A Divide and Conquer Framework for Distributed Graph Clustering

Wenzhuo Yang

A0096049@NUS.EDU.SG
Department of Mechanical Engineering, National University of Singapore, Singapore 117576

Huan Xu

MPEXUH@NUS.EDU.SG
Department of Mechanical Engineering, National University of Singapore, Singapore 117576

1. Notations

Recall that the graph we analyzed contains n nodes and r clusters, and is generated according to the generalized stochastic blockmodel. We let K_{i} be the size of the i th cluster, K be the minimum cluster size, i.e., $K=\min _{i} K_{i}$, and K^{*} be the size of the smallest cluster that contains at least one ordinary node. Therefore, edge (i, j) is present in the graph with probability $p_{i j} \geq p$ for every pair of nodes i, j that belong to the same cluster, and edge (i, j) is present in the graph with probability $q_{i j} \leq q$ for every pair of nodes i, j that are in different clusters. Note that the outliers in the graph do not belong to any cluster.

Let $\mathbf{U} \boldsymbol{\Sigma} \mathbf{U}^{\top}$ be the singular value decomposition of \mathbf{Y}^{*} and $P_{T}(\mathbf{M})=\mathbf{U U}^{\top} \mathbf{M}+\mathbf{M} \mathbf{U U}^{\top}-\mathbf{U U}^{\top} \mathbf{M} \mathbf{U U}^{\top}$ be the projection of \mathbf{M} onto the row and column spaces of \mathbf{Y}^{*}, and let $P_{T^{\perp}}(\mathbf{M})=\mathbf{M}-P_{T}(\mathbf{M})$. Let \mathcal{R} be the support of \mathbf{Y}^{*}, i.e., $\mathcal{R}=\left\{(i, j): Y_{i j}^{*}=1\right\}, \mathcal{C}$ be the set of the edges connecting to the high confidence nodes, i.e., $\mathcal{C}=\{(i, j)$: i or j is a high confidence node $\}$ and \mathcal{A} be the support of \mathbf{A}, i.e., $\mathcal{A}=\left\{(i, j): A_{i j}=1\right\}$. For a set of matrix indices Ω, we let $P_{\Omega}(\mathbf{M})$ be the matrix whose (i, j) th entry equals $M_{i j}$ if $(i, j) \in \Omega$ or 0 otherwise. We let \mathbf{E} be the matrix whose entries are all ones.

2. Proof of Theorem 1

For clarity, we let

$$
\lambda=\frac{c_{0}}{\sqrt{\max \left\{n-s, K^{*}\right\} \log n}}, c_{\mathcal{A}}=\sqrt{\frac{1-t}{t}}, c_{\mathcal{A}^{c}}=\sqrt{\frac{t}{1-t}}, \tau=\min \left\{\tau_{1}, \tau_{2}\right\}
$$

In other words, " $c_{\mathcal{A}}$ " and " $c_{\mathcal{A}}{ }^{c}$ " in Equation (1) are replaced by $\lambda c_{\mathcal{A}}$ and $\lambda c_{\mathcal{A}^{c}}$, respectively. Recall that $K=\min _{i} K_{i}$ and $K^{*}=\min \left\{K_{i}:\right.$ cluster i contains at least one ordinary node $\}$. If all the nodes are high confident, we let $K^{*}=K$ without loss of generality. Clearly, $K^{*}>K$ means that there exist some clusters whose nodes are all high confident. We denote the set of the nodes in these clusters by \mathcal{N}. Let $\mathcal{H}=\{(i, j): i$ or $j \in \mathcal{N}\}$. Obviously, $\mathcal{H} \subseteq \mathcal{C}$. Let $\mathcal{E}=\{(i, i): i=1, \cdots, n\}$ be the set of the diagonal entries. We first explore the sufficient conditions such that the true adjacent matrix \mathbf{Y}^{*} is the unique optimal solution of (1). In the proofs, the constants may vary from line to line.
Lemma A-1. For any matrix $\mathbf{X} \in \mathbb{R}^{n \times n}, P_{\mathcal{H}^{c}} P_{T} P_{\mathcal{H}} \mathbf{X}=0$ and $P_{\mathcal{H}} P_{T} P_{\mathcal{H}^{c}} \mathbf{X}=0$.
Proof. We need to show that support $\left(P_{T} P_{\mathcal{H}} \mathbf{X}\right) \subseteq \mathcal{H}$ and support $\left(P_{T} P_{\mathcal{H}}{ }^{c} \mathbf{X}\right) \subseteq \mathcal{H}^{c}$. Recall that $P_{T}(\mathbf{M})=\mathbf{U U}^{\top} \mathbf{M}+$ $\mathbf{M U U}{ }^{\top}-\mathbf{U U}^{\top} \mathbf{M U U} \mathbf{U}^{\top}$, since \mathcal{H} is "symmetric", namely, $(i, j) \in \mathcal{H}$ implies $(j, i) \in \mathcal{H}$, we only need to show that
$\operatorname{support}\left(\mathbf{U U}^{\top} P_{\mathcal{H}} \mathbf{X}\right) \subseteq \mathcal{H}$ and support $\left(\mathbf{U U}^{\top} P_{\mathcal{H}^{c}} \mathbf{X}\right) \subseteq \mathcal{H}^{c}$. For any $(i, j) \notin \mathcal{H}$, suppose that i, j belong to clusters $R(i)$ and $R(j)$, respectively. From the definition of \mathcal{H}, we know that $R(i), R(j) \nsubseteq \mathcal{H}$, which implies that $(k, j) \notin \mathcal{H}$ for all k such that $(i, k) \in R(i)$. Thus, we have

$$
\left(\mathbf{U} \mathbf{U}^{\top} P_{\mathcal{H}} \mathbf{X}\right)_{i j}=\sum_{k:(i, k) \in R(i)}\left(\mathbf{U U}^{\top}\right)_{i k}\left(P_{\mathcal{H}} \mathbf{X}\right)_{k j}=0, \text { for }(i, j) \notin \mathcal{H}
$$

Similarly, we can prove that $\left(\mathbf{U U}^{\top} P_{\mathcal{H}^{c}} \mathbf{X}\right)_{i j}=0$ for all $(i, j) \in \mathcal{H}$.
Lemma A-2. $\left(\mathbf{Y}^{*}, A-\mathbf{Y}^{*}\right)$ is the unique optimal solution of (1), if there exist matrices $\mathbf{W}_{1}, \mathbf{W}_{2}$ and a positive number $\epsilon<0.5$ such that (a) $P_{\mathcal{H}} \mathbf{W}_{1}=0, P_{\mathcal{H}^{c}} \mathbf{W}_{2}=0$, (b) $\left\|\mathbf{W}_{1}\right\| \leq \frac{1}{2},\left\|\mathbf{W}_{2}\right\| \leq \frac{1}{2},(c)\left\|P_{T} \mathbf{W}_{1}\right\|_{\infty} \leq \frac{1}{2} \epsilon \min \left\{\lambda c_{\mathcal{A}}, \lambda c_{\mathcal{A}^{c}}, c_{\mathcal{C}}\right\}$, $\left\|P_{T} \mathbf{W}_{2}\right\|_{\infty} \leq \frac{1}{4} c_{\mathcal{C}}$ and (d)

$$
\begin{aligned}
\text { I. } & (1-\epsilon) \lambda c_{\mathcal{A}}-P_{\mathcal{R} \cap \mathcal{A} \cap \mathcal{C}^{c} \cap \mathcal{H}^{c}}\left(\mathbf{U}^{\top}+\mathbf{W}_{1}\right) \geq 0, \\
\text { II. } & -(1+\epsilon) \lambda c_{\mathcal{A}^{c}}-P_{\mathcal{R}^{\prime} \cap \mathcal{A}^{c} \cap \mathcal{C}^{c} \cap \mathcal{H}^{c}}\left(\mathbf{U}^{\top}+\mathbf{W}_{1}\right) \geq 0, \\
\text { III. } & -(1+\epsilon) \lambda c_{\mathcal{A}}+P_{\mathcal{R}^{c} \cap \mathcal{A} \cap \mathcal{C}^{c} \cap \mathcal{H}^{c}}\left(\mathbf{W}_{1}\right) \geq 0, \\
\text { IV. } & (1-\epsilon) \lambda c_{\mathcal{A}^{c}}+P_{\mathcal{R}^{c} \cap \mathcal{A}^{c} \cap \mathcal{C}^{c} \cap \mathcal{H}^{c}}\left(\mathbf{W}_{1}\right) \geq 0, \\
\text { V. } & (1-\epsilon) c_{\mathcal{C}}-P_{\mathcal{R} \cap \mathcal{A} \cap \mathcal{C} \cap \mathcal{H}^{c}}\left(\mathbf{U U}^{\top}+\mathbf{W}_{1}\right) \geq 0, \\
\text { VI. } & -(1+\epsilon) c_{\mathcal{C}}-P_{\mathcal{R}^{\prime} \cap \mathcal{A}^{c} \cap \mathcal{C} \cap \mathcal{H}^{c}}\left(\mathbf{U U}^{\top}+\mathbf{W}_{1}\right) \geq 0, \\
\text { VII. } & -(1+\epsilon) c_{\mathcal{C}}+P_{\mathcal{R}^{c} \cap \mathcal{A} \cap \mathcal{C} \cap \mathcal{H}^{c}}\left(\mathbf{W}_{1}\right) \geq 0, \\
\text { VIII. } & (1-\epsilon) c_{\mathcal{C}}+P_{\mathcal{R}^{c} \cap \mathcal{A}^{c} \cap \mathcal{C} \cap \mathcal{H}^{c}}\left(\mathbf{W}_{1}\right) \geq 0, \\
\text { IX. } & \frac{1}{2} c_{\mathcal{C}}-P_{\mathcal{R} \cap \mathcal{A} \cap \mathcal{H}}\left(\mathbf{U} \mathbf{U}^{\top}+\mathbf{W}_{2}\right) \geq 0, \\
\text { X. } & -\frac{3}{2} c_{\mathcal{C}}-P_{\mathcal{R}^{\top} \cap \mathcal{A}^{c} \cap \mathcal{H}}\left(\mathbf{U U}^{\top}+\mathbf{W}_{2}\right) \geq 0, \\
\text { XI. } & -\frac{3}{2} c_{\mathcal{C}}+P_{\mathcal{R}^{c} \cap \mathcal{A} \cap \mathcal{H}}\left(\mathbf{W}_{2}\right) \geq 0, \\
\text { XII. } & \frac{1}{2} c_{\mathcal{C}}+P_{\mathcal{R}^{c} \cap \mathcal{A}^{c} \cap \mathcal{H}}\left(\mathbf{W}_{2}\right) \geq 0,
\end{aligned}
$$

