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Abstract
We propose a unified framework for making a
wide range of PCA-like algorithms – including
the standard PCA, sparse PCA and non-negative
sparse PCA, etc. – robust when facing a constant
fraction of arbitrarily corrupted outliers. Our
analysis establishes solid performance guaran-
tees of the proposed framework: its estimation
error is upper bounded by a term depending on
the intrinsic parameters of the data model, the
selected PCA-like algorithm and the fraction of
outliers. Our experiments on synthetic and real-
world datasets demonstrate that the outlier-robust
PCA-like algorithms derived from our frame-
work have outstanding performance.

1. Introduction
Principal component analysis (PCA) (Pearson, 1901),
arguably the most widely applied dimension reduction
method, plays a significant role in data analysis in a broad
range of areas including machine learning, statistics, fi-
nance, biostatistics and many others. The standard PCA
performs the spectral decomposition of the sample covari-
ance matrix, selects the eigenvectors corresponding to the
largest eigenvalues, and then constructs a low dimensional
subspace based on the selected eigenvectors. It is well
known that standard PCA, depending on different appli-
cations, may suffer from three weaknesses (Montanari &
Richard, 2014; Xu et al., 2013; Johnstone & Lu, 2009): 1)
PCA is notoriously fragile to outliers – indeed, its perfor-
mance can significantly degrade in the presence of even few
corrupted samples, due to the quadratic error criterion used;
2) PCA cannot utilize additional information of the princi-
pal components: e.g., in certain applications, it is known
that the principal components should lie in the positive or-
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thant; 3) its output may lack interpretability since it does
not encourage sparse solutions.

Many efforts have been made to mitigate these weaknesses
of PCA. In recent years, numerous robust PCA algorithms
have been proposed to address the first issue (Devlin et al.,
1981; Xu & Yuille, 1995; Yang & Wang, 1999; la Torre &
Black, 2003; Dasgupta, 2003; Xu et al., 2013; Feng et al.,
2012). Among them, Xu et al. (2013) successfully tackles
the case where a constant fraction of samples are corrupted
in the high dimensional regime. Their proposed method,
termed HR-PCA (which stands for High-dimensional Ro-
bust PCA), is tractable, easily kernelizable, and is able to
robustly estimate the principal components even in the face
of a constant fraction of outliers and very low signal-to-
noise ratio. To overcome the computational issue of HR-
PCA, Feng et al. (Feng et al., 2012) proposed a determin-
istic approach (DHR-PCA) that dramatically reduces the
computational work. However, neither HR-PCA nor DHR-
PCA deals with the last two weaknesses mentioned above.

To address the second weakness, Montanari & Richard
(2014) recently proposed a new algorithm called non-
negative PCA which handles the case that the principal
components are known to lie in the positive orthant, and
showed that near-optimal non-negative principal compo-
nents can be extracted in nearly linear time. But similar
to the standard PCA, this algorithm is sensitive to outliers.
Indeed, the estimated principal components can be far from
the true ones in the face of even few outliers.

To address the third weakness, previous works focus on a
class of methods called sparse PCA that adapt the standard
PCA so that only a few of attributes of the resulting prin-
ciple components are non-zero (e.g., Vu et al., 2013; Zou
et al., 2006; Shen & Huang, 2008; Journee & Y. Nesterov,
2008; Birnbaum et al., 2013; Vu & Lei, 2013; d’Aspremont
et al., 2007; Thiao et al., 2010). Some of these methods
are based on non-convex optimization formulations (Jol-
liffe et al., 2003; Moghaddam et al., 2005) while others use
ℓ1-norm regularization (Zou et al., 2006). Recently, Vu et
al. (Vu et al., 2013) proposed FPS – a convex relaxation for-
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mulation of sparse principal subspace estimation based on a
semi-definite program with a Fantope constraint and estab-
lished theoretical guarantees in the outlier-free regime. Yet,
one severe drawback of most sparse PCA algorithms is that
the output can be sensitive to the existence of even few out-
liers. This is clearly undesirable, as in real-world applica-
tions, the existence of outliers is ubiquitous. Recently, sev-
eral robust sparse PCA have been proposed (Croux et al.,
2013; Wang & Cheng, 2012; Hubert et al., 2014) to handle
outliers, but all of them are only evaluated by experiments
and have no theoretical performance guarantees.

This paper is the first attempt to theoretically address these
issues of PCA simultaneously. In specific, we propose a
general framework for a wide range of PCA-like algorithms
to make them provably robust to a constant fraction of ar-
bitrary outliers. Our framework is inspired by HR-PCA
(Xu et al., 2013; Feng et al., 2012), but overcomes the
drawbacks of HR-PCA and has the capability of convert-
ing a non-robust PCA-like algorithm such as non-negative
PCA (Montanari & Richard, 2014), sparse PCA (Vu et al.,
2013; Papailiopoulos et al., 2013) or non-negative sparse
PCA (Asteris et al., 2014), into its outlier-robust variant.

