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Abstract

CUR matrix decomposition computes the low
rank approximation of a given matrix by using
the actual rows and columns of the matrix. It
has been a very useful tool for handling large
matrices. One limitation with the existing algo-
rithms for CUR matrix decomposition is that they
cannot deal with entries in a partially observed
matrix, while incomplete matrices are found in
many real world applications. In this work, we
alleviate this limitation by developing a CUR de-
composition algorithm for partially observed ma-
trices. In particular, the proposed algorithm com-
putes the low rank approximation of the target
matrix based on (i) the randomly sampled rows
and columns, and (ii) a subset of observed en-
tries that are randomly sampled from the matrix.
Our analysis shows the error bound, measured by
spectral norm, for the proposed algorithm when
the target matrix is of full rank. We also show
that only O(nr ln r) observed entries are need-
ed by the proposed algorithm to perfectly recov-
er a rank r matrix of size n× n, which improves
the sample complexity of the existing algorithms
for matrix completion. Empirical studies on both
synthetic and real-world datasets verify our the-
oretical claims and demonstrate the effectiveness
of the proposed algorithm.
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1. Introduction
In many machine learning applications, it is conve-
nient to represent the data by matrix. Examples
include user-item rating matrix in recommender sys-
tem (Srebro et al., 2004), gene expression matrix in bioin-
formatics (Mahoney & Drineas, 2008), kernel matrix in
kernel learning (Williams & Seeger, 2000), document-
term matrix in document retrieval (Mahoney & Drineas,
2008), and instance-label matrix in multi-label learning
(Goldberg et al., 2010). An effective approach for han-
dling big matrices is to approximate them by their low
rank counterparts which can be computed and stored ef-
ficiently. Various methods have been developed for low
rank matrix approximation, including truncated singular
value decomposition, matrix factorization (Srebro et al.,
2004), matrix regression (Koltchinskii, 2011), colum-
n subset selection (Boutsidis et al., 2011), the Nyström
method (Williams & Seeger, 2000), and random SVD tech-
niques (Halko et al., 2011; Woodruff, 2014).

In this work, we will focus on the CUR algorithm for low
rank matrix approximation (Mahoney & Drineas, 2009;
Boutsidis & Woodruff, 2014). It is a randomized algorith-
m that computes the low rank approximation for a given
rectangle matrix by randomly sampled columns and rows
of the matrix. Compared to other low rank approxima-
tion algorithms, CUR is advantageous in that it has (i) an
easy interpretation of the approximation result because the
subspace is constructed by the actual columns and rows
of the target matrix (Mahoney & Drineas, 2009), and (ii)
a strong (near-optimal) theoretical guarantee (Bien et al.,
2010; Drineas et al., 2006; Mahoney & Drineas, 2008;
2009; Wang & Zhang, 2012; 2013; Boutsidis & Woodruff,
2014). The CUR matrix decomposition algorithm has
been successfully applied to many domains, including
bioinformatics (Mahoney & Drineas, 2009), collaborative
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filtering (Mackey et al., 2011), video background mod-
eling (Mackey et al., 2011), hyperspectral medical im-
age analysis (Mahoney et al., 2006), text data analy-
sis (Mahoney & Drineas, 2008). In the past decade,
many variants of the CUR algorithm have been devel-
oped and applied to various domains (Bien et al., 2010;
Drineas et al., 2006; Mackey et al., 2011; Mahoney et al.,
2006; Mahoney & Drineas, 2008; 2009; Wang & Zhang,
2012; 2013; Boutsidis & Woodruff, 2014).

Despite the success, one limitation with the existing CUR
algorithms is that they either require an access to the ful-
l matrix (Mahoney & Drineas, 2009), or they just use the
sampled rows and columns (Mahoney & Drineas, 2008),
ignoring all remaining entries in the matrix. The require-
ment that the matrix should be fully observed can be diffi-
cult to fulfill. For instance, in bioinformatics, it is usually
too expensive to acquire the full expression information for
hundreds of genes and thousands of individuals; in crowd-
sourcing, when both the number of workers and instances
are large, it becomes impractical to request every worker to
label all the instances; in social network analysis, it is of-
ten the case that only part of the links between individuals
can be accurately detected. In all the above cases, due to
the physical or financial constraints, we only have a partial
observation of the target matrix, making it difficult to apply
the CUR algorithm without ignoring the incomplete part.