Proof. When the conditions above are satisfied, we need to show that the following inequality holds for any \mathbf{Y} and \mathbf{S} such that $\mathbf{Y} \neq \mathbf{Y}^{*}, 0 \leq \mathbf{Y} \leq 1$ and $\mathbf{Y}+\mathbf{S}=\mathbf{A}$:

$$
\begin{aligned}
\mathrm{Opt} & \triangleq\left\|\mathbf{Y}^{*}\right\|_{*}+\lambda c_{\mathcal{A}}\left\|P_{\mathcal{A \cap C}^{c}} \mathbf{S}^{*}\right\|_{1}+\lambda c_{\mathcal{A}^{c}}\left\|P_{\mathcal{A}^{c} \cap \mathcal{C}^{c}} \mathbf{S}^{*}\right\|_{1}+c_{\mathcal{C}}\left\|P_{\mathcal{C}} \mathbf{S}^{*}\right\|_{1} \\
& <\|\mathbf{Y}\|_{*}+\lambda c_{\mathcal{A}} \| P_{{\mathcal{A} \cap \mathcal{C}^{c}} \mathbf{S}\left\|_{1}+\lambda c_{\mathcal{A}^{c}}\right\| P_{\mathcal{A}^{c} \cap \mathcal{C}^{c}} \mathbf{S}\left\|_{1}+c_{\mathcal{C}}\right\| P_{\mathcal{C}} \mathbf{S} \|_{1}} .
\end{aligned}
$$

So we need to prove that

$$
\begin{aligned}
\Delta \triangleq & {\left[\|\mathbf{Y}\|_{*}+\lambda c_{\mathcal{A}}\left\|P_{\mathcal{A} \cap \mathcal{C}^{c}} \mathbf{S}\right\|_{1}+\lambda c_{\mathcal{A}^{c}}\left\|P_{\mathcal{A}^{c} \cap \mathcal{C}^{c}} \mathbf{S}\right\|_{1}+c_{\mathcal{C}}\left\|P_{\mathcal{C}} \mathbf{S}\right\|_{1}\right]-} \\
& {\left[\left\|\mathbf{Y}^{*}\right\|_{*}+\lambda c_{\mathcal{A}}\left\|P_{\left.{\mathcal{A} \cap \mathcal{C}^{c}} \mathbf{S}^{*}\left\|_{1}+\lambda c_{\mathcal{A}^{c}}\right\| P_{\mathcal{A}^{c} \cap \mathcal{C}^{c}} \mathbf{S}^{*}\left\|_{1}+c_{\mathcal{C}}\right\| P_{\mathcal{C}} \mathbf{S}^{*} \|_{1}\right]}^{=}\right\| \mathbf{Y}\left\|_{*}-\right\| \mathbf{Y}^{*} \|_{*}+\lambda c_{\mathcal{A}}\left(\left\|P_{\mathcal{A} \cap \mathcal{C}^{c}} \mathbf{S}\right\|_{1}-\left\|P_{\mathcal{A} \cap \mathcal{C}^{c}} \mathbf{S}^{*}\right\|_{1}\right)+\right.} \\
& \lambda c_{\mathcal{A}^{c}}\left(\left\|P_{\mathcal{A}^{c} \cap \mathcal{C}^{c}} \mathbf{S}\right\|_{1}-\left\|P_{\mathcal{A}^{c} \cap C^{c}} \mathbf{S}^{*}\right\|_{1}\right)+c_{\mathcal{C}}\left(\left\|P_{\mathcal{C}} \mathbf{S}\right\|_{1}-\left\|P_{\mathcal{C}} \mathbf{S}^{*}\right\|_{1}\right) \\
= & \lambda c_{\mathcal{A}} \sum_{(i, j) \in \mathcal{A} \cap \mathcal{C}^{c}}\left(Y_{i j}^{*}-Y_{i j}\right)+\lambda c_{\mathcal{A}^{c}} \sum_{(i, j) \in \mathcal{A}^{c} \cap \mathcal{C}^{c}}\left(Y_{i j}-Y_{i j}^{*}\right)+ \\
& c_{\mathcal{C}} \sum_{(i, j) \in \mathcal{A} \cap \mathcal{C}}\left(Y_{i j}^{*}-Y_{i j}\right)+c_{\mathcal{C}} \sum_{(i, j) \in \mathcal{A}^{c} \cap \mathcal{C}}\left(Y_{i j}-Y_{i j}^{*}\right)+\|\mathbf{Y}\|_{*}-\left\|\mathbf{Y}^{*}\right\|_{*}>0
\end{aligned}
$$

Let $\mathbf{W}=\mathbf{W}_{1}+\mathbf{W}_{2}$, then $\mathbf{U U}^{\top}+\mathbf{W}-P_{T}(\mathbf{W})$ is a subgradient of $f(\mathbf{X})=\|\mathbf{X}\|_{*}$ at $\mathbf{X}=\mathbf{Y}^{*}$, which implies that
$\|\mathbf{Y}\|_{*}-\left\|\mathbf{Y}^{*}\right\|_{*} \geq\left\langle\mathbf{U} \mathbf{U}^{\top}+\mathbf{W}-P_{T}(\mathbf{W}), \mathbf{Y}-\mathbf{Y}^{*}\right\rangle$. Hence we have

$$
\begin{aligned}
\Delta \geq & \lambda c_{\mathcal{A}} \sum_{(i, j) \in \mathcal{A} \cap \mathcal{C}^{c}}\left(Y_{i j}^{*}-Y_{i j}\right)+\lambda c_{\mathcal{A}^{c}} \sum_{(i, j) \in \mathcal{A}^{c} \cap \mathcal{C}^{c}}\left(Y_{i j}-Y_{i j}^{*}\right)+ \\
& c_{\mathcal{C}} \sum_{(i, j) \in \mathcal{A} \cap \mathcal{C}}\left(Y_{i j}^{*}-Y_{i j}\right)+c_{\mathcal{C}} \sum_{(i, j) \in \mathcal{A}^{c} \cap \mathcal{C}}\left(Y_{i j}-Y_{i j}^{*}\right)+ \\
& \left\langle\mathbf{U} \mathbf{U}^{\top}+\mathbf{W}, \mathbf{Y}-\mathbf{Y}^{*}\right\rangle+\left\langle-P_{T}(\mathbf{W}), \mathbf{Y}-\mathbf{Y}^{*}\right\rangle
\end{aligned}
$$

