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In the supplementary material, we will prove the theorems
in Section 1 and give some additional experiments in Sec-
tion 2.

1. Analysis
We will first give the supporting theorems we will use in
the analysis. Then we will give the detailed proof of the
three theorems in the paper.

1.1. Supporting Theorems

The following results are used throughout the analysis.
Theorem 1. (Theorem 9.1 in (Halko et al., 2011)) Let M
be an n × m matrix with singular value decomposition
M = UΣV ⊤. There is a fixed r > 0. Choose a test
matrix Ψ ∈ Rm×d and construct sample matrix Y = MΨ.
Partition M as in (1)

M = UΣV ⊤ =
r m− r
[U1 U2]

[
Σ1

Σ2

] [
V ⊤
1

V ⊤
2

]
(1)

and define Ψ1 = V ⊤
1 Ψ and Ψ2 = V ⊤

2 Ψ. Assuming Ψ1 has
full row rank, the approximation error satisfies

∥M − PY (M)∥22 ≤ ∥Σ2∥22 + ∥Σ2Ψ2Ψ
†
1∥22

where PY (M) projects column vectors in M in the sub-
space spanned by the column vectors in Y and † denotes
the pseudoinverse.
Theorem 2. (Derived From Theorem 2.2 of (Tropp, 2011))
Let X be a finite set of PSD matrices with dimension k
(means the size of the square matrix is k× k). λmax(·) and
λmin(·) calculate the maximum and minimum eigen value
respectively.

Suppose that
max
X∈X

λmax(X) ≤ B.

Sample {X1, . . . , Xℓ} uniformly at random from X without
replacement. Compute

µmax = ℓλmax(E[X1]), µmin = ℓλmin(E[X1])

Then

Pr

{
λmax

(
ℓ∑

i=1

Xi

)
≥ (1 + ρ)µmax

}
≤ k exp

−µmax

B
[(1 + ρ) ln(1 + ρ)− ρ] for ρ ∈ [0, 1)

Pr

{
λmin

(
ℓ∑

i=1

Xi

)
≤ (1− ρ)µmin

}
≤ k exp

−µmin

B
[(1− ρ) ln(1− ρ) + ρ] for ρ ≥ 0

Theorem 3. Let A = S⊤HS and Ã = S⊤H̃S be two
symmetric matrices of size n×n. Let λi, i ∈ [n] and λ̃i, i ∈
[n] be the eigenvalues of A and Ã, respectively, ranked in
descending order. Let UA, ŨA ∈ Rn×r include the first
r eigenvectors of A and Ã, respectively. Let ∥ · ∥ be any
invariant norm. Define

∆λ = min

(√
2

(
1− λr+1

λr

)
,
1√
2

)
≤ 1√

2

∆H =
∥H−1∥∥H − H̃∥√
1− ∥H−1∥∥H − H̃∥

If ∆λ ≥ ∆H/2, we have

∥ sinΘ(UA, ŨA)∥ ≤ ∆H

∆λ −∆H/2

(
1 +

∆H∆λ

16

)
where

Θ(X, X̃) = arccos((X∗X)−1/2X∗X̃(X̃∗X̃)−1

lX̃∗X(X∗X)−1/2)1/2
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defines the angle matrix between X and X̃ .

Note that the above Theorem 3 follows directly from The-
orem 4.4 and discussion in Section 5 from (Li, 1999).

1.2. Proof of Theorem 2

We will first provide the key result for our analysis, and
then bound each component of the key result, that is, first,
we will show that ∥M −PÛMPV̂ ∥

2
2 is small; then, we will

bound the strong convexity of the objective function.

The following theorem shows that the difference between
M and M̂ is well bounded if both ∥M − PÛMPV̂ ∥

2
2 and

the strong convexity of Eq.2 are well bounded,

Theorem 4. Assume (i) ∥M − PÛMPV̂ ∥
2
2 ≤ ∆, and (ii)

the strong convexity of the objective function is no less than
|Ω|γ. Then

∥M − M̂∥22 ≤ 2

(
∆+

∆

γ

)
.

where strongly convexity is defined as,

Definition 5. A function f : D → R is ξ-strongly convex
w.r.t. norm ∥ · ∥ if f is everywhere differentiable and

f(w) ≥ f(w′) +∇f(w′)(w − w′) +
ξ

2
∥w − w′∥2.

Then ξ is the strongly convexity of f .

