt. Thus, αt−1, βt−1 could
be good initial values.

For normalization, when αt, βt are dense vectors in a high
dimensional space, normalization α(τ+1)/∥α(τ+1)∥ will be
time-consuming. Note that only directions of singular vec-
tors are important, and if the feature Φ is sparse, we can
use an alternative normalization to speedup. At round t, as-
sume ∥αt−1∥ = ∥βt−1∥ = 1. Let’s consider the first mul-
tiplication of the power iteration with initial value βt−1:
α
(1)
t = (Θt−1 + C∆Φt)βt−1 = σ1αt−1 + C∆Φtβt−1,

where σ1 = σ1(Θt−1). We normalize α
(1)
t by dividing σ1:

ᾱ
(1)
t = αt−1 +

1

σ1
C∆Φtβt−1︸ ︷︷ ︸
∆α(1)

.

After the second multiplication, β
(1)
t = (Θt−1 +

C∆Φt)⊺ᾱ(1)
t = σ1βt−1 + C(∆Φt)⊺αt−1 + Θ⊺

t∆α(1).

Again, we normalize β
(1)
t by σ1:

β̄
(1)
t = βt−1 +

1

σ1

(
C(∆Φt)⊺αt−1 +Θ⊺

t∆α(1)
)

︸ ︷︷ ︸
∆β(1)

.

We can write the general update equations:

∆α(τ)=
1

σ1

(
C(∆Φt)βt−1 +Θt∆β(τ−1)

)
, (9)

ᾱ
(τ)
t = αt−1 +∆α(τ), (10)

∆β(τ)=
1

σ1

(
C(∆Φt)⊺αt−1 +Θ⊺

t∆α(τ)
)
, (11)

β̄
(τ)
t = βt−1 +∆β(τ). (12)

In (9-12), we only update ∆α,∆β. If ∆Φ is a sparse ma-
trix, ∆α,∆β are also sparse. Thus, instead of visiting
every entry of αt−1, βt−1, we update entries in ∆α,∆β,
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Algorithm 2 Online Learning of the Bilinear Model
Training set:{xj , yj}Nj=1

number of iterations: T , model parameter: C, number of power
iterations: R
1: α = 1

∥1∥ , β = 1
∥1∥

2: for t = 0 to T do
3: for j = 0 to N do
4: ȳj = argmaxy∈Y α⊺Φ(xj , y)β
5: if ȳj ̸= yj then
6: Θt = Θt−1 + C∆Φt

7: ∆α(0) = ∆β(0) = 0 //Power Iteration
8: for τ = 0 to R do
9: ᾱ(τ) = α+∆α(τ), by Eq. (9)

10: β̄(τ) = β +∆β(τ), by Eq. (12)
11: end for
12: α = ᾱ(R)

∥ᾱ(R)∥ , β = β̄(R)

∥β̄(R)∥ //Wt = ∇F ∗
1 (Θt)

13: end if
14: end for
15: end for
16: return α, β

which is more efficient. When the power method converges
after R iterations (in experiments, R = 4 is enough to con-
verge), we set αt = α

(R)
t , βt = β

(R)
t .

In a word, with the carefully selected initial value and nor-
malization method, the power iteration is an efficient pro-
cedure, which only manipulates sparse matrices. The algo-
rithm is summarized in Algorithm 2 4.

4.3. Extensions

We give two extensions for the bilinear model and the on-
line learning algorithm.

First, instead of using the bilinear model alone, we can eas-
ily incorporate linear models for the 0 order features

h(x) = argmax
y∈Y

w⊺Φ̂(x, y) + α⊺Φ(x, y)β,

where Φ̂(x, y) =
∑

i φ̂(x, yi) is the 0 order feature vector.
The learning algorithm could also be modified correspond-
ingly. The dual objective D(η) now becomes:

N∑
j=1

ηj − F ∗
1 (ΘN )−max

w
(⟨w,

N∑
j=1

ηj∆Φ̂j⟩ − 1

2
∥w∥2).

For α, β, Algorithm 2 is unchanged, and for w, we have
wt = wt−1 + C∆Φ̂(xt, yt).