One way to deal with the missing entries is to first com-
pute an unbiased estimation of the target matrix based
on the observed entries, and then apply the CUR algo-
rithm to the estimated matrix. The main shortcoming
of this simple method is that the unbiased estimate can
be far from the target matrix when the number of ob-
servation is small, as we will show in the empirical s-
tudy. Another approach is to recover the target matrix
from the observed entries using the matrix completion
technique (Cai et al., 2010; Candès & Recht, 2012). Since
most matrix completion algorithms are developed only for
matrices of exactly low rank, they usually work poorly
for matrices of full rank (Eriksson et al., 2011). We note
that although an adaptive sampling approach is developed
in (Krishnamurthy & Singh, 2013) that does apply to matri-
ces of full rank, they use a different sampling strategy, and
their bound has a poor dependence on failure probability δ
(i.e. O(1/δ)), which significantly limits their applications
when both rows and columns are randomly sampled.

In this work, we address the challenge by developing a nov-
el CUR algorithm, named CUR+, for partially observed
matrix. More specifically, the proposed algorithm com-
putes a low rank approximation of matrix M based on
(i) randomly sampled rows and columns from M , and (i-
i) randomly sampled entries from M . Unlike most matrix
completion algorithms that require solving an optimiza-

tion problem involving trace norm regularization (Bach,
2008; Cai et al., 2010; Ji & Ye, 2009; Mazumder et al.,
2010; Toh & Sangwoon, 2010), the proposed algorithm
only needs to solve a standard regression problem and
therefore is easy to compute. Although the matrix need
to be observed for the worst case, we develop a error
bound showing that under minor conditions, the proposed
CUR+ works for both low-rank and full-rank matrices.
In particular, to perfectly recover a rank-r matrix of size
n × n under the incoherent condition (Candès & Recht,
2012), only O(nr ln r) observed entries are needed, signif-
icantly lower than O(nr ln2 n) in standard matrix comple-
tion theories (Candès & Recht, 2012; Candès & Tao, 2010;
Gross, 2011; Keshavan et al., 2010; Recht, 2011) and lower
than O(nr3/2 ln r) for adaptive matrix recovery algorith-
m (Krishnamurthy & Singh, 2013). We verify our theoreti-
cal claims by empirical studies of low rank matrix approx-
imation on both synthetic data and real data.

The rest of the paper is organized as follows: Section 2
briefly reviews the related work. Section 3 presents the pro-
posed algorithm and its theoretical properties. Section 4
gives our empirical study. Section 5 concludes our work
with future directions.

2. Related Work
CUR matrix decomposition CUR algorithms compute
a low rank approximation of the target matrix using
the actual rows and columns of the matrix (Bien et al.,
2010; Drineas et al., 2006; Goreinov et al., 1997a;b;
Mahoney & Drineas, 2008; 2009; Stewart, 1999;
Tyrtyshnikov, 2000; Wang & Zhang, 2012; 2013;
Boutsidis & Woodruff, 2014). More specially, let
M ∈ Rn×m be the given matrix and r be the target rank for
approximation. A classical CUR decomposition algorith-
m (Mahoney & Drineas, 2008; 2009) randomly samples d1
columns and d2 rows from M , according to their leverage
scores, to form matrices C and R, respectively. The
approximated matrix M̂ is then computed using the full
matrix M as M̂ = C(C†MR†)R (Mahoney & Drineas,
2009), or using the intersection of C and R as
M̂ = C(DRSRC)†R (Mahoney & Drineas, 2008),
where † is the pseudoinverse, DR and SR are rescaling
and selection matrix, respectively. (Drineas et al., 2006)
gives an additive error bound for the CUR decomposition,
and an error bound, a significantly stronger result, is
given in (Mahoney & Drineas, 2008). It is stated in
(Mahoney & Drineas, 2008) that, with a high probability,

∥M − M̂∥F ≤ (1 + ϵ)∥M −Mr∥F (1)

where Mr is the best rank-r approximation to M , and ∥·∥F
is the Frobenius norm of a matrix.