The analysis of our proposed framework is novel and dif-
ferent from that of HR-PCA. We analyze its performance
using two performance metrics: the subspace distance and
the expressed variance. We show that the subspace dis-
tance between its estimated principal components and the
ground-truth under the spiked model can be upper bounded
by a term depending on the parameters of the spike model,
the selected PCA-like algorithm and the fraction of out-
liers. The analysis of subspace distance in the presence
of outliers is new to the best of our knowledge. Moreover,
while the analysis of expressed variance for HR-PCA exists
in literature, our analysis of the expressed variance of this
framework is more general, in that it shows that maximal
robustness can be achieved for a wide range of PCA-like al-
gorithms besides HR-PCA. Our numerical experiments re-
sults show that when outliers exist, the outlier-robust PCA-
like algorithms developed from our framework outperform
their non-robust counterparts considerably.

Notation. We use lower-case boldface letters to denote col-
umn vectors and upper-case boldface letters to denote ma-
trices. In this paper, ∥M∥2 is the spectral norm, ∥M∥∗
is the nuclear norm, ∥M∥1 is the element-wise ℓ1 norm,
∥M∥∞ is the element-wise infinity norm, and ∥M∥F is
the Frobenius norm. We use ∥M∥0 to denote the num-
ber of non-zero entries in M, and use subscript (·) to rep-
resent order statistics of a random variable. For exam-
ple, let v1, · · · , vn ∈ R, then v(1), · · · , v(n) is a permu-
tation of v1, · · · , vn in a non-decreasing order. For ma-
trix X, the first k singular values of X are denoted by
λ1(X), · · · , λk(X).

2. Algorithms
In this section, we present our framework for outlier-robust
PCA-like algorithms. We first describe the problem setup
and necessary assumptions, and then show the details of the
algorithm along with the key intuition underlying it.

2.1. Problem Setup

Suppose there are n samples Y = {y1, · · · ,yn ∈ Rp}
which consist of t authentic samples z1, · · · , zt ∈ Rp and
n − t outliers o1, · · · ,on−t ∈ Rp. The outliers are arbi-
trary. We denote the fraction of outliers by ρ = (n− t)/n
and assume that ρ < 0.5. The authentic samples zi are gen-
erated according to zi = Axi+ni where xi ∈ Rd are i.i.d.
samples of a random vector x with mean 0 and variance Id
and ni are independent realizations of standard Gaussian
N (0, Ip). The matrix A ∈ Rp×d and the distribution of
x (denoted by ν) are unknown. The covariance of z is de-
noted by Σ. Since z = Ax+n, Σ = E[zz⊤] = AA⊤+Ip.
We denote the one-dimensional marginal of ν along direc-
tion v ∈ Sd by ν̄v, and assume that ν̄v({0}) < 0.5 for
all v ∈ Sd and it is sub-Gaussian, i.e., there exists θ > 0
such that ν̄v((−∞, x] ∪ [x,+∞)) ≤ exp(1 − x2/θ) for
all x > 0. Clearly, both assumptions are satisfied if ν is
Gaussian.

We make the following two assumptions: 1) A is full row
rank and n > d. This essentially means the intrinsic dimen-
sion of the authentic samples (ignoring the noise) is indeed
d. 2) The projection Π(k) = U(k)U(k)⊤ onto the sub-
space spanned by the eigenvectors U(k) of Σ correspond-
ing to its k largest eigenvalues satisfies ∥Π(k)∥0 ≤ β2,
where ∥Π(k)∥0 is the number of nonzero entries of Π(k).
Our goal is to approximately recover Π(k) even though
the samples contain a non-negligible fraction of arbitrary
outliers. For convenience, we let Π ≜ Π(k) in the follow-
ing sections. Throughout the paper, “with high probability”
means with probability at least 1− cmax{p−10, n−10} for
some constant c.

2.2. General Formulation of PCA-like Algorithms

Many kinds of PCA-like algorithms have been proposed
in recent decades, e.g., sparse PCA (Zou et al., 2006; Pa-
pailiopoulos et al., 2013), non-negative PCA (Montanari &
Richard, 2014), etc., which play a significant role in ma-
chine learning, computer vision, statistics and data analy-
sis. In this section, we consider a general formulation as
shown below for a wide range of these algorithms:

max
X∈C

⟨Σ̂,X⟩ − µ∥X∥1, (1)

where Σ̂ is the empirical sample covariance matrix, C in-
cludes the constraints imposed on X, and µ is the weight of
the regularization term. Typically, µ is less than a certain
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universal constant. To see that this formulation can model
most PCA-like algorithms proposed in literature, let k be
the number of the principal components one wants to ex-
tract and F(k) be the set {X : 0 ⪯ X ⪯ Ip, tr(X) = k}
which includes the matrices that lie in the convex hull of
all feasible projection matrices. Thus, the following algo-
rithms are all equivalent to Formulation (1) for appropriate
k, C and µ:

1. Standard PCA (Pearson, 1901): k = d, C = F(k) and
µ = 0;

2. Non-negative PCA (Montanari & Richard, 2014): k =
1, C = {uu⊤ : ∥u∥2 ≤ 1,u ≥ 0} and µ = 0;

3. Sparse PCA (Papailiopoulos et al., 2013): k = 1, C =
{uu⊤ : ∥u∥0 ≤ γ, ∥u∥2 ≤ 1} and µ = 0;

4. Fantope projection and selection (FPS) (Vu et al.,

2013): k = d, C = F(k) and µ ≍
√

log p
n ;

5. Non-negative sparse PCA (Asteris et al., 2014): k =
1, C = {uu⊤ : ∥u∥0 ≤ γ, ∥u∥2 ≤ 1,u ≥ 0} and
µ = 0;

6. Large-scale sparse PCA (Zhang & El Ghaoui, 2011):
k = 1, C = {X : X ⪰ 0, tr(X) = 1}, µ > 0.

Since the feasible set C in (1) may be non-convex, the
global optimum of (1) may not be achievable. Therefore,
there are two important issues: 1) whether a PCA-like al-
gorithm can probably find an optimal or near-optimal so-
lution of (1), and 2) whether its solution converges to the
ground truth. We call the PCA-like algorithms that can find
optimal or near-optimal solutions of (1) “workable” algo-
rithms, formally defined as:

Definition 1. A PCA-like algorithm is (η, γ)-workable if
there exist positive numbers η ≤ 1 and γ ≤ p such that
with high probability its output X̂ satisfies ∥X̂∥0 ≤ γ2 and

⟨Σ̂, X̂⟩ − µ∥X̂∥1 ≥ (1− η)
[
⟨Σ̂,Π⟩ − µ∥Π∥1

]
.

Note that η indicates the accuracy of the solution X̂, e.g.,
η = 0 means X̂ is optimal, while η = 0.5 means the cost
value corresponding to X̂ is half of the optimum. Parame-
ter γ bounds the sparsity of X̂. For the first five algorithms
mentioned above, previous works have proved that all of
these algorithms are workable. In particular, η = 0, γ = p
for standard PCA and FPS, 0 < η < 1, γ = p for non-
negative PCA, and 0 < η < 1, γ ≪ p for sparse PCA
and non-negative sparse PCA. For large-scale sparse PCA,
no performance guarantees are known, but our experiments
show that this algorithm can still be put into our framework
to achieve robustness.

2.3. Outlier-Robust PCA-like Algorithm

Our framework is inspired by HR-PCA (Xu et al., 2013).
Therefore, before presenting its details, we briefly explain
the intuition behind HR-PCA. HR-PCA iteratively per-
forms PCA to compute principal components (PCs) and
then randomly removes one point with a probability pro-
portional to its magnitude after projected on the found PCs.
HR-PCA works for the following intuitive reasons. In
each iteration, a PC is computed either due to true sam-
ples which implies it is a “good” direction; or due to large
outliers in which case the random removal scheme will re-
move an outlier with high probability. Thus, for at least one
iteration, the algorithm will find a good direction, say wt.
Among all the directions found in the algorithm, the final
output of HR-PCA is the one with the largest Robust Vari-
ance Estimator (RVE). RVE measures the projection vari-
ance of the (n− t̂)-smallest points: A large RVE means that
that many of the points have a large variance in this direc-
tion, while a small RVE indicates otherwise. This makes
sure that the final output is close to wt, and hence a good
direction. A variant of HR-PCA is called deterministic HR-
PCA or DHR-PCA (Feng et al., 2012). Instead of removing
one point, DHR-PCA decreases the weights of all samples
according to their magnitudes after projected on the found
PCs in each iteration to reduce computational cost.

HR-PCA and DHR-PCA only focus on making standard
PCA robust to outliers but say nothing about whether it is
possible to improve the robustness of non-negative PCA
or sparse PCA. In this paper, we propose a more general
framework as shown in Algorithm 1 for developing outlier-
robust PCA-like algorithms. In Algorithm 1, the weighted
covariance matrix acts as a robust covariance estimator
(Rousseeuw, 1985; Rousseeuw & Driessen, 1998; Croux &
Haesbroeck, 2000), and V t̂(X) is the Robust Variance Es-
timator which is defined as V t̂(X) ≜ 1

t̂

∑t̂
i=1⟨yy⊤,X⟩(i),

where y ∈ Y = {y1, · · · ,yn}. Intuitively, the term
⟨yy⊤,X⟩ imitates the magnitude of y after it is projected
on the column subspace of X, so this RVE measures the
projection variance similar to the one in HR-PCA. As we
show below, a PCA-like algorithm becomes outlier-robust
if it is integrated into this general robustness framework.
For example, DHR-PCA can be easily deduced from this
framework by solving the standard PCA in Step 3.