The second extension is about averaging parameters. In
previous works on online convex optimization, averaging
is a simple method for online batch conversion, and the av-
eraged parameter usually performs better. However, due to
the non-convexity of the bilinear formulation, the averaged

4More implementation details are in the supplementary.

W may not be in Ω1 (the sum of rank 1 matrices may not
have rank 1). Heuristically, instead of directly averaging
W , we can average α and β individually.

5. Analyses
With loss function Lt at round t (the hinge loss here), the
regret of an online game against a given strategy U is

RN (U) =
1

N

N∑
t=1

Lt(Wt)−
1

N

N∑
t=1

Lt(U).

To analyze the regret, we will generally follow the analy-
sis of dual coordinate ascent algorithms. Before starting,
it is worth pointing out that, instead of analyzing the dual
problem, the online mirror descent framework has provided
uniform regret and generalization results for various on-
line learning algorithms (Kakade et al., 2012). However,
our bilinear model does not belong to this family. In fact,
F1(W ) = 1

2∥W∥2F is no longer a convex function under
the rank constraint, and F ∗∗

1 = 1
2∥W∥22 ̸= F1.

Denote ∆t = Dt+1(η1, . . . , ηt) − Dt(η1, . . . , ηt−1). By
weak duality, D(η1, . . . , ηN ) =

∑N
t=1 ∆t ≤ p∗. We will

show that, with ηt in (8), ∆t is bounded from below. Our
discussions will focus on the case ηt = C (when ηt = 0,
no update on Wt−1). Expand ∆t as

∆t =C − 1

2
∥Θt−1 + C∆Φt∥22 +

1

2
∥Θt−1∥22.

Proposition 3. Let Θ ∈ Rm×n, l = min(m,n), F ∗
1 (Θ) =

1
2∥Θ∥22. If σ1(Θ) ̸= σ2(Θ) > 0, the following second
order approximation holds in a neighborhood of Θ:

F ∗
1 (Θ + E) ≤ F ∗

1 (Θ) + ⟨∇F ∗
1 (Θ), E⟩+ ∥E∥2F

2l

1− σ̂2

σ̂1

,

where [σ̂1, . . . , σ̂l] = σ(Θ̂), and Θ̂ = Θ + θE, θ ∈ (0, 1).

The proof is given in Section 7.1. To compare with online
mirror descent algorithms, let’s consider the widely used
result about the strong smoothness of the squared Schatten
norm (Ball et al., 1994; Kakade et al., 2012). Namely, for
p ∈ [2,∞], 1

p + 1
q = 1,

1

2
∥Θ+ E∥2s(p) ≤

1

2
∥Θ∥2s(p) + ⟨∇∥Θ∥s(p), E⟩+

∥E∥2s(q)
2(q − 1)

.

When p = ∞ (the case of F ∗
1 ), the bound is trivial. Kakade

et al. (2012) approximated this case by using a finite but
sufficiently large p; however, the naive computation of gra-
dients becomes expensive (roughly, it needs the full SVD
of Θ). Proposition 3 provides a new (local) bound with
respect to the Frobenius norm, which helps to derive the
forthcoming regret. .

Let σ(Θt) = [σt
1, . . . , σ

t
l ], Θ̂t = Θt−1 + θtC∆Φt with

θt ∈ (0, 1) and σ(Θ̂t) = [σ̂t
1, . . . , σ̂

t
l ].
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Proposition 4 (Regret). Assume for all Θ = Θt−1, E =
C∆Φt, Proposition 3 holds. Then

RN (U) ≤ 1

2CN
∥U∥2F +

2lC

N

N∑
t=1

∥∆Φt∥2F
1− σ̂t

2

σ̂t
1

.

Proof. Note that ⟨∇F ∗
1 (Θt−1),∆Φt⟩ ≤ 0, we have ∆t ≥

CL(Wt−1;x
t, yt) − 2lC2∥∆Φt∥2

F

1− σ̂t
2

σ̂t
1

by Proposition 3. Sum-

ming over t and by weak duality, the proof is complete.

We can see that σt
2

σt
1

controls not only the convergence speed
of the power iteration, but also the regret of the online
learning algorithm: the larger gap, the tighter regret bound.
Thus, if rank 1 approximation is reasonable for our prob-
lem, which means σ1 dominates other singular values, the
proposed algorithm is expected to be efficient.