By Lemma A-1 and Condition (d), we have

$$
\begin{aligned}
& \Delta \geq\left\langle\lambda c_{\mathcal{A}} \mathbf{E}-\left(\mathbf{U} \mathbf{U}^{\top}+\mathbf{W}\right), P_{\mathcal{A}^{\top} \mathcal{C}^{c}}\left(\mathbf{Y}^{*}-\mathbf{Y}\right)\right\rangle+\left\langle-\lambda c_{\mathcal{A}^{c}} \mathbf{E}-\left(\mathbf{U}^{\top}+\mathbf{W}\right), P_{\mathcal{A}^{c} \cap \mathcal{C}^{c}}\left(\mathbf{Y}^{*}-\mathbf{Y}\right)\right\rangle+ \\
& \left\langle c_{\mathcal{C}} \mathbf{E}-\left(\mathbf{U U}^{\top}+\mathbf{W}\right), P_{\mathcal{A} \cap \mathcal{C}}\left(\mathbf{Y}^{*}-\mathbf{Y}\right)\right\rangle+\left\langle-c_{\mathcal{C}} \mathbf{E}-\left(\mathbf{U} \mathbf{U}^{\top}+\mathbf{W}\right), P_{\mathcal{A}^{c} \cap \mathcal{C}}\left(\mathbf{Y}^{*}-\mathbf{Y}\right)\right\rangle+ \\
& \left\langle-P_{T}\left(\mathbf{W}_{1}\right)-P_{T}\left(\mathbf{W}_{2}\right), \mathbf{Y}-\mathbf{Y}^{*}\right\rangle \\
& \geq\left\langle\epsilon \lambda c_{\mathcal{A}} \mathbf{E}, P_{\mathcal{R} \cap \mathcal{A} \cap \mathcal{C}^{c}}\left(\mathbf{Y}^{*}-\mathbf{Y}\right)\right\rangle+\left\langle\epsilon \lambda c_{\mathcal{A}} \mathbf{E}, P_{\mathcal{R}^{c} \cap \mathcal{A} \cap \mathcal{C}^{c}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\rangle+\left\langle\epsilon \lambda c_{\mathcal{A}^{c}} \mathbf{E}, P_{\mathcal{R}^{\prime} \cap \mathcal{A}^{c} \cap \mathcal{C}^{c}}\left(\mathbf{Y}^{*}-\mathbf{Y}\right)\right\rangle+ \\
& \left\langle\epsilon \lambda c_{\mathcal{A}^{c}} \mathbf{E}, P_{\mathcal{R}^{c} \cap \mathcal{A}^{c} \cap \mathcal{C}^{c}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\rangle+\left\langle\epsilon c_{\mathcal{C}} \mathbf{E}, P_{\mathcal{R} \cap \mathcal{C} \cap \mathcal{H}^{c}}\left(\mathbf{Y}^{*}-\mathbf{Y}\right)\right\rangle+\left\langle\epsilon c_{\mathcal{C}} \mathbf{E}, P_{\mathcal{R}^{c} \cap \mathcal{C} \cap \mathcal{H}^{c}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\rangle+ \\
& \left\langle\frac{1}{2} c_{\mathcal{C}} \mathbf{E}, P_{\mathcal{R} \cap \mathcal{H}}\left(\mathbf{Y}^{*}-\mathbf{Y}\right)\right\rangle+\left\langle\frac{1}{2} c_{\mathcal{C}} \mathbf{E}, P_{\mathcal{R}^{c} \cap \mathcal{H}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\rangle+\left\langle-P_{T}\left(\mathbf{W}_{1}\right)-P_{T}\left(\mathbf{W}_{2}\right), \mathbf{Y}-\mathbf{Y}^{*}\right\rangle \\
& =\epsilon \lambda c_{\mathcal{A}}\left\|P_{\mathcal{A}^{\cap} \mathcal{C}^{c}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\|_{1}+\epsilon \lambda c_{\mathcal{A}^{c}}\left\|P_{\mathcal{A}^{c} \cap \mathcal{C}^{c}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\|_{1}+\epsilon c_{\mathcal{C}}\left\|P_{\mathcal{C} \cap \mathcal{H}^{c}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\|_{1}+ \\
& \frac{1}{2} c_{\mathcal{C}}\left\|P_{\mathcal{H}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\|_{1}+\left\langle-P_{T}\left(\mathbf{W}_{1}\right)-P_{T}\left(\mathbf{W}_{2}\right), \mathbf{Y}-\mathbf{Y}^{*}\right\rangle \\
& \geq \lambda \epsilon \min \left\{c_{\mathcal{A}}, c_{\mathcal{A}^{c}}, c_{\mathcal{C}}\right\}\left\|P_{\mathcal{H}^{c}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\|_{1}+\frac{1}{2} c_{\mathcal{C}}\left\|P_{\mathcal{H}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\|_{1}-\left\langle P_{T}\left(\mathbf{W}_{1}\right), \mathbf{Y}-\mathbf{Y}^{*}\right\rangle-\left\langle P_{T}\left(\mathbf{W}_{2}\right), \mathbf{Y}-\mathbf{Y}^{*}\right\rangle \\
& =\lambda \epsilon \min \left\{c_{\mathcal{A}}, c_{\mathcal{A}^{c}}, c_{\mathcal{C}}\right\}\left\|P_{\mathcal{H}^{c}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\|_{1}+\frac{1}{2} c_{\mathcal{C}}\left\|P_{\mathcal{H}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\|_{1}-\left\langle P_{T}\left(\mathbf{W}_{1}\right), P_{\mathcal{H}^{c}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\rangle-\left\langle P_{T}\left(\mathbf{W}_{2}\right), P_{\mathcal{H}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\rangle \\
& \geq\left(\lambda \epsilon \min \left\{c_{\mathcal{A}}, c_{\mathcal{A}^{c}}, c_{\mathcal{C}}\right\}-\left\|P_{T}\left(\mathbf{W}_{1}\right)\right\|_{\infty}\right)\left\|P_{\mathcal{H}^{c}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\|_{1}+\left(\frac{1}{2} c_{\mathcal{C}}-\left\|P_{T}\left(\mathbf{W}_{2}\right)\right\|_{\infty}\right)\left\|P_{\mathcal{H}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\|_{1} \\
& \geq \frac{1}{2} \lambda \epsilon \min \left\{c_{\mathcal{A}}, c_{\mathcal{A}^{c}}, c_{\mathcal{C}}\right\}\left\|P_{\mathcal{H}^{c}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\|_{1}+\frac{1}{4} c_{\mathcal{C}}\left\|P_{\mathcal{H}}\left(\mathbf{Y}-\mathbf{Y}^{*}\right)\right\|_{1}>0 .
\end{aligned}
$$

Hence we obtain this lemma.

From the conditions in Theorem 1, we know that

$$
\lambda=\frac{c_{0}}{\sqrt{\max \left\{n-s, K^{*}\right\} \log n}}, c_{\mathcal{C}}=\frac{c_{0}}{\sqrt{K \log n}} \geq \frac{c_{0}}{\sqrt{K^{*} \log n}} \text { and } \frac{p-q}{\sqrt{p(1-q)}} \geq \frac{c_{1}}{\lambda K^{*}} .
$$

Let $\epsilon=\frac{c_{2}}{\sqrt{t(1-t)}} \cdot \frac{1}{\lambda K^{*}}$, we have the following two lemmas. For simplicity, we do not provide the explicit values for the constants $c, c_{0}, c_{1}, c_{2}, c_{3}, c_{\tau}, c_{K}$ used in the following proofs. One can easily verify that such constants exist, e.g., $c_{1}=200 c, c_{2}=1, c_{0}=\frac{1}{2048 c^{2}}, c_{3} \geq 512 c^{2}, c_{\tau} \leq \frac{1}{4096 c^{2}}, c_{K} \geq \frac{1}{8}$ for $c \geq 1$.
Lemma A-3. (a) $t(1-t) \geq \frac{c_{3}}{\lambda^{2} K^{* 2}}$; (b) $0<\epsilon<0.5$; (c) $(1+\epsilon) \frac{1-p}{p} \leq(1-2 \epsilon) \frac{1-t}{t}$; (d) $(1+\epsilon) \frac{q}{1-q} \leq(1-\epsilon) \frac{t}{1-t}$.

Proof. Since $\frac{1}{4} p+\frac{3}{4} q \leq t \leq \frac{3}{4} p+\frac{1}{4} q, t(1-t) \geq \frac{1}{2} \min \{t, 1-t\} \geq \frac{1}{8}(p-q) \geq \frac{1}{8} \sqrt{p(1-q)} \frac{c_{1}}{\lambda K^{*}} \geq \frac{1}{8} \sqrt{t(1-t)} \frac{c_{1}}{\lambda K^{*}}$, (a) holds when $\frac{c_{1}^{2}}{64} \geq c_{3}$. By choosing proper constants, e.g., $\frac{c_{2}^{2}}{c_{3}} \leq \frac{1}{4}$, (b) follows from (a) directly. For (c), note that $p-t \geq \frac{p-q}{4} \geq \sqrt{p(1-q)} \frac{c_{1}}{4 \lambda K^{*}} \geq \frac{c_{1}}{4 c_{2}} p(1-t) \epsilon$. It can be easily verified that this implies (c) when $\frac{c_{1}}{c_{2}} \geq 32$. Similarly, $t-q \geq \frac{p-q}{4} \geq \frac{c_{1}}{4 c_{2}} p(1-t) \epsilon \geq \frac{c_{1}}{16 c_{2}} t(1-q) \epsilon$ since $1-t \geq \frac{1}{4}(1-q)$, which implies (d) when $\frac{c_{1}}{c_{2}} \geq 32$.

Lemma A-4. $p \geq \frac{c_{3}}{\lambda^{2} K^{* 2}} \geq c_{3} \max \left\{\frac{\log n}{K^{*}}, \frac{(n-s) \log n}{K^{* 2}}\right\}$.

Proof. By Lemma A-3, $p \geq t(1-t) \geq \frac{c_{3}}{\lambda^{2} K^{* 2}} \geq c_{3} \max \left\{\frac{\log n}{K^{*}}, \frac{(n-s) \log n}{K^{* 2}}\right\}$.

In the following parts, we will construct \mathbf{W}_{1} and \mathbf{W}_{2} to meet the conditions in Lemma A-2.