Various improved versions of CUR have been develope-
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d. (Mackey et al., 2011) proposes a divide-and-conquer
method to compute the CUR decomposition in paral-
lel. (Wang & Zhang, 2013) proposes an adaptive CUR
algorithm with much tighter error bound and much low-
er time complexity. (Boutsidis & Woodruff, 2014) pro-
poses an input-sparsity CUR algorithm with an optimal
lower bound. In (Drineas et al., 2006), the authors sug-
gest a simple uniform sampling of columns and rows
for the CUR decomposition when the maximum statisti-
cal leverage scores, also referred to as incoherence mea-
sure (Candès & Recht, 2012; Candès & Tao, 2010; Recht,
2011), is limited. In (Mahoney et al., 2012), algorithms
have been developed to efficiently compute the approxi-
mated values of statistical leverage scores without having
to calculate the SVD decomposition of a large matrix. As
we claimed in the introduction section, all the existing CUR
algorithms either require the knowledge of every entry in
the target matrix and therefore cannot be applied direct-
ly to partially observed matrices, or they totally ignore the
information contained in those partially observed entries,
while our work focus on how to exploit those partially ob-
served entries in CUR algorithm to improve approximation
accuracy. More complete list of related work on CUR can
be found in (Mahoney & Drineas, 2008; Wang & Zhang,
2013; Boutsidis & Woodruff, 2014).

CUR decomposition is closely related to colum-
n subset selection problem (Boutsidis et al., 2011;
Deshpande & Rademacher, 2010; Mahoney & Drineas,
2008), which has been studied extensively in theoretical
computer science and numerical analysis communi-
ties (Mahoney & Drineas, 2008; 2009; Wang & Zhang,
2013). It samples multiple columns from the target
matrix M and use them as the basis to approximate
M , and is often viewed as a special case of the CUR
algorithm. A special case of column subset selection is
Nyström methods, which is usually used to approximate
Positive Semi-Definitive (PSD) matrix in kernel learn-
ing (Williams & Seeger, 2000) while we target general
matrix. A more complete list of related Nyström methods
can be found in (Jin et al., 2013).

Matrix Completion The objective of matrix comple-
tion is to fill out the missing entries of a low-rank ma-
trix based on the observed ones. In the standard ma-
trix completion theory, when entries are missing uni-
formly at random, it requires O(nr ln2 n) observed en-
tries to perfectly recover the target matrix under the inco-
herence condition (Candès & Recht, 2012; Candès & Tao,
2010; Gross, 2011; Keshavan et al., 2010; Recht, 2011).
Multiple improvements have been developed for ma-
trix completion, either to deal with nonuniform miss-
ing entries or to develop tighter bounds under more
strict coherence conditions. (Krishnamurthy & Singh,

2013) developed an adaptive sensing strategy for ma-
trix completion that removes an lnn factor from the
sample complexity. In (Bhojanapalli & Jain, 2014;
Chen et al., 2014), the authors study matrix comple-
tion when observed entries are not sampled uni-
formly at random. (Negahban & Wainwright, 2010;
Rhode & Tsybakov, 2011) generalize matrix completion to
matrix regression. In (Xu et al., 2013), the authors show
that the sample complexity for perfect matrix recovery can
be reduced dramatically with appropriate side information.