Proof. Set Z = Û⊤MV̂ . Since ∥M − PÛMPV̂ ∥
2
2 ≤ ∆,

we have
∥M − ÛZV̂ ⊤∥22 ≤ ∆,

implying

∥RΩ(M)−RΩ(ÛZV̂ ⊤)∥2F ≤ ∆

Let Z∗ be the optimal solution to Eq.2. Using the strongly
convexity of Eq.2, we have

1

2
γ|Ω|∥Z − Z∗∥2F ≤ 1

2
|Ω|∆,

i.e. ∥Z − Z∗∥2F ≤ ∆/(γ|Ω|).

This is because f(Z) = 1
2∥RΩ(M) − RΩ(ÛZV̂ ⊤)∥2F ,

such that ∇f(Z) = ÛT [RΩ(ÛZV̂ T ) − RΩ(M)]V̂ , and
∇f(Z∗) = 0

|Ω|γ
2

∥Z − Z∗∥2F

≤ 1

2
∥RΩ(M)−RΩ(ÛZV̂ ⊤)∥2F −

1

2
∥RΩ(M)−RΩ(ÛZ∗V̂

⊤)∥2F

≤ 1

2
∥RΩ(M)−RΩ(ÛZV̂ ⊤)∥2F ≤ |Ω|∆

2

We thus have,

∥M − M̂∥22
≤ l2∥M − PÛMPV̂ ∥

2
2 + 2∥PÛMPV̂ − ÛZ∗V̂

⊤∥22
≤ 2∥M − PÛMPV̂ ∥

2
2 + 2∥PÛMPV̂ − ÛZ∗V̂

⊤∥2F
≤ 2∥M − PÛMPV̂ ∥

2
2 + 2∥Z − Z∗∥2F

≤ 2

(
∆+

∆

γ

)

In order to bound ∆, we need the following theorem,

Theorem 6. With a probability 1− 2e−t, we have,

∥M −MPV̂ ∥
2
2 ≤ σ2

r+1

(
1 + 2

m

d

)
and

∥M − PÛM∥2 ≤ σ2
r+1

(
1 + 2

n

d

)
provided that d ≥ 7µ(r)r(t+ ln r).

Proof. Let i1, . . . , id are the d selected columns. Define
Ψ = (ei1 , . . . , eid) ∈ Rm×d, where ei is the ith canon-
ical basis. Such that we have A = M × Ψ, that is, A
is composed of the d selected columns of M . To utilize
Theorem 1, we need to bound the minimum eigenvalue of
Ψ1Ψ

⊤
1 , where Ψ1 = V T

1 Ψ ∈ Rr×d is full rank. We have

Ψ1Ψ
⊤
1 = V ⊤

1 ΨΨ⊤V1

Let ṽ⊤
i , i ∈ [d] be the ith row vector of V1. We have,

Ψ1Ψ
⊤
1 =

d∑
j=1

ṽij ṽ
⊤
ij

It is straightforward to show that

E
[
Ψ1Ψ

⊤
1

]
=

d

m
Ir

and
E
[
ṽij ṽ

⊤
ij

]
=

1

m
Ir.

To bound the minimum eigenvalue of Ψ1Ψ
⊤
1 , we need The-

orem 2, where we first need to bound the maximum eigen
value of ṽij ṽ

⊤
ij

, which is a rank-1 matrix, whose eigen val-
ue

max
1≤i≤m

λmax(ṽij ṽ
⊤
ij )

= max
1≤i≤m

|ṽi|2 ≤ µ(r)
r

m
,

and

λmax(E
[
ṽij ṽ

⊤
ij

]
) = λmin(E

[
ṽij ṽ

⊤
ij

]
) =

1

m
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Thus, we have,

Pr

{
λmin(Ψ1Ψ

⊤
1 )(1− δ)

d

m

}
≤ r exp

−d/m

rµ(r)/m
[(1− ρ) ln(1− ρ) + ρ]

= r exp
−d

rµ(r)
[(1− ρ) ln(1− ρ) + ρ]

By setting δ = 1/2, we have,

Pr

{
λmin(Ψ1Ψ

⊤
1 ) ≤

d

2m

}
≤ r exp

−d

7rµ(r)