2.1. Construct \mathbf{W}_{1}

We now construct \mathbf{W}_{1} such that the conditions in Lemma A-2 are satisfied.
Step 1. Construct the dual certificate \mathbf{W}_{1} : We let $\mathbf{W}_{1}=\mathbf{Q}_{1}+\mathbf{Q}_{2}+\mathbf{Q}_{3}+\mathbf{Q}_{4}$, where $\mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{3}, \mathbf{Q}_{4}$ are defined as follows:

$$
\begin{aligned}
& \mathbf{Q}_{1}(i, j)=\left\{\begin{array}{cl}
-\left(\mathbf{U U}^{\top}\right)_{i j}, & (i, j) \in \mathcal{R} \cap \mathcal{A}^{c} \cap \mathcal{H}^{c} \\
\frac{1-p_{i j}}{p_{i j}}\left(\mathbf{U U}^{\top}\right)_{i j}, & (i, j) \in \mathcal{R} \cap \mathcal{C}^{c} \cap \mathcal{A} \cap \mathcal{H}^{c} \\
\frac{1-\tau_{1}}{\tau_{1}}\left(\mathbf{U} \mathbf{U}^{\top}\right)_{i j}, & (i, j) \in \mathcal{R} \cap \mathcal{C} \cap \mathcal{A} \cap \mathcal{H}^{c} \\
0, & \text { otherwise }
\end{array}\right. \\
& \mathbf{Q}_{2}(i, j)=\left\{\begin{array}{cl}
-(1+\epsilon) \lambda c_{\mathcal{A}^{c}}, & (i, j) \in \mathcal{R} \cap \mathcal{C}^{c} \cap \mathcal{A}^{c} \cap \mathcal{H}^{c} \\
\frac{1-p_{i j}}{p_{i j}}(1+\epsilon) \lambda c_{\mathcal{A}^{c}}, & (i, j) \in \mathcal{R} \cap \mathcal{C}^{c} \cap \mathcal{A} \cap \mathcal{H}^{c} \\
-(1+\epsilon) c_{\mathcal{C}}, & (i, j) \in \mathcal{R} \cap \mathcal{C} \cap \mathcal{A}^{c} \cap \mathcal{H}^{c} \\
\frac{1-\tau_{1}}{\tau_{1}}(1+\epsilon) c_{\mathcal{C}}, & (i, j) \in \mathcal{R} \cap \mathcal{C} \cap \mathcal{A} \cap \mathcal{H}^{c} \\
0, & \text { otherwise }
\end{array}\right. \\
& \mathbf{Q}_{3}(i, j)=\left\{\begin{array}{cl}
(1+\epsilon) \lambda c_{\mathcal{A}}, & (i, j) \in \mathcal{R}^{c} \cap \mathcal{C}^{c} \cap \mathcal{A} \cap \mathcal{H}^{c} \cap \mathcal{E}^{c} \\
-\frac{q_{i j}}{1-q_{i j}}(1+\epsilon) \lambda c_{\mathcal{A}}, & (i, j) \in \mathcal{R}^{c} \cap \mathcal{C}^{c} \cap \mathcal{A}^{c} \cap \mathcal{H}^{c} \cap \mathcal{E}^{c} \\
(1+\epsilon) c_{\mathcal{C}}, & (i, j) \in \mathcal{R}^{c} \cap \mathcal{C} \cap \mathcal{A} \cap \mathcal{H}^{c} \\
-\frac{1-\tau_{2}}{\tau_{2}}(1+\epsilon) c_{\mathcal{C}}, & (i, j) \in \mathcal{R}^{c} \cap \mathcal{C} \cap \mathcal{A}^{c} \cap \mathcal{H}^{c} \\
0, & \text { otherwise }
\end{array}\right. \\
& \mathbf{Q}_{4}(i, j)=\left\{\begin{array}{cl}
(1+\epsilon) \lambda c_{\mathcal{A}}, & (i, j) \in \mathcal{R}^{c} \cap \mathcal{E} \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

It can be easily verified that $\mathbb{E}\left[\mathbf{Q}_{1}\right]=\mathbb{E}\left[\mathbf{Q}_{2}\right]=\mathbb{E}\left[\mathbf{Q}_{3}\right]=0$, and

$$
\left|\mathbf{Q}_{1}(i, j)\right| \leq \frac{1}{p K^{*}},\left|\mathbf{Q}_{2}(i, j)\right| \leq \max \left\{\frac{2 \lambda c_{\mathcal{A}^{c}}}{p}, 2 c_{\mathcal{C}}\right\},\left|\mathbf{Q}_{3}(i, j)\right| \leq \max \left\{\frac{2 \lambda c_{\mathcal{A}}}{1-q}, 2 c_{\mathcal{C}}\right\}
$$

Note that $\tau=\min \left\{\tau_{1}, \tau_{2}\right\} \geq \frac{4}{5}$ and $q \leq t \leq p$, by simple calculation, we have

$$
\begin{array}{ll}
\operatorname{Var}\left[\mathbf{Q}_{1}(i, j)\right] \leq \frac{1-p}{p K^{* 2}} \leq \frac{1}{p K^{* 2}}, & (i, j) \in \mathcal{C}^{c} \\
\operatorname{Var}\left[\mathbf{Q}_{1}(i, j)\right] \leq \frac{2(1-\tau)}{K^{* 2}}, & (i, j) \in \mathcal{C} \\
\operatorname{Var}\left[\mathbf{Q}_{2}(i, j)\right] \leq \frac{4 \lambda^{2} c_{\mathcal{A}^{c}}^{2}(1-p)}{p} \leq \frac{4 \lambda^{2} c_{\mathcal{A}^{c}}^{2}(1-t)}{p}, & (i, j) \in \mathcal{C}^{c} \\
\operatorname{Var}\left[\mathbf{Q}_{2}(i, j)\right] \leq 8 c_{\mathcal{C}}^{2}(1-\tau), & (i, j) \in \mathcal{C} \\
\operatorname{Var}\left[\mathbf{Q}_{3}(i, j)\right] \leq \frac{4 \lambda^{2} c_{\mathcal{A}}^{2} q}{1-q} \leq \frac{4 \lambda^{2} c_{\mathcal{A}^{2}}^{2}}{1-q}, & (i, j) \in \mathcal{C}^{c} \\
\operatorname{Var}\left[\mathbf{Q}_{3}(i, j)\right] \leq 8 c_{\mathcal{C}}^{2}(1-\tau), & (i, j) \in \mathcal{C}
\end{array}
$$

Step 2. Bound $\left\|\mathbf{W}_{1}\right\|$: From Lemma A-5, the following inequalities hold with high probability:

$$
\begin{aligned}
& \left\|\mathbf{Q}_{1}\right\| \leq c\left[\frac{\log n}{p K^{*}}+\sqrt{\left.\frac{2 n(1-\tau)}{K^{* 2}}+\frac{n-s}{p K^{* 2}} \cdot \sqrt{\log n}\right]} \begin{array}{l}
\left\|\mathbf{Q}_{2}\right\| \leq c\left[\max \left\{\frac{2 \lambda c_{\mathcal{A}^{c}}}{p}, 2 c_{\mathcal{C}}\right\} \log n+\sqrt{8 n c_{\mathcal{C}}^{2}(1-\tau)+(n-s) \frac{4 \lambda^{2} c_{\mathcal{A}^{c}}^{2}(1-t)}{p}} \cdot \sqrt{\log n}\right] \\
\left\|\mathbf{Q}_{3}\right\| \leq c\left[\max \left\{\frac{2 \lambda c_{\mathcal{A}}}{1-q}, 2 c_{\mathcal{C}}\right\} \log n+\sqrt{8 n c_{\mathcal{C}}^{2}(1-\tau)+(n-s) \frac{4 \lambda^{2} c_{\mathcal{A}}^{2} t}{1-q}} \cdot \sqrt{\log n}\right]
\end{array}, \$>\right.
\end{aligned}
$$