Although it is appealing to directly combine the CUR al-
gorithm with matrix completion to estimate a low rank ap-
proximation of a partially observed matrix, it may not work
well in practice. One issue is that most matrix completion
algorithms are developed for matrix of exactly low rank,
significantly limiting its application to low rank matrix ap-
plication. Although a few studies develop recovery bounds
for matrix of full rank, most of them assume the colum-
n/row space lies in one or multiple low-rank subspaces
even though the observation can be noisy, thus making
the matrix full rank (Candès & Plan, 2010; Mackey et al.,
2011). There are a few works deal with matrix of exact-
ly full rank (Eriksson et al., 2011; Krishnamurthy & Singh,
2013), but the recovery errors usually deteriorate dramat-
ically when applied to a matrix with a long tail spec-
trum. In addition, most matrix completion algorithm-
s are computationally expensive, especially for large ma-
trices, since they require, at each iteration of optimiza-
tion, computing the SVD decomposition of the approxi-
mate matrix (Bach, 2008; Cai et al., 2010; Ji & Ye, 2009;
Mazumder et al., 2010; Toh & Sangwoon, 2010). In con-
trast, we focus on the general case where the matrix is of
full rank, a significantly more challenging case and the pro-
posed CUR algorithm scales to large matrix and works well
for matrix of full rank.

3. CUR+ for Partially Observed Matrices
We describe the proposed CUR+ algorithm, and then
present the key theoretical results for it. Due to space lim-
itation, we postpone all the detailed analysis to the supple-
mentary document.

3.1. CUR+ Algorithm

Let M ∈ Rn×m be the matrix to be approximated, where
n ≥ m. To approximate M , we first sample uniformly at
random d1 columns and d2 rows from M , denoted by A =
(a1, . . . ,ad1) ∈ Rn×d1 , B = (b1, . . . ,bd2) ∈ Rm×d2 , re-
spectively, where each ai ∈ Rn and bj ∈ Rm is one row
and one column of M respectively. We noticed that unifor-
m sampling of rows and columns may not be the best strat-
egy as it does not take into account the difference between
individual rows and columns. Other sampling strategies,
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such as sampling rows/columns based on their statistical
leverage scores (Mahoney & Drineas, 2008) and adaptive
sampling (Krishnamurthy & Singh, 2013; Wang & Zhang,
2012), can be more effective. We do not choose these
sampling methods because they either require an access to
the full matrix (Mahoney & Drineas, 2008), introduce se-
rious overhead in computation (Wang & Zhang, 2012), or
result in significantly worse bound when matrix is of full
rank (Krishnamurthy & Singh, 2013). Finally, for simplic-
ity of discussion, we will assume d1 = d2 = d throughout
the draft even though our algorithm and analysis can easily
be extended to the case when d1 ̸= d2.

Let r be the target rank for approximation, with r ≤ d.
Û = (û1, . . . , ûr) ∈ Rn×r, V̂ = (v̂1, . . . , v̂r) ∈ Rm×r

are the first r eigenvectors of AA⊤ and BB⊤, respective-
ly. Besides A and B, we furthermore sample, uniformly
at random, entries from matrix M . Let Ω include the in-
dices of randomly sampled entries. Our goal is to estimate
a low rank approximation of matrix M using A, B, and
randomly sampled entries in Ω. To this end, we will solve
the following optimization

min
Z∈Rr×r

1

2
∥RΩ(M)−RΩ(ÛZV̂ ⊤)∥2F (2)

where given Ω, we define a linear operator RΩ(M) :
Rn×m 7→ Rn×m as

[RΩ(M)]i,j =

{
Mi,j (i, j) ∈ Ω
0 (i, j) /∈ Ω

Let Z∗ be an optimal solution to (2). The estimated low
rank approximation is given by M̂ = ÛZ∗V̂

⊤. M̂ can
also be expressed using standard C × U × R formulation
by solving a group of linear equations. We note that (2) is
a standard regression problem and therefore can be solved
efficiently using the standard regression method (e.g. ac-
celerated gradient descent (Nesterov, 2003)). We refer to
the proposed algorithm as CUR+.