Next, we continue to give a concrete bound of σ̂t
2

σ̂t
1

. We
will make a separable assumption on samples. Define that
a matrix W has margin γ with respect to a norm ∥ · ∥ if
minj

[
⟨ W
∥W∥ ,∆Φj⟩

]
≥ γ.

Proposition 5. Assume that supj,W ∥∆Φj∥2 ≤ M1,
supj,W ∥∆Φj∥k(2) ≤ M2. If M1 > M2

2 and ∃W̃ has mar-
gin γ w.r.t. ∥ · ∥s(1), where γ ∈ (M2

2 ,M1), then

σ̂t
2

σ̂t
1

≤ M2 − γ

γ
.

The proof is given in Section 7.2. Combining Proposition
4 and 5 and noting that ∥∆Φt∥F ≤

√
l∥∆Φt∥2, we have

the following corollary.
Corollary 6. Assume the conditions in Propositions 4 and
5 hold, the regret is bounded by

RN (U) ≤ 1

2CN
∥U∥2F + 2Cl2M2

1

γ

2γ −M2
.

Let’s have a closer look at the two conditions of Proposi-
tion 5. First, a sufficient condition for M1 > M2

2 is that
there exits δ > 0, such that for every j,W , σ1(∆Φj) −
σ2(∆Φj) > δ. In other words, σ1 is “uniformly” greater
than σ2 on the input space. Second, it is clear that W̃ ex-
ists if and only if the following trace norm minimization
problem has a solution ∥W̃∥s(1) < 2

M2
.

min .
1

2
∥W∥2s(1) s.t. ⟨W,∆Φj⟩ ≥ 1, ∀j.

Previous works on low rank constrained problems usually
use the trace norm regularization as an approximation of
rank constraints. Similarly, Corollary 6 says that if the
problem is well-formed in the trace norm regularization sit-
uation, our algorithm which deals with the hard rank con-
straint will have a small regret bound.

6. Experiments
We present experiments on two sequential labelling tasks
(word segmentation and chunking) for which the formula-
tion in Section 3.3 is used.

6.1. Chinese Word Segmentation (CWS)

Given an input sentence in Chinese (a sequence of char-
acters), CWS systems will output a sequence of words by
grouping its characters. The data set is from the second
SIGHAN Backoff (Emerson, 2005).

We use standard features (Sun et al., 2009; Sun, 2010).
Given the current position i, the templates are words at
i−2, i−1, i, i+1, i+2 and bigrams of them. All of them are
1st order features, and we don’t average the model parame-
ters. The performance is measured by the F1-value. We use
“BIES” to encode segmentation results, “BIE”represent be-
ginning, inside, and end of a word, and “S” is a word with
only on character. Thus, feature numbers of the bilinear
model (107) are only 50% of the linear model.

The algorithms for comparison are 5: “bol” which is
the proposed method with T = 20, C = 1, R = 4,
“bcd” which is the blockwise coordinate descent with
SVM solver in Shalev-Shwartz & Singer (2006) (C = 1).
We also compare state-of-the-art online linear model “sp”
which is the structured perceptron with T = 20, learning
rate C = 1 (note that “sp” can be seen as a solver of the
structured SVM (Freund & Schapire, 1999)).

Figure 1 describes the performances with different train-
ing data sizes 6. In general, our method is the best on pku,
cityu, and as. Especially, when the training set is small,
the advantage of “bol” is more obvious. It suggests that,
compared with “sp”, the prior knowledge on feature func-
tions will be helpful if we are lack of training data. At the
same time, compared with “bol”, the new learning algo-
rithm could prevent the training process being attracted by
a solution near the 0-order model which is less expressive.

In Table 1, we further compare the performances of on-
line learning algorithms with models learned by condi-
tional random fields (CRF) 7. The “crf2” is one of the most
powerful batch learner for sequential labelling, and “crf1”
enforce the sparsity on CRF models. We also lists the train-
ing time on data set as (other data sets are similar). It shows
that “bol” is competitive to “crf2” on pku and msr, and out-
performs “crf1” on pku, msr and cityu. But the CRFs need
more time for training (Figure 2).

5T and C are from Sun (2010), and the value R is selected on
a dev set (10% of the pku training set).