Recall that $K^{*} \geq K \geq c_{K} \log n, \lambda=\frac{c_{0}}{\sqrt{\max \left\{n-s, K^{*}\right\} \log n}}, 1-\tau \leq c_{\tau} \frac{K}{n}$ and $c_{\mathcal{C}}=\frac{c_{0}}{\sqrt{K \log n}}$. From Lemma A-4, $p \geq c_{3} \frac{\log n}{K^{*}}$, which implies that $c \max \left\{\frac{\log n}{p K^{*}}, \frac{\log n}{K}\right\} \leq \frac{1}{16}$. On the other hand, $p \geq c_{3} \frac{(n-s) \log n}{K^{* 2}}$, so $c \sqrt{\frac{2 n(1-\tau)}{K^{* 2}}+\frac{n-s}{p K^{* 2}}}$. $\sqrt{\log n} \leq c \sqrt{\frac{c_{\tau}}{c_{K} \log n}+\frac{1}{c_{3} \log n}} \cdot \sqrt{\log n} \leq \frac{1}{16}$. Hence $\left\|\mathbf{Q}_{1}\right\| \leq \frac{1}{8}$.
To bound $\left\|\mathbf{Q}_{2}\right\|$, note that $\frac{\lambda c_{\mathcal{A}^{c}}}{p}=\lambda \frac{1}{p} \sqrt{\frac{t}{1-t}} \leq \lambda \frac{1}{\sqrt{t(1-t)}} \leq \frac{\lambda^{2} K^{*}}{c_{3}} \leq \frac{1}{c_{3} \log n}$ and $c_{\mathcal{C}} \log n=\sqrt{\frac{c_{0} \log n}{K}}$, so $c \max \left\{\frac{2 \lambda c_{\mathcal{A}^{c}}}{p}, 2 c_{\mathcal{C}}\right\} \log n \leq \frac{1}{16}$. We also have $(n-s) \frac{\lambda^{2} c_{\mathcal{A}^{c}(1-t)}^{2}}{p}=(n-s) \frac{\lambda^{2}}{p} \cdot \frac{t}{1-t} \cdot(1-t) \leq(n-s) \lambda^{2} \leq \frac{c_{0}}{\log n}$ and $n c_{\mathcal{C}}^{2}(1-\tau) \leq \frac{c_{c}^{2} c_{\tau}}{\log n}$ which implies $c \sqrt{8 n c_{\mathcal{C}}^{2}(1-\tau)+(n-s) \frac{4 \lambda^{2} c_{\mathcal{A}^{c}}^{2}(1-t)}{p}} \cdot \sqrt{\log n} \leq \frac{1}{16}$, so that $\left\|\mathbf{Q}_{2}\right\| \leq \frac{1}{8}$. Similarly, we can prove that $\left\|\mathbf{Q}_{3}\right\| \leq \frac{1}{8}$. For $\left\|\mathbf{Q}_{4}\right\|$, note that $(1+\epsilon) \lambda c_{\mathcal{A}} \leq 2 \lambda c_{\mathcal{A}}=2 \lambda \sqrt{\frac{1-t}{t}} \leq 2 \lambda \frac{1}{\sqrt{t(1-t)}} \leq \frac{2}{c_{3} \log n} \leq \frac{1}{8}$. Hence $\|\mathbf{W}\| \leq\left\|\mathbf{Q}_{1}\right\|+\left\|\mathbf{Q}_{2}\right\|+\left\|\mathbf{Q}_{3}\right\|+\left\|\mathbf{Q}_{4}\right\| \leq \frac{1}{2}$.
Step 3. Bound $\left\|P_{T} \mathbf{W}_{1}\right\|_{\infty}$: Since $\left\|P_{T} \mathbf{W}_{1}\right\|_{\infty}=\left\|\mathbf{U U}^{\top} \mathbf{W}_{1}+\mathbf{W}_{1} \mathbf{U U}^{\top}-\mathbf{U U}^{\top} \mathbf{W}_{1} \mathbf{U U}^{\top}\right\|_{\infty} \leq 3\left\|\mathbf{U U}^{\top} \mathbf{W}_{1}\right\|_{\infty}$, we only need to bound $\left\|\mathbf{U U}^{\top} \mathbf{W}_{1}\right\|_{\infty}$. By Lemma A-6, the following inequalities hold with high probability

$$
\begin{aligned}
& \left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{1}\right)_{i j}\right| \leq c\left(\frac{\sqrt{\left(2 s(1-\tau) / K^{* 2}+(n-s) /\left(p K^{* 2}\right)\right) \log n}}{K^{*}}+\frac{\log n}{p K^{*^{2}}}\right) \\
& \left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{2}\right)_{i j}\right| \leq c\left(\frac{\sqrt{\left(8 s c_{\mathcal{C}}^{2}(1-\tau)+4(n-s) \lambda^{2} c_{\mathcal{A}^{c}}^{2}(1-t) / p\right) \log n}}{K^{*}}+\max \left\{\frac{2 \lambda c_{\mathcal{A}^{c}}}{p}, 2 c_{\mathcal{C}}\right\} \cdot \frac{\log n}{K^{*}}\right) \\
& \left|\left(\mathbf{U} \mathbf{U}^{\top} \mathbf{Q}_{3}\right)_{i j}\right| \leq c\left(\frac{\sqrt{\left(8 s c_{\mathcal{C}}^{2}(1-\tau)+4(n-s) \lambda^{2} c_{\mathcal{A}^{c}}^{2} t /(1-q)\right) \log n}}{K^{*}}+\max \left\{\frac{2 \lambda c_{\mathcal{A}}}{1-q}, 2 c_{\mathcal{C}}\right\} \cdot \frac{\log n}{K^{*}}\right)
\end{aligned}
$$

We now show that these upper bounds are less than $\frac{1}{6} \epsilon \min \left\{\lambda c_{\mathcal{A}}, \lambda c_{\mathcal{A}^{c}}, c_{\mathcal{C}}\right\}$. Since $c_{\mathcal{C}} \geq \lambda$ and $\min \left\{c_{\mathcal{A}}, c_{\mathcal{A}^{c}}\right\} \leq 1$, $\frac{1}{6} \epsilon \min \left\{\lambda c_{\mathcal{A}}, \lambda c_{\mathcal{A}^{c}}, c_{\mathcal{C}}\right\}=\frac{1}{6} \epsilon \min \left\{\lambda c_{\mathcal{A}}, \lambda c_{\mathcal{A}^{c}}\right\}$. Note that

$$
\begin{aligned}
\epsilon \lambda c_{\mathcal{A}} & =\lambda \cdot \frac{c_{2}}{\sqrt{t(1-t)}} \cdot \frac{1}{\lambda K^{*}} \cdot \sqrt{\frac{1-t}{t}}=\frac{c_{2}}{t K^{*}} \geq \frac{c_{2}}{K^{*}} \\
\epsilon \lambda c_{\mathcal{A}^{c}} & =\lambda \cdot \frac{c_{2}}{\sqrt{t(1-t)}} \cdot \frac{1}{\lambda K^{*}} \cdot \sqrt{\frac{t}{1-t}}=\frac{c_{2}}{(1-t) K^{*}} \geq \frac{c_{2}}{K^{*}} .
\end{aligned}
$$

We now verify that all the terms in $\left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{1}\right)_{i j}\right|,\left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{2}\right)_{i j}\right|$ and $\left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{3}\right)_{i j}\right|$ are less than $\frac{c_{2}}{6 K^{*}}$. Since $1-\tau \leq c_{\tau} \frac{K}{n}$ and $K^{*} \geq K \geq c_{K} \log n$, we have $\frac{2 c_{\mathcal{C}} \log n}{K^{*}}=\sqrt{\frac{\log n}{K}} \cdot \frac{2 c_{0}}{K^{*}} \leq \frac{c_{2}}{K^{*}}, \frac{s(1-\tau)}{K^{* 2}} \leq \frac{c_{\tau}}{K^{*}}$ and $s c_{\mathcal{C}}^{2}(1-\tau) \leq \frac{c_{0}^{2} c_{\tau}}{\log n}$, which implies that $\frac{\sqrt{2 s(1-\tau) \log n / K^{* 2}}}{K^{*}} \leq \sqrt{\frac{2 c_{\tau}}{K^{* 3}}} \leq \frac{c_{2}}{18 K^{*}}$ and $\frac{\sqrt{8 s c_{\mathcal{C}}^{2}(1-\tau) \log n}}{K^{*}} \leq \frac{\sqrt{8 c_{0}^{2} c_{\tau}}}{K^{*}} \leq \frac{c_{2}}{18 K^{*}}$.

For $\left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{1}\right)_{i j}\right|$,

$$
\begin{gathered}
\frac{\log n}{p K^{* 2}} \leq \frac{\log n}{\frac{c_{3} \log n}{K^{*}} \cdot K^{*^{2}}}=\frac{1}{c_{3} K^{*}} \leq \frac{c_{2}}{18 K^{*}} \\
\frac{\sqrt{(n-s) \log n /\left(p K^{* 2}\right)}}{K^{*}} \leq \frac{\sqrt{(n-s) \log n /\left(c_{3}(n-s) \log n\right)}}{K^{*}}=\frac{1}{\sqrt{c_{3} K^{*}}} \leq \frac{c_{2}}{18 K^{*}} .
\end{gathered}
$$

For $\left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{2}\right)_{i j}\right|$,

$$
\begin{gathered}
\frac{\lambda c_{\mathcal{A}^{c}} \log n}{p K^{*}}=\lambda \log n \cdot \sqrt{\frac{t}{1-t}} \cdot \frac{1}{p K^{*}} \leq \frac{\lambda \log n}{K^{*}} \sqrt{\frac{1}{t(1-t)}} \leq \frac{\lambda \log n}{K^{*}} \sqrt{\frac{\lambda^{2} K^{* 2}}{c_{3}}}=\frac{\lambda^{2} \log n}{\sqrt{c_{3}}} \leq \frac{c_{0}^{2}}{\sqrt{c_{3}} K^{*}} \leq \frac{c_{2}}{18 K^{*}}, \\
\frac{\sqrt{(n-s) \lambda^{2} c_{\mathcal{A}^{c}}^{2}(1-t) \log n / p}}{K^{*}} \leq \frac{\sqrt{\lambda^{2}(n-s) \log n \cdot \frac{t}{1-t} \cdot \frac{1-t}{p}}}{K^{*}} \leq \frac{\sqrt{\lambda^{2}(n-s) \log n}}{K^{*}} \leq \frac{c_{0}}{K^{*}} \leq \frac{c_{2}}{18 K^{*}}
\end{gathered}
$$