3. Theoretical Guarantees
We now present the performance guarantees of Algorithm
1 with a (η, γ)-workable PCA-like algorithm. Typically,
there are two ways to measure the performance of PCA-like
algorithms (Xu et al., 2013; Vu et al., 2013). The first one,
termed the subspace distance (S.D.), measures the distance
between the subspace spanned by the estimated PCs and
the subspace spanned by the true PCs. The second one,



A Unified Framework for Outlier-Robust PCA-like Algorithms

Algorithm 1 Outlier-Robust PCA-like Algorithm
Input: Contaminated sample-set Y = {y1, · · · ,yn}, k,
T , t̂, µ.

Procedure:
1) Initialize: s = 0, Opt = 0; ŷi = yi and αi = 1 for
i = 1, · · · , n;
while s ≤ T do

2) Compute the weighted empirical covariance matrix
Σ̂ = 1

n

∑n
i=1 αiŷiŷ

⊤
i ;

3) Solve the PCA-like problem 1 and denote the out-
put by X̂;
4) If V t̂(X̂) > Opt, let Opt = V t̂(X̂) and X∗ = X̂,
where V t̂(X̂) ≜ 1

t̂

∑t̂
i=1⟨yy⊤, X̂⟩(i);

5) Update αi = (1− ⟨yiy
⊤
i ,X̂⟩

max{i|αi ̸=0}⟨yiy⊤
i ,X̂⟩ )αi;

6) s = s+ 1;
end while
7) Perform SVD on X∗ and denote the top k eigenvec-
tors by w∗

1, · · · ,w∗
k;

8) return w∗
1, · · · ,w∗

k and X∗.

termed the expressed variance (E.V.), measures the portion
of the signal Ax being expressed by the estimated principle
components. Formally, we have:
Definition 2. Let M1,M2 be two symmetric matrices
and M1,M1 be their respective k-dimensional princi-
pal subspaces, then the subspace distance is S.D. ≜
sinΘ(M1,M1).
Definition 3. The expressed variance of w1, · · · ,wk is de-
fined as E.V. ≜

∑k
i=1 w⊤

i AA⊤wi∑k
i=1 λi(AA⊤)

.

Notice that a smaller S.D. or a larger E.V. indicates a more
desirable solution. Also, S.D. ≥ 0 and E.V. ≤ 1 with equal-
ity achieved when the vectors w1, · · · ,wk span the same
space as the true PCs. Thus, to provide performance guar-
antees of the proposed algorithms, we lower bound the ex-
pressed variance as well as upper bound the subspace dis-
tance for the output. This is different from (Xu et al., 2013)
and (Feng et al., 2012) which only analyzed the expressed
variance (of HR-PCA and DHR-PCA respectively).

To analyze the performance of Algorithm 1, the following
“tail weight” function the first appeared in (Xu et al., 2013)
is required.
Definition 4. ((Xu et al., 2013)) For any γ ∈ [0, 1] and
v ∈ Sd, let δγ ≜ min{δ ≥ 0|ν̄v([−δ, δ]) ≥ γ} and γ−

ν =
ν̄v((−δ, δ)). Then the “tail weight” functions Vv is defined
as follows:

Vv(γ) ≜ lim
ϵ↓0

∫ δγ−ϵ

−δγ+ϵ

x2ν̄v(dx) + (γ − γ−
ν )δ2r .

We define V+(γ) ≜ supv∈Sd
Vv(γ) and V−(γ) ≜

infv∈Sd
Vv(γ). In the following subsections, we assume

that the feasible set C in (1) is a subset of F(k) – the con-
vex hull of all the feasible projection matrices. This is not
a restrictive condition. Indeed all the algorithms listed in
Section 2.2 except large-scale sparse PCA meet this condi-
tion.

3.1. Upper Bound of Subspace Distance

We first bound the subspace distance for Algorithm 1. The
following lemma relates the subspace distance with the
Frobenius norm of X∗ −Π so that we only need to bound
∥X∗ −Π∥F .

Lemma 1. (Vu et al., 2013) If M is the principal d-
dimensional subspace of Σ and M∗ is the principal k-
dimensional subspace of X∗, then

sinΘ(M,M∗) ≤
√
2∥X∗ −Π∥F .

In the following parts, we let δk(AA⊤) ≜ λk(A)2 −
λk+1(A)2 and let

f(B) = min
{
2B∥A∥22 + c1τ, γB∥A∥22 + c2γ(d∥A∥2 + 1)

}
,

where τ = max{ p
n , 1} and c is a universal constant. Notice

that f(B) is upper bounded by 2B∥A∥22 + c1 when p =
O(n) and by γB∥A∥22 + c2γ(d∥A∥2 +1) when p = Ω(n)
and γ ≪ p for some constants c1 and c2. Therefore, in
the high dimensional case where p ≫ n, when sparse PCA
algorithms are applied, i.e., γ ≪ p, f(B) can still be small,
compared with p

n .

We now provide our first main theorem which states that
the output X̂ in Step 3 will be close to the true projection
matrix after a certain number of iterations.