6We define that one method is better than another if it is better
on 8 points (out of 10) at least.

7http://crfpp.googlecode.com/
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Figure 1. Performances on word segmentation. x-axis is the pro-
portion of training set. The horizontal line y = 0 is the average F1
value among algorithms, and y-axis is the offset against average.

Models F1 Training Time
pku msr cityu as ×103s

bol 94.6 96.5 94.0 94.3 2.4
bcd 94.4 96.3 93.9 94.2 2.4
sp 94.3 96.7 94.1 94.2 1.5
crf2 93.3 96.5 94.2 94.6 9.8
crf1 92.5 96.1 93.5 95.0 8.3

Table 1. Comparison with batch learners. “crf2” is the CRF with
L2 regularization, and “crf1” is the CRF with L1 regularization.

For the power iteration, we examined its convergence by
sampling at different rounds on the dev set. The conclusion
is that a small R (≤ 4) is sufficient to converge. Thus, for
this particular problem, the singular vectors of Θt are actu-
ally close to those of Θt−1, and the power iteration is effi-
cient with the initial value we have chosen. Note that, even
if the singular vectors change severely, our initial value still
helps to avoid manipulations on dense vectors, which may
also speed up the iteration.

6.2. Text Chunking

The task of text chunking divides a sentence in syntac-
tically correlated parts of words (e.g., noun phrase, verb
phrase). We conduct experiments on the CoNLL Shared-
task 2000 (Sang & Buchholz, 2000). Different from the
word segmentation task, in order to show the extendability
of our model and algorithm, we include both the 1 order
and the 0 order features, and average the parameters. The
tag set size is 23 (e.g., B-NP, I-NP, B-VP, I-VP). The results
(Figure 3) are similar to the task of word segmentation in
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Figure 2. Convergence speeds on the pku data set. x-axis is the
number of iterations, y-axis is the label error rate. “bol” converges
much faster than CRFs, and it is slightly slower than “sp”.
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Figure 3. Performances on chunking. x-axis represents the pro-
portion of training set. y-axis is the F1-value.

general, which means that the two extensions to the basic
bilinear model are effective.

7. Proofs
7.1. The Proof of Proposition 3

The following expression of a Hessian matrix is fundamen-
tal for our analysis. ((Overton & Womersley, 1995), more
general results are given in (Lewis & Sendov, 2001))

Let A(a) be an n × n symmetric matrix-valued function,
a ∈ Rm. Assume A(a) is twice continuously differen-
tiable, with the second derivative satisfying a Lipschitz
condition on a. The eigenvalues of A(a) are λ1(a) ≥ · · · ≥
λn(a).
Proposition 7. Let A(a) have eigen decomposition at â

A(â) = Q̂Diag(λ1(â), . . . , λn(â))Q̂
⊺,

where Q̂ = [q̂1, q̂2, . . . , q̂n], Q̂
⊺Q̂ = I . If λ(â) are distinct,
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then the second derivative of λd(a) (1 ≤ d ≤ n) at â is

∂2λd(â)

∂ax∂au
= q̂⊺d

∂2A(â)

∂ax∂au
q̂d + 2

∑
s̸=d

q̂⊺d
∂A(â)
∂ax

q̂sq̂
⊺
d
∂A(â)
∂au

q̂s

λd − λs
.

Given a matrix B ∈ Rm×n, B can be seen as a function
of vec(B). σd(B) =

√
λd(B⊺B). We have the following

corollary of Proposition 7.
Corollary 8. Assume that B ∈ Rm×n, b = vec(B), and B
has singular value decomposition PΣQ⊺, where

P= [p1, p2, . . . , pm], Q = [q1, q2, . . . , qn]

Σ= Diag(σ1, . . . , σl), l = min(m,n).

If σ(B) are distinct, then the Hessian matrix of σd w.r.t. b
is C + 1

σd
D, where C ⪯ 0 and D has entry Dxy,uv:

qydq
v
dI(x = u) +

∑
s̸=d

(qydp
x
sσs + qysp

x
dσd)(q

v
dp

u
sσd + qvsp

u
dσs)

σ2
d − σ2

s

,

where xy, uv are indices of b, and py is the y-th entry of p.