For $\left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{3}\right)_{i j}\right|$,

$$
\begin{gathered}
\frac{\lambda c_{\mathcal{A}} \log n}{(1-q) K^{*}}=\lambda \log n \cdot \sqrt{\frac{1-t}{t}} \cdot \frac{1}{(1-q) K^{*}} \leq \frac{\lambda \log n}{K^{*}} \sqrt{\frac{1}{t(1-t)}} \leq \frac{\lambda \log n}{K^{*}} \sqrt{\frac{\lambda^{2} K^{* 2}}{c_{3}}}=\frac{\lambda^{2} \log n}{\sqrt{c_{3}}} \leq \frac{c_{0}^{2}}{\sqrt{c_{3} K^{*}}} \leq \frac{c_{2}}{18 K^{*}} \\
\quad \frac{\sqrt{(n-s) \lambda^{2} c_{\mathcal{A}}^{2} t \log n /(1-q)}}{K^{*}} \leq \frac{\sqrt{\lambda^{2}(n-s) \log n \cdot \frac{1-t}{t} \cdot \frac{t}{1-q}}}{K^{*}} \leq \frac{\sqrt{\lambda^{2}(n-s) \log n}}{K^{*}} \leq \frac{c_{0}}{K^{*}} \leq \frac{c_{2}}{18 K^{*}}
\end{gathered}
$$

For $\left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{4}\right)_{i j}\right|$, we know that $\left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{4}\right)_{i j}\right|=0$. Hence we conclude that $\left\|P_{T} \mathbf{W}_{1}\right\|_{\infty} \leq \frac{1}{2} \epsilon \min \left\{\lambda c_{\mathcal{A}}, \lambda c_{\mathcal{A}^{c}}, c_{\mathcal{C}}\right\}$.
Step 4. Verify Condition (c): From the construction of \mathbf{W}_{1}, we know that the inequalities (II)(III)(VI)(VII) hold. We now show that the other inequalities also hold. From Lemma A-3(c),

$$
(1+\epsilon) \frac{1-p}{p} \leq(1-2 \epsilon) \frac{1-t}{t} \Longleftrightarrow(1+\epsilon) \lambda \frac{c_{\mathcal{A}}(1-p)}{p} \leq(1-2 \epsilon) \lambda c_{\mathcal{A}}
$$

Thus, for $(i, j) \in \mathcal{R} \cap \mathcal{A} \cap \mathcal{C}^{c} \cap \mathcal{H}^{c}$,

$$
\left(\mathbf{U} \mathbf{U}^{\top}+\mathbf{W}_{1}\right)_{i j}=\frac{1}{p}\left(\mathbf{U} \mathbf{U}^{\top}\right)_{i j}+(1+\epsilon) \lambda \frac{c_{\mathcal{A}^{c}}(1-p)}{p} \leq \frac{1}{p K^{*}}+(1-2 \epsilon) \lambda c_{\mathcal{A}}
$$

Recall that $\epsilon \lambda c_{\mathcal{A}} \geq \frac{c_{2}}{t K^{*}} \geq \frac{1}{p K^{*}}$, hence (I) holds. From Lemma A-3(d),

$$
(1+\epsilon) \frac{q}{1-q} \leq(1-\epsilon) \frac{t}{1-t} \Longleftrightarrow-(1+\epsilon) \lambda \frac{c_{\mathcal{A}} q}{1-q} \geq-(1-\epsilon) \lambda c_{\mathcal{A}^{c}}
$$

which implies (IV). Since $\epsilon<0.5$,

$$
(1-\epsilon) c_{\mathcal{C}} \geq \frac{1}{2} c_{\mathcal{C}}=\frac{c_{0}}{2 \sqrt{K \log n}} \geq \frac{5}{K^{*}}
$$

On the other hand, since $\tau \geq \frac{4}{5}$, for $(i, j) \in \mathcal{R} \cap \mathcal{A} \cap \mathcal{C} \cap \mathcal{H}^{c}$,

$$
\left(\mathbf{U} \mathbf{U}^{\top}+\mathbf{W}\right)_{i j} \leq \frac{1}{\tau K^{*}}+(1+\epsilon) c_{\mathcal{C}} \frac{1-\tau}{\tau} \leq \frac{5}{4 K^{*}}+\frac{3}{8} c_{\mathcal{C}} \leq \frac{5}{4 K^{*}}+\frac{15}{4 K^{*}}=\frac{5}{K^{*}}
$$

and for $(i, j) \in \mathcal{R}^{c} \cap \mathcal{A}^{c} \cap \mathcal{C} \cap \mathcal{H}^{c}$,

$$
\mathbf{W}_{1}(i, j)+(1-\epsilon) c_{\mathcal{C}} \geq(1-\epsilon) c_{\mathcal{C}}-(1+\epsilon) c_{\mathcal{C}} \frac{1-\tau}{\tau} \geq \frac{1}{2} c_{\mathcal{C}}-\frac{3}{2} c_{\mathcal{C}} \frac{1-\tau}{\tau} \geq \frac{1}{8} c_{\mathcal{C}} \geq 0
$$

so (V) and (VIII) hold.

2.2. Construct \mathbf{W}_{2}

Step 1. Construct the dual certificate \mathbf{W}_{2} : We let $\mathbf{W}_{2}=\mathbf{Q}_{1}+\mathbf{Q}_{2}+\mathbf{Q}_{3}$, where $\mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{3}$ are defined as follows:

$$
\begin{aligned}
& \mathbf{Q}_{1}(i, j)=\left\{\begin{array}{cl}
-\left(\mathbf{U U}^{\top}\right)_{i j}, & (i, j) \in \mathcal{R} \cap \mathcal{A}^{c} \cap \mathcal{H} \\
\frac{1-\tau_{1}}{\tau_{1}}\left(\mathbf{U U}^{\top}\right)_{i j}, & (i, j) \in \mathcal{R} \cap \mathcal{A} \cap \mathcal{H} \\
0, & (i, j) \in \mathcal{H}^{c}
\end{array}\right. \\
& \mathbf{Q}_{2}(i, j)=\left\{\begin{array}{cl}
-\frac{3}{2} c_{\mathcal{C}}, & (i, j) \in \mathcal{R} \cap \mathcal{A}^{c} \cap \mathcal{H} \\
\frac{3\left(1-\tau_{1}\right)}{2 \tau_{1}} c_{\mathcal{C}}, & (i, j) \in \mathcal{R} \cap \mathcal{A} \cap \mathcal{H} \\
0, & (i, j) \in \mathcal{H}^{c}
\end{array}\right. \\
& \mathbf{Q}_{3}(i, j)=\left\{\begin{array}{cl}
\frac{3}{2} c_{\mathcal{C}}, & (i, j) \in \mathcal{R}^{c} \cap \mathcal{A} \cap \mathcal{H} \\
-\frac{3\left(1-\tau_{2}\right)}{2 \tau_{2}} c_{\mathcal{C}}, & (i, j) \in \mathcal{R}^{c} \cap \mathcal{A}^{c} \cap \mathcal{H} \\
0, & (i, j) \in \mathcal{H}^{c}
\end{array}\right.
\end{aligned}
$$

It can be easily verified that $\mathbb{E}\left[\mathbf{Q}_{1}\right]=\mathbb{E}\left[\mathbf{Q}_{2}\right]=\mathbb{E}\left[\mathbf{Q}_{3}\right]=0$, and

$$
\begin{gathered}
\left|\mathbf{Q}_{1}(i, j)\right| \leq \frac{1}{K},\left|\mathbf{Q}_{2}(i, j)\right| \leq 2 c_{\mathcal{C}},\left|\mathbf{Q}_{3}(i, j)\right| \leq 2 c_{\mathcal{C}} \\
\operatorname{Var}\left[\mathbf{Q}_{1}(i j)\right] \leq \frac{2(1-\tau)}{K^{2}}, \operatorname{Var}\left[\mathbf{Q}_{2}(i j)\right] \leq 5 c_{\mathcal{C}}^{2}(1-\tau), \operatorname{Var}\left[\mathbf{Q}_{3}(i j)\right] \leq 5 c_{\mathcal{C}}^{2}(1-\tau)
\end{gathered}
$$

Step 2. Bound $\left\|\mathbf{W}_{2}\right\|$ and $\left\|P_{T} \mathbf{W}_{2}\right\|_{\infty}$: From Lemma A-5, the following inequalities hold with high probability:

$$
\begin{aligned}
& \left\|\mathbf{Q}_{1}\right\| \leq c\left[\frac{\log n}{K}+\sqrt{\frac{2 n(1-\tau) \log n}{K^{2}}}\right] \\
& \left\|\mathbf{Q}_{2}\right\| \leq c\left[2 c_{\mathcal{C}} \log n+\sqrt{5 n c_{\mathcal{C}}^{2}(1-\tau) \log n}\right] \\
& \left\|\mathbf{Q}_{3}\right\| \leq c\left[2 c_{\mathcal{C}} \log n+\sqrt{5 n c_{\mathcal{C}}^{2}(1-\tau) \log n}\right]
\end{aligned}
$$

Recall that $1-\tau \leq c_{\tau} \frac{K}{n}, K \geq c_{K} \log n$ and $c_{\mathcal{C}}=\frac{c_{0}}{\sqrt{K \log n}}$. Thus, $\|\mathbf{W}\| \leq\left\|\mathbf{Q}_{1}\right\|+\left\|\mathbf{Q}_{2}\right\|+\left\|\mathbf{Q}_{3}\right\| \leq \frac{1}{2}$. Since $\left\|P_{T} \mathbf{W}_{2}\right\|_{\infty}=\left\|\mathbf{U U}^{\top} \mathbf{W}_{2}+\mathbf{W}_{2} \mathbf{U U}^{\top}-\mathbf{U U}^{\top} \mathbf{W}_{2} \mathbf{U} \mathbf{U}^{\top}\right\|_{\infty} \leq 3\left\|\mathbf{U} \mathbf{U}^{\top} \mathbf{W}_{2}\right\|_{\infty}$, we only need to bound $\left\|\mathbf{U U}^{\top} \mathbf{W}_{2}\right\|_{\infty}$.