Theorem 1. Suppose that ρ < 0.5 and log p ≤ n, then
there exists a finite number s ≤ n such that the output
Xs of the PCA-like algorithm in the sth stage satisfies the
following inequality with high probability,

∥Xs −Π∥F ≤ R(µ) +
√
k min

1≥κ>2ρ

√
f(B1) + ηβB0

δk(AA⊤)
,

(2)
where

R(µ) ≜


8(γ[ϵ0(∥A∥2

2+1)−µ]++µβ)
δk(AA⊤)

, µ ≠ 0

min

{
8ϵ0γ(∥A∥2

2+1)
δk(AA⊤)

, 2
√

ϵ1k(∥A∥2
2+1)

δk(AA⊤)

}
, µ = 0,

ϵ0 = c0

√
log p
n , ϵ1 = c1

√
p
n , B0 = c2(∥A∥22 + 1),

B1 = κ + 1 − V−(1 − ρ
κ(1−ρ) ) + ϵ0 + c3

(
d log3 n

n

) 1
4

,
and c0, c1, c2, c3 are universal constants.
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Remark. The upper bound of ∥Xs −Π∥F involves three
terms: 1) R(µ): R(µ) is related to the weight of the reg-
ularization term in (1). A positive µ can encourage sparse
solutions. From the formulation of R(µ), we know that set-
ting µ to ϵ0(∥A∥22+1) when µ is non-zero leads to a tighter
bound. 2) f(B1): B1 involves ρ – the fraction of outliers,
and decreases when ρ decreases. Clearly, B1 → 0 when
ρ, d log3 n

n and log p
n converge to zero. 3) ηβB0: This term

contains η, i.e., the accuracy of the selected PCA-like algo-
rithm. When the optimal solution of (1) can be achieved,
this term becomes zero.

Theorem 1 tells us that a good solution Xs can be gener-
ated for some iteration s. However, such s is not specified.
Thus, one can not take Xs as the output; instead, one can
choose a solution that is close to Xs as the output. In Al-
gorithm 1, the solution with the maximal RVE is selected
as the final output X∗. Other methods can also be applied
in practical applications based on specific information. The
following theorem provides the estimation error of X∗.

Theorem 2. Suppose that ρ < 0.5 and log p ≤ n, the
following holds with high probability,

∥X∗ −Π∥F ≤

√
2 [(dB2 + kB4)λ1(A)2 + kf(B3)]

δk(AA⊤)
,

(3)
where B2 is the right hand side of (2),

B3 = 2− V−(
t̂

t
)− V−(

t̂− ρn

t
) + c0

(
d log3 n

n

) 1
4

,

B4 = min{c1
√

p
n , c2γ

√
log p
n }, and c0, c1, c2 are univer-

sal constants.

Remark. This upper bound contains three terms: 1) B2

is the upper bound of ∥Xs − Π∥F as shown in Theorem
1. 2) B3 involves ρ and parameter t̂, which becomes small
when ρ decreases and t̂ approaches t. 3) B4 converges to

zero as p
n → 0 or γ

√
log p
n → 0. To achieve consistency,

one should ensure that p
n → 0 for the standard PCA where

γ = p, and γ2 log p
n → 0 for sparse PCA where γ ≪ p.

The following corollaries provide more interpretable
bounds of the subspace distance for the standard PCA, FPS
and sparse PCA discussed in Section 2.2.

Corollary 1. Suppose that ρ < 0.5 and log p ≤ n, then
when the PCA-like algorithm is the standard PCA (Pear-
son, 1901), the following holds with high probability,

∥X∗ −Π∥F ≤

√
4d(B2 +B3 + ϵ)λ1(A)2 + cdτ

λd(A)2
, (4)

where

B2 = 2

√
ϵd(λ1(A)2 + 1)

λd(A)2
+ min

1≥κ>2ρ

√
2dB1λ1(A)2 + cdτ

λd(A)2
,

B1 is defined in Theorem 1, B3 is defined in Theorem 2,
ϵ = c1

√
p
n , τ = max{ p

n , 1} and c, c0, c1 are universal
constants.

The standard PCA imposes no constraint on the sparsity of
its solution, so when the ambient dimension p grows faster
than the sample number n, the bound in Corollary 1 will
go to infinity. One way to encourage sparsity is to impose
a “soft” constraint which upper bounds the l1-norm of the
solution, e.g., FPS.
Corollary 2. Suppose that ρ < 0.5 and log p ≤ n, then
when the PCA-like algorithm is FPS (Vu et al., 2013), the
following holds with high probability,

∥X∗ −Π∥F ≤

√
4d(B2 +B3 + ϵ1)λ1(A)2 + cdτ

λd(A)2
,

(5)
where

B2 =
ϵ0(λ1(A)2 + 1)β

λd(A)2
+ min

1≥κ>2ρ

√
2dB1λ1(A)2 + cdτ

λd(A)2
,

B1 is defined in Theorem 1, B3 is defined in Theorem 2,

ϵ0 = c0

√
log p
n , ϵ1 = c1

√
p
n , τ = max{ p

n , 1} and c, c0, c1
are universal constants.