3.2. Guarantee for CUR+

Before presenting the theoretical results, we first describe
the notations that will be used throughout the analysis. Let
σi, i = 1, . . . ,m be the singular values of M ranked in
descending order, and let ui and vi be the corresponding
left and right singular vectors. Define U = (u1, . . . ,um)
and V = (v1, . . . ,vm). Given r ∈ [m], partitioning the
SVD decomposition of M as

M = UΣV ⊤ =
r m− r
[U1 U2]

[
Σ1

Σ2

] [
V ⊤
1

V ⊤
2

]
(3)

Let ũi, i ∈ [n] be the ith row of U1 and ṽi, i ∈ [m] be the
ith row of V1. The incoherence measurement for U1 and

Table 1. Current results of sample complexity for matrix
completion (including matrix regression). Comparing
methods including Sequential Matrix Completion (SMC)
in (Krishnamurthy & Singh, 2013), Universal Matrix Com-
pletion (UMC) in (Bhojanapalli & Jain, 2014), AltMinSense
in (Jain et al., 2013) and all the other trace norm minimiza-
tion methods (Candès & Recht, 2012; Candès & Tao, 2010;
Chen et al., 2014; Keshavan et al., 2010; Recht, 2011).

Method #Observation Method #Observation
CUR+ nr ln r AltMinSense nr4.5 lnn

SMC nr ln2 r Others nr ln2 n
UMC nr2

V1 is defined as

µ(r) = max

(
max
i∈[n]

n

r
|ũi|2,max

i∈[m]

m

r
|ṽi|2

)
(4)

Similarly, we can have the incoherence measure for matri-
ces Û and V̂ that include the first r eigenvectors of AA⊤

and BB⊤, respectively. Let û′
i, i ∈ [n] be the ith row of Û

and v̂′
i, i ∈ [m] be the ith row of V̂ . Define the incoherence

measure for Û and V̂ as

µ̂(r) = max

(
max
i∈[n]

n

r
|û′

i|2,max
i∈[m]

m

r
|v̂′

i|2
)

(5)

Define projection operators PU = UU⊤, PV = V V ⊤,
PÛ = Û Û⊤, and PV̂ = V̂ V̂ ⊤. We will use ∥ ·∥2 and ∥ ·∥F
respectively for the spectral norm and Frobenius norm.

We first present the theoretical guarantee for the CUR+ al-
gorithm when the rank of M is no greater than r.

Theorem 1. (Low-Rank Matrix Approximation) Assume
rank(M) ≤ r, d ≥ 7µ(r)r(t + ln r), and |Ω| ≥
7µ2(r)r2(t + 2 ln r). Then, with a probability at least
1 − 5e−t, we have M = M̂ , where M̂ is a low rank ap-
proximation estimated by the CUR+ algorithm.

Remark Theorem 1 shows that a rank-r matrix can be
perfectly recovered from 2dn+ |Ω| = O(nr ln r) observed
entries with t = Ω(ln r), under the incoherent condition,
which is a common assumption to perfectly recover an
incomplete matrix (Candès & Recht, 2012; Candès & Tao,
2010; Gross, 2011; Keshavan et al., 2010; Recht, 2011). In
Table 1, we compare the sample complexity of the CUR+
algorithm with the sample complexity of the other matrix
completion algorithms. We observe that our result sig-
nificantly improves the sample complexity from previous
work. We should note that unlike (Krishnamurthy & Singh,
2013) where the incoherence measure is only assumed
for column vectors, we assume a small incoherence mea-
sure for both row and column vectors here. It is this
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stronger assumption that allows us to sample both rows and
columns, leading to the improvement from previous work
(Krishnamurthy & Singh, 2013) in the sample complexity
O(nr3/2 ln r) to O(nr ln r).

We now consider a more general case where matrix M is
of full rank. Theorem 2 bounds the difference between M
and M̂ , measured in spectral norm,

Theorem 2. Let r ≤ m be an integer that is no larger
than m. Assume (i) d ≥ 7µ(r)r(t+ ln r) , and (ii) |Ω| ≥
7µ̂2(r)r2(t + 2 ln r). Then with a probability at least 1 −
3e−t

∥M − M̂∥22 ≤ 8σ2
r+1(1 + 2mn)

(
1 +

m+ n

d

)
.