By Lemma A-6, the following inequalities hold with high probability

$$
\begin{aligned}
& \left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{1}\right)_{i j}\right| \leq c\left(\frac{\sqrt{2 n(1-\tau) \log n}}{K^{2}}+\frac{\log n}{K^{2}}\right) \\
& \left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{2}\right)_{i j}\right| \leq c\left(\frac{\sqrt{5 n c_{\mathcal{C}}^{2}(1-\tau) \log n}}{K}+\frac{2 c_{\mathcal{C}} \log n}{K}\right) \\
& \left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{3}\right)_{i j}\right| \leq c\left(\frac{\sqrt{5 n c_{\mathcal{C}}^{2}(1-\tau) \log n}}{K}+\frac{2 c_{\mathcal{C}} \log n}{K}\right)
\end{aligned}
$$

Since $K \geq c_{K} \log n,\left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{1}\right)_{i j}\right|,\left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{2}\right)_{i j}\right|$ and $\left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{3}\right)_{i j}\right|$ are all less than $\frac{1}{4} c_{\mathcal{C}}$ when c_{K} is large enough.
Step 3. Verify Condition (d): From the construction of \mathbf{W}_{2}, we know that the inequalities (X)(XI) hold. We now show that the other inequalities also hold. Observe that

$$
\frac{1}{2} c_{\mathcal{C}}=\frac{c_{0}}{2 \sqrt{K \log n}} \geq \frac{5}{K} .
$$

On the other hand, since $\tau \geq \frac{4}{5}$, for $(i, j) \in \mathcal{R} \cap \mathcal{A} \cap \mathcal{H}$,

$$
\left(\mathbf{U U}^{\top}+\mathbf{W}\right)_{i j} \leq \frac{1}{\tau K}+\frac{3}{2} c_{\mathcal{C}} \frac{1-\tau}{\tau} \leq \frac{5}{4 K^{*}}+\frac{3}{8} c_{\mathcal{C}} \leq \frac{5}{4 K^{*}}+\frac{15}{4 K^{*}}=\frac{5}{K^{*}},
$$

and for $(i, j) \in \mathcal{R}^{c} \cap \mathcal{A}^{c} \cap \mathcal{H}$,

$$
\mathbf{W}_{i j}+\frac{1}{2} c_{\mathcal{C}}=\frac{1}{2} c_{\mathcal{C}}-\frac{3}{2} c_{\mathcal{C}} \frac{1-\tau}{\tau} \geq \frac{1}{2} c_{\mathcal{C}}-\frac{3}{8} c_{\mathcal{C}}=\frac{1}{8} c_{\mathcal{C}} \geq 0
$$

so (IX) and (XII) hold.

2.3. The "Outlier-free" Case

The proofs in this setup are almost the same as above. Recall that K_{i} is the size of the i th cluster and s_{i} is the number of high confidence nodes in the i th cluster. In this case, we just need to let

$$
\lambda=\frac{c_{0}}{\sqrt{\max \left\{K^{*}, \max _{i}\left\{\sum_{j \neq i}\left(K_{i}-s_{i}\right)\right\}\right\} \log n}} .
$$

For the dual certificate \mathbf{W}_{1}, we let $\mathbf{W}_{1}=\mathbf{Q}_{1}+\mathbf{Q}_{2}+\mathbf{Q}_{3}$, where $\mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{3}$ are defined as follows:

$$
\begin{aligned}
& \mathbf{Q}_{1}(i, j)=\left\{\begin{array}{cl}
-\left(\mathbf{U} \mathbf{U}^{\top}\right)_{i j}, & (i, j) \in \mathcal{R} \cap \mathcal{A}^{c} \cap \mathcal{H}^{c} \\
\frac{1-p_{i j}}{p_{i j}}\left(\mathbf{U U}^{\top}\right)_{i j}, & (i, j) \in \mathcal{R} \cap \mathcal{C}^{c} \cap \mathcal{A} \cap \mathcal{H}^{c} \\
\frac{1-\tau_{1}}{\tau_{1}}\left(\mathbf{U} \mathbf{U}^{\top}\right)_{i j}, & (i, j) \in \mathcal{R} \cap \mathcal{C} \cap \mathcal{A} \cap \mathcal{H}^{c} \\
0, & \text { otherwise }
\end{array}\right. \\
& \mathbf{Q}_{2}(i, j)=\left\{\begin{array}{cl}
-(1+\epsilon) \lambda c_{\mathcal{A}^{c}}, & (i, j) \in \mathcal{R} \cap \mathcal{C}^{c} \cap \mathcal{A}^{c} \cap \mathcal{H}^{c} \\
\frac{1-p_{i j}}{p_{i j}}(1+\epsilon) \lambda c_{\mathcal{A}^{c}}, & (i, j) \in \mathcal{R} \cap \mathcal{C}^{c} \cap \mathcal{A} \cap \mathcal{H}^{c} \\
-(1+\epsilon) c_{\mathcal{C}}, & (i, j) \in \mathcal{R} \cap \mathcal{C} \cap \mathcal{A}^{c} \cap \mathcal{H}^{c} \\
\frac{1-\tau_{1}}{\tau_{1}}(1+\epsilon) c_{\mathcal{C}}, & (i, j) \in \mathcal{R} \cap \mathcal{C} \cap \mathcal{A} \cap \mathcal{H}^{c} \\
0, & \text { otherwise }
\end{array}\right. \\
& \mathbf{Q}_{3}(i, j)=\left\{\begin{array}{cl}
(1+\epsilon) \lambda c_{\mathcal{A}}, & (i, j) \in \mathcal{R}^{c} \cap \mathcal{C}^{c} \cap \mathcal{A} \cap \mathcal{H}^{c} \\
-\frac{q_{i j}}{1-q_{i j}}(1+\epsilon) \lambda c_{\mathcal{A}}, & (i, j) \in \mathcal{R}^{c} \cap \mathcal{C}^{c} \cap \mathcal{A}^{c} \cap \mathcal{H}^{c} \\
(1+\epsilon) c_{\mathcal{C}}, & (i, j) \in \mathcal{R}^{c} \cap \mathcal{C} \cap \mathcal{A} \cap \mathcal{H}^{c} \\
-\frac{1-\tau_{2}}{\tau_{2}}(1+\epsilon) c_{\mathcal{C}}, & (i, j) \in \mathcal{R}^{c} \cap \mathcal{C} \cap \mathcal{A}^{c} \cap \mathcal{H}^{c} \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

The only difference is that we remove \mathbf{Q}_{4} since there are no outliers. Similar to Lemma A-5 and Lemma A-6, from the matrix Bernstein inequality, the followings hold with probability at least $1-n^{-10}$:

$$
\begin{aligned}
& \left\|\mathbf{Q}_{1}\right\| \leq c\left[\frac{\log n}{p K^{*}}+\sqrt{\left.\frac{2 n(1-\tau)}{K^{* 2}}+\frac{\max _{i}\left\{K_{i}-s_{i}\right\}}{p K^{* 2}} \cdot \sqrt{\log n}\right]} \begin{array}{l}
\left\|\mathbf{Q}_{2}\right\| \leq c\left[\max \left\{\frac{2 \lambda c_{\mathcal{A}^{c}}}{p}, 2 c_{\mathcal{C}}\right\} \log n+\sqrt{8 n c_{\mathcal{C}}^{2}(1-\tau)+\max _{i}\left\{K_{i}-s_{i}\right\} \frac{4 \lambda^{2} c_{\mathcal{A}^{c}}^{2}(1-t)}{p}} \cdot \sqrt{\log n}\right] \\
\left\|\mathbf{Q}_{3}\right\| \leq c\left[\max \left\{\frac{2 \lambda c_{\mathcal{A}}}{1-q}, 2 c_{\mathcal{C}}\right\} \log n+\sqrt{8 n c_{\mathcal{C}}^{2}(1-\tau)+\max _{i}\left\{\sum_{j \neq i}\left(K_{j}-s_{j}\right)\right\} \frac{4 \lambda^{2} c_{\mathcal{A}}^{2} t}{1-q}} \cdot \sqrt{\log n}\right]
\end{array}, .\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left(\mathbf{U U}^{\top} \mathbf{Q}_{1}\right)_{i j}\right| \leq c\left(\frac{\sqrt{\left(2 s(1-\tau) / K^{* 2}+\max _{i}\left\{K_{i}-s_{i}\right\} /\left(p K^{* 2}\right)\right) \log n}}{K^{*}}+\frac{\log n}{p K^{*^{2}}}\right) \\
& \left|\left(\mathbf{U} \mathbf{U}^{\top} \mathbf{Q}_{2}\right)_{i j}\right| \leq c\left(\frac{\sqrt{\left(8 s c_{\mathcal{C}}^{2}(1-\tau)+4 \max _{i}\left\{K_{i}-s_{i}\right\} \lambda^{2} c_{\mathcal{A}^{c}}^{2}(1-t) / p\right) \log n}}{K^{*}}+\max \left\{\frac{2 \lambda c_{\mathcal{A}^{c}}}{p}, 2 c_{\mathcal{C}}\right\} \cdot \frac{\log n}{K^{*}}\right) \\
& \left|\left(\mathbf{U} \mathbf{U}^{\top} \mathbf{Q}_{3}\right)_{i j}\right| \leq c\left(\frac{\sqrt{\left(8 s c_{\mathcal{C}}^{2}(1-\tau)+4 \max _{i}\left\{\sum_{j \neq i}\left(K_{j}-s_{j}\right)\right\} \lambda^{2} c_{\mathcal{A}^{c}}^{2} t /(1-q)\right) \log n}}{K^{*}}+\max \left\{\frac{2 \lambda c_{\mathcal{A}}}{1-q}, 2 c_{\mathcal{C}}\right\} \cdot \frac{\log n}{K^{*}}\right) .
\end{aligned}
$$