Notice that p cannot grow faster than nλd(A)2

d due to the
existence of outliers, but the first term in B2 in Corollary
2 involves log p

n instead of p
n , which is much smaller than

that in Corollary 1. Thus, the soft constraint is helpful if the
true solution is indeed sparse. When the selected PCA-like
algorithm has a “hard” constraint on the sparsity, e.g., the
ones proposed by (Papailiopoulos et al., 2013) and (Asteris
et al., 2014), p can grow much faster than n.
Corollary 3. Suppose that ρ < 0.5 and log p ≤ n,
then when γ ≥ β and the PCA-like algorithm is sparse
PCA (Papailiopoulos et al., 2013) or non-negative sparse
PCA (Asteris et al., 2014), the following holds with high
probability,

∥X∗ −Π∥F ≤√
2 [(dB2 + βB3 + βϵ0)λ1(A)2 + cβ(dλ1(A) + 1)]

δ1(AA⊤)
,

(6)
where

B2 =
ϵ0(λ1(A)2 + 1)β

δ1(AA⊤)
+

√
γ min

1≥κ>2ρ

√
B1λ1(A)2 + c(dλ1(A) + 1) + ηB0

δ1(AA⊤)
.



A Unified Framework for Outlier-Robust PCA-like Algorithms

B0, B1 are defined in Theorem 1, B3 is defined in Theorem

2, ϵ0 = c0

√
log p
n , and c, c0 are universal constants.

Recall that Σ = AA⊤+Ip. The bound shown in Corollary
3 can be finite regardless of the magnitude of the existing

outliers, e.g., when d, β
√

log p
n , (B1+B3+η)γ, γ

λ1(A) and
λ1(Σ)

λ1(Σ)−λ2(Σ) are bounded from above.

3.2. Lower Bound of Expressed Variance

Xu et al. (2013) and Feng et al. (2012) provided lower
bounds of E.V. when the standard PCA is selected in Algo-
rithm 1. We now show that E.V. can be bounded from be-
low when other PCA-like algorithm of form (1) (and work-
able) are used in Algorithm 1. Let H∗ ≜ ⟨AA⊤,X∗⟩ and
H ≜ ⟨AA⊤,Π⟩, then we have the following theorem.

Theorem 3. Suppose that ρ < 0.5. For any κ, there exists
a constant c such that the following inequalities hold w.h.p,

E.V ≥
(1− η)V−

(
t̂
t −

ρ
1−ρ

)
V−

(
1− ρ

κ(1−ρ)

)
(1 + κ)V+

(
t̂
t

)
− c

V+(0.5)

(kmin{τ, γς}
H

) 1
2

+

(
d log3 n

n

) 1
4


−2(1− η)µβ

√
k

V+( t̂t )H
−max{1− λk(X

∗), λk+1(X
∗)},

(7)
where τ = max{ p

n , 1} and ς = max{ log p
n , 1}.

As discussed in Section 2.2, X∗ has the form X∗ = uu⊤

for the standard PCA, non-negative PCA (Montanari &
Richard, 2014), sparse PCA (Papailiopoulos et al., 2013)
and non-negative sparse PCA (Asteris et al., 2014), which
implies that the last term in (7) vanishes for these four al-
gorithms when k = 1. But for FPS (Vu et al., 2013), this
term may not be zero. The following lemma shows that it
can converge to zero under certain circumstances.
Lemma 2. Suppose that S is a sequence of matrices such
that for any Sn ∈ S , Sn ∈ Sp×p

+ and λd(Sn)−λd+1(Sn) ≥
δ > 0. Let

Xn ≜ arg max
X∈F(d)

⟨Sn,X⟩ − µn∥X∥1,

then if µn → 0 as n → +∞ and pd3/2 = o( 1
µn

), we have
λd(Xn) → 1 and λd+1(Xn) → 0 as n ↑ +∞.

The following result shows the asymptotic bound of the ex-
pressed variance in which we assume that the last term in
(7) converges to zero as n goes to infinity. This condition
holds for all the algorithms mentioned above.

Theorem 4. (Asymptotic Bound): Consider a sequence
of {Yi, di, ni, pi, µi, βi, γi}, where the asymptotic scaling
satisfies

ni ↑ +∞, lim
i↑+∞

log pi
ni

≤ +∞, lim
i↑+∞

min{pi/ni, γi}∑k
j=1 λj(Ai)2

↓ 0,

ni

di log
3 ni

↑ +∞,
di∑k

j=1 λj(Ai)2
↓ 0, µiβi ↓ 0,

Let ρ∗ = lim sup ρi ≤ 0.5 and suppose t̂ > 0.5n, then
if λk(X

∗) → 1 and λk+1(X
∗) → 0 as ni ↑ +∞, the

following holds in probability when i ↑ +∞,

lim inf
i

E.V ≥ (1−η)max
κ

V−
(
1− ρ∗

(1−ρ∗)κ

)
V−

(
t̂
t
− ρ∗

1−ρ∗

)
(1 + κ)V+

(
t̂
t

) .