As indicated by Theorem 2, when both µ(r) and µ̂(r), the
incoherence measure for the first r singular/eigen vectors
of M and the sampled columns/rows, are small, we have

∥M − M̂∥2 ≤ O

(√
mn2

d
∥M −Mr∥2

)

provided that d ≥ O(r ln r) and |Ω| ≥ O(r2 ln r).

One limitation with Theorem 2 is that µ̂(r) is a random
variable depending on the sampled columns and rows. S-
ince µ̂(r) can be as high as n/r, |Ω|, the number of ob-
served entries required by Theorem 2, can be as large as
O(n2), making it practically meaningless. Below, we de-
velop a result that explicitly bounds µ̂ with a high prob-
ability. Using the high probability bound for µ̂, we are
able to show that under appropriate conditions, we need
at most O(n2/d2) observed entries in order to establish a
error bound for ∥M − M̂∥.

To make our analysis simple, we focus on the case when
M is of full rank but with skewed singular value dis-
tribution. In particular, we assume σr ≥

√
2σr+1.

In order to effectively capture the skewed singular val-
ue distribution, we introduce the concept of numerical
rank r(M,η) (Golub & Loan, 1996) with respect to non-
negative constant η > 0

r(M,η) =

m∑
i=1

σ2
i

σ2
i +mnη

Note that when η = 0, the numerical rank is equivalent to
the true rank of the matrix. The larger η is , the smaller it
compared to the true rank. In the following analysis, we
will replace rank r with numerical rank r(M,η).

We furthermore generalize the definition of incoherence
measure to matrix with numerical rank, that is, we further

define incoherence measure µ(η) as

µ(η) = max

(
max

1≤i≤m

m

r(M,η)
|Vi,∗Σ|2, (6)

max
1≤i≤n

n

r(M,η)
|Ui,∗Σ|2

)
It is easy to verify that µ(η) ≥ 1. Compared to the standard
incoherence measure defined in (4), the key difference is
that (6) introduces singular values Σ into the definition of
incoherence measure, making it appropriate for matrix of
full rank.

The following two lemmas relate rµ(r) and rµ̂(r), respec-
tively, with r(M,η)µ(η),

Lemma 1. If we choose η = σ2
r/mn, we have

rµ(r) ≤ 2r(M,η)µ(η)

Lemma 2. Assume that d ≥ 16(µ(η)r(M,η)+1)(t+lnn),
and σr ≥

√
2σr+1. Set η = σ2

r/mn. With a probability
1− 4e−t, we have

rµ̂(r) ≤ 2r(M,η)µ(η) + 18nδ2/r

where δ2 =
4

d
(µ(η)r(M,η) + 1)(t+ lnn)

Using Theorem 2, Lemma 1 and 2, we have the result for
full-rank matrix with skewed singular value distribution,

Theorem 3. (Full Rank Matrix Approximation) Assume
d ≥ 16(µ(η)r(M,η)+1)(t+lnn) and σr ≥

√
2σr+1. Set

η = σ2
r/mn. We have, with a probability 1− 7e−t,

∥M − M̂∥22 ≤ 8σ2
r+1 (1 + 2mn)

(
1 +

m+ n

d

)
if

|Ω| ≥ 7F 2(t+ 2 ln r) = O

(
n2

d2

)
where

F =
(
2µ(η)r(M,η) + 72

n

d
(µ(η)r(M,η) + 1)(t+ lnn)

)2
As indicated by Theorem 3, we will have a bound similar
to that of Theorem 2 if |Ω| ≥ O(n2/d2). The key dif-
ference between Theorem 2 and 3 is that in Theorem 2, the
requirement for |Ω| depends on µ̂(r), a random variable de-
pending on the sampled rows and columns. In contrast, in
Theorem 3, we remove µ̂ and bound |Ω| directly. We final-
ly note that the result |Ω| ≥ O(n2/d2) requires nearly the
entire matrix for accurately estimating the low rank approx-
imation of the target matrix. This is due to the challenge to
recover a full-rank matrix even when the spectrum decays
in a realistic way. It remains an open question whether it is
possible to reduce the number of observed entries for CUR-
type low rank approximation.
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4. Experiments
We first verify the theoretical result in Theorem 1, i.e. the
dependence of sample complexity on r and n, using syn-
thetic data. We then evaluate the performance of the pro-
posed CUR+ algorithm by comparing it to the state-of-the-
art algorithms for low rank matrix approximation. We im-
plement the proposed algorithm using Matlab, and all the
experiments were run on a Linux server with CPU 2.53GHz
and 48GB memory.