Proof. Denote A = B⊺B, A = (aij), B = (bxy). By the
chain rule

dσd

db
=

dσd

dλd(A)

dλd(A)

db
=

1

2σd

dλd(A)

db
,

d2σd

db2
= − 1

4σ3
d

dλd(A)

db
⊗ dλd(A)

db︸ ︷︷ ︸
C

+
1

σd

1

2

d2λd(A)

db2
.︸ ︷︷ ︸

D

Note that aij =
∑

k bkibkj ,

(
∂A

∂bxy

)
ij

=


bxj i = y, j ̸= y
bxi i ̸= y, j = y
2bxy i = y, j = y
0 i ̸= y, j ̸= y

.

We have

q⊺d
∂A

∂bxy
qs =

∑
i

bxi(q
y
dq

i
s + qidq

y
s ) = qydp

x
sσs + qysp

x
dσd.

Similarly,

q⊺d
∂A

∂bxy∂buv
qd = 2qydq

v
dI(x = u).

Using Proposition 7 completes the proof.

For a matrix A, let vec(A) = [a⊺1 , a
⊺
2 , . . . , a

⊺
n]

⊺, where ai
are columns of A. The following is the proof of Proposition
3.

Proof. Assume w.l.o.g. l = m. The Taylor expansion
(with the Lagrange remainder) of F ∗

1 at Θ is

F ∗
1 (Θ + E) = F ∗

1 (Θ) + ⟨∇F ∗
1 (Θ), E⟩+ vec(E)⊺H(Θ̂)vec(E),

where H is the Hessian matrix. The aim is to bound the
remainder. By the chain rule and Corollary 8 with d = 1,

d2F ∗
1

dΘ2
=

dσ1

dΘ
⊗ dσ1

dΘ
+ ∥Θ∥2C +D.

The convexity of ∥Θ∥2 implies that D ⪰ 0. Since D is also
symmetric, we have ∥D∥2 ≤ Tr(D). It is easy to show that

Tr(D)= l +
l∑

s=2

σ2
1 + σ2

s

σ2
1 − σ2

s

≤ l +
l∑

s=2

σ1 + σs

σ1 − σs

≤ l + (l − 1)

(
1 +

2
σ1

σ2
− 1

)
.

By Theorem 2 of Watson (1992),

vec(E)⊺H(Θ̂)vec(E)≤ ∥E∥2F
(
∥dσ1

dΘ
⊗ dσ1

dΘ
∥2 + ∥D∥2

) ∣∣∣∣
Θ̂

≤ ∥E∥2F
2l

1− σ̂2

σ̂1

.

7.2. The Proof of Proposition 5

Proof. We first give a lower bound on σ̂t
1. By von Neu-

mann’s inequality (Bhatia, 1997), for any W,Θ,

⟨W,Θ⟩ ≤ ⟨σ(W ), σ(Θ)⟩ ≤ ∥W∥s(1)∥Θ∥s(∞).

Let W = W̃ ,Θ = Θ̂t. We have

σ̂t
1≥

1

∥W̃∥s(1)
⟨W̃ , Θ̂t⟩ =

C

∥W̃∥s(1)
⟨W̃ ,

t−1∑
j=1

∆Φj + θt∆Φt⟩

≥ (t− 1 + θt)Cγ.

Then,

1 +
σ̂t
2

σ̂t
1

=
∥Θ̂t∥k(2)

σ̂t
1

≤ (t− 1 + θt)CM2

σ̂t
1

≤ M2

γ
.

Rearranging the equation leads to the result. We remark
that γ > M2

2 is necessary for a non-trivial bound; on the
other hand, W̃ has margin γ implies that

γ ≤ 1

∥W̃∥s(1)
⟨W̃ ,∆Φj⟩ ≤ ∥∆Φj∥2 ≤ M1.

8. Conclusion
We presented a bilinear model with matrix features. A sim-
ple online algorithm was derived and analyzed. Empirical
results on sequential labelling tasks showed that the pro-
posed method is competitive and efficient. In future work,
it is interesting to explore models with rank ≤ k (if k > 1,
we need an efficient algorithm to compute ∇F ∗

k , which is
roughly the first k singular vectors). And it is meaningful
to bound σ2

σ1
under other conditions.
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