Furthermore, if µ̄v({0}) = 0 for all v ∈ Sd, then the
breakdown point is ρ∗ = 0.5.

Corollary 4. Under the settings of the above theorem, the
following holds in probability for some constant C when
i ↑ +∞,

lim inf
i

E.V ≥ (1− η)

[
V−( t̂t )− C

√
θρ∗ log(1/2ρ∗)

V+( t̂t )

]
.

3.3. Complexity

Recall that Algorithm 1 is an iterative algorithm that solves
a PCA-like algorithm in each iteration. Theoretically, the
number of iterations required to generate a good solution is
bounded by n. But in practice, one can stop the algorithm
at any time as long as the output of the robust variance es-
timator is good enough. We will show in the experiments
that 5-10 iterations are sufficient to achieve a good solu-
tion. Since the time and space complexity of Algorithm 1
mainly depends on performing the selected PCA-like algo-
rithm, this means the computational cost of Algorithm 1 is
about 5-10 times higher than the non-robust PCA-like al-
gorithm – robustness is not a free lunch, but you don’t pay
much.

4. Experimental Results
In this section, we show that our framework indeed makes
PCA-like algorithms more robust to outliers. We refer to
the selected PCA-like algorithm in Step 3 in Algorithm 1
as A and consider four algorithms induced from our frame-
work: 1) OR-PCA: A is the standard PCA. OR-PCA has
been extensively studied in (Xu et al., 2013). 2) OR-SPCA:
A is FPS (Vu et al., 2013) to encourage sparse solutions.
3) Nonnegative OR-SPCA: A is non-negative sparse PCA
(Asteris et al., 2014). 4) Large-scale OR-SPCA: A is the
algorithm proposed by (Zhang & El Ghaoui, 2011) which
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is able to handle high dimensional data. Although this al-
gorithm has no performance guarantees, it does work well
in the experiments.

Firstly, we illustrate the performance of OR-PCA and OR-
SPCA via numerical results on synthetic and real data. For
synthetic data, we generate matrix A via the following
three steps: 1) randomly generate sparse orthogonal ma-
trices U ∈ Rp×d and V ∈ Rd×d such that ∥U∥2,0 = β
where ∥U∥2,0 is the number of non-zero rows in U; 2) gen-
erate a diagonal matrix S whose diagonal entries are drawn
from (a) the uniform distribution over [1, 2] or (b) the chi-
square density x−0.5e−0.5x

√
2Γ(0.5)

where x is chosen from 0.05 to

0.05d using step-size 0.05; 3) finally, let A = USV⊤.
The t authentic samples zi are generated by the function
zi = Axi + ni where xi ∼ N (0, Id), ni ∼ N (0, σ2Ip).
A ρ fraction outliers oi are generated with a uniform distri-
bution over [−c, c]p where c is a constant.

We make a comparison between OR-PCA, OR-SPCA, FPS
and ROB-SPCA. ROB-SPCA is developed based on (Hu-
bert et al., 2014), which uses ROBPCA (Hubert et al.,
2005) to estimate the robust sample covariance and then
applies FPS to compute the principal components. The
performance is evaluated by the “expressed variance” and
“sparsity”. The sparsity is defined by

Sparsity ≜ |(i, j) : |Xij | > 0.001|/p2,

where X is the projection matrix generated by each algo-
rithm.

In the first experiment, we compare the performance of
each algorithm when ρ varies while the other parameters
are fixed. The parameters for generating test data are set as
follows: d = 10, σ = 0.05, β = 0.3p. Parameter T and
t̂ for OR-PCA and OR-SPCA are set to 10 and ρn, respec-

tively. Parameter µ for FPS and OR-SPCA is 0.2
√

log p
n .

For each parameter setup, we report the average results of
10 tests. Figures 1 and 2 show the performance of these
four algorithms. Clearly, FPS easily breaks down, even
when there exists only a small fraction of outliers. ROB-
SPCA breaks down when ρ is larger than 0.25. Actually,
most of robust PCA algorithms based on ROBPCA do not
work well when the fraction of outliers exceeds 0.25 (Xu
et al., 2013). One can also observe that OR-PCA and OR-
SPCA are much more robust than the other two algorithms,
and OR-SPCA can generate more sparse solutions than
OR-PCA without significant decrease in the expressed vari-
ance, which implies that our framework has the capability
of converting a non-robust SPCA algorithm, e.g., FPS, into
a robust one.

In the second experiment, we investigate the number of the
iterations required in Algorithm 1 to achieve good perfor-
mance. We take OR-SPCA as an example. Figure 3 shows
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Figure 1. The performance of OR-PCA, OR-SPCA, ROB-SPCA
and FPS under (a) p = 500, n = 300, c = 5 and (b) p =
1000, n = 300, c = 5. The singular values of A are uniformly
drawn from [1, 2].
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Figure 2. The performance of OR-PCA, OR-SPCA, ROB-SPCA
and FPS under (a) p = 500, n = 300, c = 5 and (b) p =
1000, n = 300, c = 5. The singular values of A are uniformly
drawn from the chi-square density.

the effect of the number of iterations on the expressed
variance and sparsity for OR-SPCA under three cases that
p = 600, p = 800 and p = 1000, from which we observe
that only 5 iterations are required for OR-SPCA to gener-
ate acceptable results in all three cases. Empirically, we
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Figure 3. The effect of the number of iterations on the expressed
variance and sparsity. n, ρ and c are fixed: n = 300, ρ = 0.1,
c = 5.
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observe that 5-10 iterations are enough for Algorithm 1 to
compute good results in practical applications. Hence in
the following experiments on real data, parameter T is set
to 10.