4.1. Experiment (I): Verifying the Dependence on r

We will verify the sample complexity result in Theorem 1,
i.e. d ≥ O(r ln r) and |Ω| ≥ O(r2 ln r). Note that the re-
quirements on d and |Ω| are independent from matrix size.

Settings Here we study square matrices of differen-
t sizes and ranks, with n varied in {1, 000; 2, 000;
l4, 000; 8, 000; 10, 000}, and r varied in {10, 20, 30, 50}.
For each special n and r, we search for the smallest d and
|Ω| that can lead to almost perfect recovery of the target ma-
trix (i.e. ∥M−M̂∥F /∥M∥F ≤ 2×10−4) in all 10 indepen-
dent trials. To create the rank-r matrix M ∈ Rn×n, we first
randomly generate matrix ML ∈ Rn×r and MR ∈ Rr×n

with each entry of ML and MR drawn independently at
random from N (0, 1), and M is given by M = ML×MR.
To create A and B, we sample uniformly at random d
rows and columns. We further sample |Ω| entries from M
to be partially observed. Under this construction scheme,
the difference between the incoherence µ(r) for different
sized matrices are relatively small (from minimum 1.4127
to maximum 2.4885). Although we will plot d and |Ω|’s
dependence on µ(r), we will ignore their impact in discus-
sion of the results.

Results The dependence of minimal d on r and n is giv-
en in Figure 1(a) and (b), where (a) plots d against r ln r
and (b) shows d versus r2 ln r. We can see clearly that d
has a linear dependence on r ln r. We also observed from
Figure 1(a) that d is almost independent from n, the ma-
trix size. Figure 1(c) and (d) plot the |Ω|, the minimum
number of observed entries, against r ln r and r2 ln r. The
result in Figure 1 (d) confirms our theoretical finding, i.e.
|Ω| ∝ r2 ln r.

4.2. Experiment(II): Comparison with Baseline
Methods for Low Rank Approximation

We evaluate the performance of the proposed CUR+ algo-
rithm on several benchmark data sets that have been used
in the recent studies of the CUR matrix decomposition al-
gorithm, including Enron emails (39, 861× 28, 102), Dex-
ter (20, 000 × 2, 600), Farm Ads (54, 877 × 4, 143) and
Gisette (13, 500 × 5, 000), where each row of the matrix

corresponds to a document and each column corresponds
to a term/word. Detailed information of these data sets can
be found in (Wang & Zhang, 2013). All four matrices are
of full rank and have skewed singular value distribution, as
shown in Figure 2

Baselines Since both the rows/columns and entries ob-
served in the proposed algorithm are sampled uniformly
at random, we only compare our approach to the stan-
dard CUR algorithm using uniformly sampled rows and
columns. Although the adaptive sampling based approach-
es (Krishnamurthy & Singh, 2013) usually yield lower er-
rors than the standard CUR algorithm, they do not choose
observed entries randomly and therefore are not included
in the comparison. Let C be a set of d1 sampled columns
and R be the set of d2 sampled rows. The low rank approx-
imation by the CUR algorithm is given by M̂ = CZR,
where Z ∈ Rd1×d2 . Two methods are adopted to estimate
Z. We first estimated Z by Z = C†MR†. Since this es-
timation requires an access to the full matrix, we refer to
it in this section as CUR-F (Mahoney & Drineas, 2009).
In the second method, we estimate Z by the intersection
of C and R, and then calculate M̂ = CZR. Since this
method exploits the intersection of C and R, we refer to it
as CUR-I (Mahoney & Drineas, 2008). Evidently, CUR-F
is expected to work better than our proposal and will pro-
vide a lower bound for the CUR algorithm for partially ob-
served matrices. Note that we also construct an unbiased
estimator Me by using the randomly observed entries in Ω,
and then estimate matrix Z by Z = C†MeR

†. We call this
algorithm CUR-E. Its performance deteriorates a lot com-
pared to other algorithms. Due to space limitation, we will
present the results in the supplementary document.