= re−d/[7µ(r)r]

where with d ≥ 7µ(r)r(t+ ln r), we have
r exp−d/[7µ(r)r] ≤ e−t, that is,

Pr

{
λmin(Ψ1Ψ

⊤
1 ) ≥

d

2m

}
≥ 1− e−t

With

λmin(Ψ1Ψ
⊤
1 ) ≥

d

2m

according to Theorem 1, we have

∥M −MPV̂ ∥
2
2 ≤ ∥Σ2∥22 + ∥Σ2Ψ2Ψ

†
1∥22

≤ σ2
r+1 +

∥∥∥Σ2Ψ2Ψ
†
1

∥∥∥2
2

≤ σ2
r+1 + ∥Ψ†

1∥22∥Σ2Ψ2∥22

≤ σ2
r+1 +

2m

d
∥Σ2Ψ2∥22

≤ σ2
r+1 +

2m

d
∥Σ2∥22∥Ψ2∥22

≤ σ2
r+1 +

2m

d
σ2
r+1

≤ σ2
r+1

(
1 +

2m

d

)

• The 1st inequality is according to Theorem 1.

• The 3rd inequality is because the two facts,
∥M1M2∥2 ≤ ∥M1∥2 × ∥M2∥2

• The 4th inequality is becuase ∥Ψ†
1∥2 =

1/σmin(Ψ1) =
√
1/λmin(Ψ1Ψ⊤

1 ) ≤
√
2m/d

• The 6th inequality is because ∥Σ2∥2 = σr+1 and
∥Ψ2∥2 ≤ ∥V2∥2∥Ψ∥2 = 1

We then bound ∆,

Theorem 7. With a probability 1− 2e−t, we have,

∆ := ∥M − PÛMPV̂ ∥
2
2 ≤ 4σ2

r+1

(
1 +

m+ n

d

)
if d ≥ 7µ(r)r(t+ ln r).

Proof. Using Theorem 6, we have, with a probability 1 −
2e−t

∥M − PÛMPV̂ ∥
2
2

≤ 2∥M −MPV̂ ∥
2
2 + 2∥(M − PÛM)PV̂ ∥

2
2

≤ 2∥M −MPV̂ ∥
2
2 + 2∥M − PÛM∥22

≤ 4σ2
r+1

(
1 +

n+m

d

)

We will then bound the strong convexity of the objective
function,

Theorem 8. With a probability 1−e−t, we have that γ|Ω|,
the strongly convexity for the objective function in (2), is
bounded from below by |Ω|/[2mn] (that is, γ ≥ 1/(2mn)),
provided that

|Ω| ≥ 7µ̂2(r)r2(t+ 2 ln r)

Proof. To bound the strong convexity, we could instead
bound the smallest eigen value of the Hessian matrix. The
Hessian matrix is an r2× r2 matrix. Assuming the second-
order derivative of the (i1, j1)th and (i2, j2)th entry of Z is
the (r(i1 − 1) + j1, r(i2 − 1) + j2)th entry of the Hessian
matrix, the Hessian matrix could be written as,

H =
∑

(i,j)∈Ω

[vec(ũ⊤
i ṽj)][vec(ũ⊤

i ṽj)]
T

To bound the minimum eigenvalue of H , we will use Lem-
ma 2. Thus first we need to bound

max
i,j

λmax([vec(ũ⊤
i ṽj)][vec(ũ⊤

i ṽj)]
T )

= max
i,j

|vec(ũ⊤
i ṽj)|2

≤ max ∥ũ⊤
i ṽj∥2F ≤ µ̂2(r)r2

mn

and

λmin

(
E([vec(ũ⊤

i ṽj)][vec(ũ⊤
i ṽj)]

T )
)

=
1

mn
λmin

(
(U ⊗ V )T × (U ⊗ V )

)
=

1

mn

where ⊗ is the Kronecker product.
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Based on Theorem 2, we have

Pr

{
λmin(H) ≤ |Ω|

2mn

}
≤ r2e

−|Ω|
7µ̂2(r)r2

Hence, with a probability 1− e−t, we have

λmin(H) ≥ |Ω|
2mn

provided that

|Ω| ≥ 7µ̂2(r)r2(t+ 2 ln r)

Theorem 2 can be easily proved combining Theorems 4, 7
and 8.

1.3. Proof of Theorem 1

The following theorem allows us to replace µ̂(r) in Theo-
rem 8 with µ(r) when the rank of M is less than or equal
to r.

Theorem 9. With a probability 1− 2e−t, we have µ̂(r) =
µ(r), if d ≥ 7µ(r)r(t+ ln r).