In the third experiment, we show the performance of OR-
SPCA, OR-PCA and FPS on a real dataset of 600 samples
in which 75% of samples are drawn from MNIST (LeCun
et al., 1995) and 25% of samples are drawn from the CBCL
face image dataset (Sung, 1996). We take the digit images
as the authentic samples and the face images as the outliers.
Each image in this dataset is converted into a vector with
dimension 784. Figure 4 shows the leading ten principal
components extracted by FPS, OR-PCA and OR-SPCA. It
can be observed that OR-SPCA can generate more inter-
pretable results than OR-PCA, i.e., each PC corresponds
to some strokes. Notice that the principal components ex-
tracted by OR-SPCA are more reliable than FPS. For exam-
ple, the third principal component extracted by FPS clearly
mixes digits with faces, which is obviously unreliable.

(a)

(b)

(c)

(d)

Figure 4. We plot the leading ten PCs extracted by OR-PCA, FPS
and OR-SPCA. (a) shows a couple of sample images. (b), (c)
and (d) show the results of OR-PCA, FPS and OR-SPCA, respec-
tively.

Secondly, we evaluate the performance of the non-negative
OR-SPCA on the real world dataset constructing by mix-
ing 2429 images in the CBCL face image dataset with 125
digit images randomly drawn from the MNIST dataset. We
take the face images as the authentic samples and the digit
images as the outliers. Each image in this dataset is con-
verted into a vector with dimension 361. We compare
non-negative OR-SPCA with non-negative SPCA. Figure
5 shows the sample images and the five leading PCs com-
puted by non-negative SPCA and non-negative OR-SPCA.
Clearly, non-negative SPCA fails in the face of these
“digit” outliers, while non-negative OR-SPCA can still ex-
tract good principal components that are close to the ones
generated by applying non-negative SPCA on the clean
data, i.e., 2429 face images only.

Finally, we use the NYTimes news article dataset from
the UCI Machine Learning Repository (Frank & Asuncion,
2010), which contains 300000 articles and a dictionary of
102660 unique words, to illustrate the performance of Al-
gorithm 1 on large-scale data. 3000 random vectors whose

(a) (b)

(c) (d)

Figure 5. We plot (a) five samples in the dataset, (b) the five
leading PCs extracted by non-negative SPCA on the clean data
(2429 face images), and the five leading PCs extracted by (c) non-
negative SPCA and (d) non-negative OR-SPCA on the dirty data
(2429 face images plus 125 outliers).

Table 1. The words associated with the leading two sparse prin-
cipal components extracted by large-scale SPCA and large-scale
OR-SPCA. The ground truth is obtained by performing large-
scale sparse PCA on the clean data.

Ground-truth LS-SPCA LS-OR-SPCA
1st PC 2st PC 1st PC 2st PC 1st PC 2st PC
million point site fire percent team
percent play summer scientist company player
business team contract oil million season
company season system prices market game
market game person district money play

entries are randomly drawn from the uniform distribution
with support [0, 100] are added into the NYTimes dataset,
which are taken as outliers. We choose large-scale SPCA
(LS-SPCA) proposed by (Zhang & El Ghaoui, 2011) as A
and compare the corresponding large-scale OR-SPCA (LS-
OR-SPCA) with it. Table 1 provides the leading two sparse
PCs in which the first two columns shows the two leading
PCs extracted by LS-SPCA on the dataset without outliers,
and the other four columns presents the leading PCs ex-
tracted by LS-SPCA and LS-OR-SPCA on the dataset with
outliers. Clearly, the results of LS-SPCA are meaningless
when outliers exist, whereas LS-OR-SPCA can generate
quite similar results to the ground-truth where the first PC
is about business and the second PC is about sports.

5. Conclusion
In this paper, we proposed a unified framework for making
PCA-like algorithms robust to outliers. We provided the-
oretical performance analysis of the proposed framework
using both the subspace distance and the expressed vari-
ance metrics. To the best of our knowledge, this is the first
attempt to make a wide range of PCA-like algorithms prov-
ably robust to any constant fraction of arbitrarily corrupted
samples. As an immediate result, our framework leads to
robust sparse PCA and robust non-negative sparse PCA
with theoretic guarantees – the first of its kind to the best
of our knowledge. The experiments show that the outlier-
robust PCA-like algorithms derived from our framework
outperforms their non-robust version and other alternatives
including HR-PCA and ROB-SPCA.
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