Settings To make our result comparable to the previ-
ous studies, we adapted the same experiment strategy as
in (Wang & Zhang, 2012; 2013). More specially, for each
data set, we set d1 = αr and d2 = αd1, with rank
r varied in the range of {10, 20, 50} and α is set to be
5. To create partial observations, we randomly sample
|Ω| = Ω0 = nmr2/nnz(M) entries from the target ma-
trix M , where nnz(M) is the number of non-zero en-
tries of M . We measure the performance of low rank ma-
trix approximation by the related spectral-norm difference
ℓs = ∥M − M̂∥/∥M − Mr∥ which has solid theoretical
guarantee according to Theorem 3. To make a fair compar-
ison with previous work measured by Frobenius norm, we
also report the results measured by relative Frobenius nor-
m, that is ℓF = ∥M −M̂∥F /∥M −Mr∥F . Finally, we fol-
low the experimental protocol specified in (Wang & Zhang,
2012) by repeating every experiment 10 times and report-
ing the mean value.
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Figure 1. Experiment results on the synthetic data. (a)(b) plot the minimum d for perfect matrix recovery against r ln r and r2 ln r
respectively, and (c)(d) plot the minimum |Ω| for perfect matrix recovery against r ln r and r2 ln r. The results confirm the theoretical
finding in Theorem 1, i.e. d = O(r ln r) and |Ω| = O(r2 ln r).
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Figure 2. Singular values of the real data sets ranked in descending order. All these four data sets are full-rank and have skewed singular
value distribution.

Results Figure 3 shows the results of low rank matrix ap-
proximation. We observe that in most cases, with increas-
ing number of observed entries, CUR+ shows much more
similar performance as CUR-F that has an access to the full
target matrix M . Note that because CUR-I do not use those
partially observed entries, their performance do not change
with increasing |Ω|. On the other hand, on most datasets,
although CUR+’s performance is similar to that of CUR-I
at the beginning when the number of observed entries is s-
mall, their performance diverges a lot with increasing num-
ber of observed entries. We observe that there are several
exceptions, for example, Enron data when r = 10, We plan
to examine this unusual phenomenon in the future.

Figure 4 shows the results measured by Frobenius norm
for r = 10, 20 and 50. We found the results are similar
to that measured by spectral norm, that is, CUR+ yield-
s similar performance as CUR-F with increasing number
of observed entries, and performs significantly better than
CUR-I when more entries are observed.

5. Conclusion
In this paper, we propose a CUR-style low rank approxima-
tion algorithm for partially observed matrix. Our analysis
shows that the proposed algorithm only needs O(nr ln r)
number of observed entries to perfectly recover a low-rank
matrix, improving the results of the existing algorithms for
matrix completion (of course under a slightly stronger con-
dition). We also show the the spectral error bound for the
proposed algorithm when the target matrix is of full rank.
Empirical studies on both synthetic data and real datasets

verify our theoretical claims and furthermore, demonstrate
that the proposed algorithm is more effective in handling
partially observed matrix than the existing CUR algorithm-
s. Since adaptive sampling has shown promising results for
low rank matrix approximation (Krishnamurthy & Singh,
2013), in the future, we plan to combine the proposed al-
gorithm with adaptive sampling strategy to further reduce
the error bound. We also plan to exploit the recent stud-
ies on matrix approximation/completion with non-uniform
sampling and extend the CUR algorithm to the case when
observed entries are non-uniform sampled.
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