Proof. According to Theorem 7, with a probability 1 −
2e−t, we have M = PÛMPV̂ , provided that d ≥
7µ(r)r(t+ ln r). Hence PU1 = PÛ and PV1 = PV̂ , which
directly implies that µ(r) = µ̂(r).

Theorem 1 can be proved directly from Theorem 2 and
Theorem 9.

1.4. Proof of Theorem 3

Define

HA = ηI +
1

mn
MM⊤, ĤA = ηI +

1

dn
AA⊤

and

HB = ηI +
1

mn
M⊤M, ĤB = ηI +

1

dm
BB⊤

We can have the first r eigen vector of would be HA, be-
cause

HA = ηI +
1

mn
MM⊤

= ηUUT +
1

mn
U(ΣΣT )UT

= U(ηI +
1

mn
ΣΣT )UT

and

H
−1/2
A = lUdiag(

√
mn

σ2
1 +mnη

, . . . ,

√
mn

σ2
m +mnη

)

=
√
mnUTUT

where

T = diag(

√
1

σ2
1 +mnη

, . . . ,

√
1

σ2
m +mnη

)

1.4.1. PROOF OF LEMMA 1

Proof. Just consider the maximization of the norm of rows
of U , then we will have

µ(η) = max
i=1,...,n

m∑
j=1

n

r(M,η)

σ2
j

σ2
j +mnη

U2
i,j

= max
i=1,...,n

n

r

m∑
j=1

r
σ2
j

r(M,η)(σ2
j +mnη)

U2
i,j

≥ max
i=1,...,n

n

r

m∑
j=1

r
a

r
U2
i,j

= a max
i=1,...,n

n

r

m∑
j=1

U2
i,j

= aµ(r)

when η = σ2
r/mn, then a ≤ r/2r(M,η), then

µ(r) ≤ 1

a
µ(δ) ≤ 2r(M,η)

r
µ(η)

completes our proof.

1.4.2. PROOF OF LEMMA 2

To this end, we need the following theorem.

Theorem 10. With a probability 1− 4e−t, we have

1− δ ≤ λk(H
−1/2
A ĤAH

−1/2
A ) ≤ 1 + δ,

l1− δ ≤ λk(H
−1/2
B ĤBH

−1/2
B ) ≤ 1 + δ, ∀k ∈ [n]

if

d ≥ 4

δ2
(µ(η)r(M,η) + 1)(t+ lnn)

Proof. It is sufficient to show the result for ĤA.

Define

X =

{
Mi = (H

−1/2
A )T

(
1

n
M∗,iM

⊤
∗,i + ηI

)
H

−1/2
A ,

i = 1, . . . ,m}



Supplementary Material of “CUR Algorithm for Partially Observed Matrices”

Note that if ai is the jth column of matrix M , then,

M∗,i = UΣ(Vi,∗)
⊤

Thus we have

Mi = mnUTU⊤(
1

n
UΣV ⊤

i,∗Vi,∗ΣU
⊤ + ηI)UTU⊤

= U
(
mTΣV ⊤

i,∗Vi,∗ΣT +mnηT 2
)
U⊤

In this way

λmax(Mi) ≤ λmax(mUTΣV ⊤
i,∗Vi,∗ΣTU

⊤)

l + λmax(mnηUT 2U⊤)

= m|UTΣV ⊤
i,∗|22 +

mnη

σ2
m +mnη

≤ µ(η)r(M,η) + 1

(this is because |Ax|22 ≤ ∥A∥22|x|22 ≤ ∥A∥2F |x|22) and

λmax(E[Mi])

= λmax(U
(
TΣV ⊤V ΣT +mnηT 2

)
U⊤)

= λmax(U
(
TΣΣT +mnηT 2

)
U⊤)

=
σ2
1

mnη + σ2
1

+
mnη

mnη + σ2
1

= 1

So
µmax = dλ1(E[Mi]) = d

we have (using Lemma 2),

Pr
{
λmax

(
H

−1/2
A ĤAH

−1/2
A

)
≥ 1 + δ

}
≤ n exp

(
− d

µ(η)r(M,η) + 1
[(1 + δ) ln(1 + δ)− δ]

)
Using the fact that (at 0 they are the same, but the left in-
crease faster than the right)

(1 + δ) ln(1 + δ) ≥ δ +
1

4
δ2, ∀δ ∈ [0, 1],

we have

Pr
{
λmax

(
H

−1/2
A ĤAH

−1/2
A

)
≥ 1 + δ

}
≤ n exp

(
− dδ2

4(µr(M,η) + 1)

)
We have the result by setting d ≥ 4(µ(η)r(M,η) +
1)(lnn + t)/δ2. Similarly, for the lower bound, we have
(using Lemma 2)

Pr
{
λmin

(
H

−1/2
A ĤAH

−1/2
A

)
≤ 1− δ

}
≤ n exp

(
− d

µ(η)r(M,η) + 1
[(1− δ) ln(1− δ) + δ]

)

Using the fact that (by Taylor Expansion of ln(1− δ))

(1− δ) ln(1− δ) ≥ −δ +
δ2

2

We have the result by setting d ≥ 2(µ(η)r(M,η) +
1)(lnn+ t)/δ2.

Using Theorem 10, we will prove Lemma 2,

Proof. To utilize Theorem 3, we rewrite HA and ĤA, as

HA = H
1/2
A IHA, ĤA = H

1/2
A DH

1/2
A

where D = H
−1/2
A ĤAH

−1/2
A . According to Theorem 10,

with a probability 1 − 2e−t, we have ∥D − I∥2 ≤ δ, pro-
vided that

d =
4

δ2
(µ(η)r(M,η) + 1)(t+ lnn)

We then compute ∆H defined in Theorem 3 as

∆H ≤ δ√
1− δ

Because d ≥ 16(µ(η)r(M,η) + 1)(t+ lnn), we have

4

δ2
(µ(η)r(M,η) + 1)(t+ lnn) ≥ 16(µ(η)r(M,η) + 1)

l(t+ lnn)

that is δ ≤ 1/2.

Because σr ≥
√
2σr+1, we have 1/2 ≤ 1 − σ2

r+1/σ
2
r .

Since δ ≤ 1/2 ≤ 1− σ2
r+1/σ

2
r , we have ∆H ≤

√
2δ.

Then according to Theorem 3, we have,

∥ sinΘ(U1, Û)∥2 ≤
√
2δ

∆λ −
√
2δ/2

(1 +

√
2δ∆λ

16
)

≤
√
2δ

∆λ −
√
2δ/2

(1 +
1

32
) < 3

√
2δ

Similarly, we have,

∥ sinΘ(V1, V̂ )∥2 < 3
√
2δ

Thus, with a probability 1− 4e−t, we have

µ̂(r) ≤ 2r(M,η)

r
µ(η) +

n

r
∥ sinΘ(V1, V̂ )∥22

≤ l
2r(M,η)

r
µ(η) +

18nδ2

r

Theorem 3 can be proved by combining the results of The-
orems 4, 8, Lemma 1 and Lemma 2.
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Figure 1. Comparison of CUR algorithms with the number of sampled columns (rows) fixed as d1 = 5r (d2 = 5d1), where r =
10, 20, 50. The number of observed entries |Ω| is varied from Ω0 to 5Ω0.

2. Additional Experiments
Comparison to the State-of-the-Art Low-Rank Approx-
imation Algorithms The experimental settings are the
same as that of Section 4.2, and we will compare here with
CUR-E. We first construct an unbiased estimator Me by us-
ing the randomly observed entries in Ω, and then estimate
matrix Z by Z = C†MeR

†. Here, the unbiased estimation
Me is given by

[Me]i,j =

{ mn
|Ω|Mi,j (i, j) ∈ Ω

0 (i, j) /∈ Ω

We call this algorithm CUR-E.

Results Figure 1 shows the results on spectral norm
of low rank matrix approximation. We observe that the
CUR+ works significantly better than the CUR-E method,
and yields a similar performance as the CUR-F that has
an access to the full target matrix M . We also observe
that with larger α (i.e. increasing numbers of rows and
columns), the approximation errors for CUR+ and CUR-E
decrease. Figure 2 shows the results on Frobenius norm.
We can see similar results as those on spectral norm.
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Supplementary Material of “CUR Algorithm for Partially Observed Matrices”
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Figure 2. Comparison of CUR algorithms measured by Forbenius norm with the number of sampled columns and rows fixed as d1 = 5r
and d2 = 5d1, respectively, where r = 10, 20 and 50. The number of observed entries |Ω| is varied from Ω0 to 5Ω0.