Since $\max _{i}\left\{K_{i}-s_{i}\right\} \leq \max _{i}\left\{\sum_{j \neq i}\left(K_{j}-s_{j}\right)\right\}$, the terms $\max _{i}\left\{K_{i}-s_{i}\right\}$ in these inequalities can be replaced by $\max _{i}\left\{\sum_{j \neq i}\left(K_{j}-s_{j}\right)\right\}$. Then one can prove the desired result easily by following the same calculation in Section 2.1.

3. Proof of Theorem 2

Recall that the graph has n nodes, r clusters and $n-\sum_{i=1}^{r} K_{i}$ outliers. K is the minimum cluster size, i.e., $K=\min _{i} K_{i}$. For clarity, the constants may vary from line to line.

Step 1. The n nodes are uniformly randomly separated into m groups which form m small graphs $\left\{g_{1}, \cdots, g_{m}\right\}$. For each $i \in[n]$ and $j \in[m]$, node i is assigned to graph g_{j} with probability $\frac{1}{m}$. For $g \in\left\{g_{1}, \cdots, g_{m}\right\}$, let K_{i}^{g} be the number of the nodes in the i th cluster that are assigned to graph g and let n^{g} be the number of nodes in g. Clearly, K_{i}^{g} and n^{g} are two random variables whose expected values are $\mathbb{E}\left[K_{i}^{g}\right]=\frac{K_{i}}{m}$ and $\mathbb{E}\left[n^{g}\right]=\frac{n}{m}$, respectively. From the Hoeffding's inequality,

$$
\mathbb{P}\left[\left|K_{i}^{g}-\mathbb{E}\left[K_{i}^{g}\right]\right| \geq t\right] \leq 2 \exp \left(-\frac{2 t^{2}}{K_{i}}\right)
$$

For constant $\rho<1$, let $t=\frac{1-\rho}{2(1+\rho) m} K_{i}$, then we have

$$
\mathbb{P}\left[\left|K_{i}^{g}-\frac{K_{i}}{m}\right| \geq \frac{1-\rho}{2(1+\rho) m} K_{i}\right] \leq 2 \exp \left(-\frac{(1-\rho)^{2} K_{i}}{2(1+\rho)^{2} m^{2}}\right) \leq 2 \exp \left(-\frac{(1-\rho)^{2} K}{2(1+\rho)^{2} m^{2}}\right)
$$

In other words, $\frac{1+3 \rho}{2(1+\rho) m} K_{i} \leq K_{i}^{g} \leq \frac{3+\rho}{2(1+\rho) m} K_{i}$ holds with probability at least $1-2 \exp \left(-\frac{(1-\rho)^{2} K}{2(1+\rho)^{2} m^{2}}\right)$. Similarly, $\frac{1+3 \rho}{2(1+\rho) m} n \leq n^{g} \leq \frac{3+\rho}{2(1+\rho) m} n$ holds with probability at least $1-2 \exp \left(-\frac{(1-\rho)^{2} n}{2(1+\rho)^{2} m^{2}}\right)$. By the union bound, we have

$$
\begin{equation*}
\frac{1+3 \rho}{2(1+\rho) m} K_{i} \leq K_{i}^{g} \leq \frac{3+\rho}{2(1+\rho) m} K_{i} \text { for } i \in[r], g \in\left\{g_{1}, \cdots, g_{m}\right\} \text { and } \frac{1+3 \rho}{2(1+\rho) m} n \leq n^{g} \leq \frac{3+\rho}{2(1+\rho) m} n \tag{A-1}
\end{equation*}
$$

hold with probability at least $1-2(m r+1) \exp \left(-\frac{(1-\rho)^{2} K}{2(1+\rho)^{2} m^{2}}\right)$. Since $m \leq \frac{1-\rho}{4(1+\rho)} \sqrt{\frac{K}{\log n}}$ and $m r+1 \leq \frac{m n}{K}+1 \leq n$, (A-1) holds with probability at least $1-n^{-6}$.

Step 2. After all the subgraphs are generated, we perform algorithm \mathfrak{A} on each subgraph $g \in\left\{g_{1}, \cdots, g_{m}\right\}$. Let \mathcal{S}_{g} be the set of the recovered clusters in g. Since \mathfrak{A} is $\boldsymbol{\lambda}$-workable and $\frac{1+3 \rho}{2(1+\rho) m} K_{i} \leq K_{i}^{g} \leq \frac{3+\rho}{2(1+\rho) m} K_{i}$ for $i \in[r]$ holds with high probability, we know that when (p, q) is in $\mathfrak{C}\left(n / m, K_{1} / m, \cdots, K_{r} / m, \boldsymbol{\lambda}, \mathcal{I}\right), \mathcal{S}_{g}$ satisfies that 1) for each $i \in \mathcal{I}$, there exists $\mathcal{C}_{i} \in \mathcal{S}_{g}$ such that \mathcal{C}_{i} a subset of the i th cluster and $\left|\mathcal{C}_{i}\right| \geq \lambda_{i} K_{i}^{g} \geq \frac{1+3 \rho}{2(1+\rho) m} \lambda_{i} K_{i}$, and 2) for each cluster $\mathcal{C} \in \mathcal{S}_{g} \backslash \bigcup_{i \in \mathcal{I}} \mathcal{C}_{i}$, we have $|\mathcal{C}|<\min _{i \in \mathcal{I}} \rho \lambda_{i} K_{i}^{g} \leq \frac{3 \rho+\rho^{2}}{2(1+\rho) m} \min _{i \in \mathcal{I}} \lambda_{i} K_{i}$, with probability at least $1-n^{-2}$. By the union bound, with probability at least $1-n^{-1}$, all of $\mathcal{S}_{g_{1}}, \cdots, \mathcal{S}_{g_{m}}$ satisfy these two properties.
In the "breaking up small clusters" step, note that threshold T satisfies $\frac{T}{\min _{i \in \mathcal{I}} \lambda_{i} K_{i}} \in\left(\frac{3 \rho+\rho^{2}}{2(1+\rho) m}, \frac{1+3 \rho}{2(1+\rho) m}\right)$. For each $\mathcal{S}_{g} \in\left\{\mathcal{S}_{g_{1}}, \cdots, \mathcal{S}_{g_{m}}\right\}$, after breaking up the clusters in \mathcal{S}_{g} whose size is less than T, \mathcal{S}_{g} becomes

$$
\mathcal{S}_{g}^{0}=\bigcup_{i \in \mathcal{I}} \mathcal{C}_{i} \cup\left\{\{u\}: \forall u \in \mathcal{C}, \forall \mathcal{C} \in \mathcal{S}_{g} \backslash \bigcup_{i \in \mathcal{I}} \mathcal{C}_{i}\right\}
$$

Then for each $\mathcal{C}_{i} \in \mathcal{S}_{g}^{0}, \mathcal{C}_{i}$ is uniformly randomly divided into l clusters, namely, $\left\{\mathcal{C}_{i}^{1}, \cdots, \mathcal{C}_{i}^{l}\right\}$. Since w.h.p

$$
\left|\mathcal{C}_{i}\right| \geq \frac{1+3 \rho}{2(1+\rho) m} \min _{j \in \mathcal{I}} \lambda_{j} K_{j}, \forall i \in \mathcal{I}
$$

by the Hoeffding's inequality and the union bound, one can easily verify that for all $\mathcal{S}_{g}^{0} \in\left\{\mathcal{S}_{g_{1}}^{0}, \cdots, \mathcal{S}_{g_{m}}^{0}\right\}$ and $\mathcal{C}_{i} \in \mathcal{S}_{g}^{0}$,
the following inequality holds with probability at least $1-n^{-6}$ when $l \leq \frac{1}{4} \sqrt{\frac{(1+3 \rho) \min _{i \in \mathcal{I} \lambda_{i} K_{i}}}{2(1+\rho) m \log n}}$ or $l=1$:

$$
\left|\mathcal{C}_{i}^{k}\right| \geq \frac{1+3 \rho}{4(1+\rho) m l} \min _{j \in \mathcal{I}} \lambda_{j} K_{j}, \forall i \in \mathcal{I}, k \in[l]
$$

Therefore, after the "breaking up small clusters" step, \mathcal{S}_{g} becomes

$$
\mathcal{S}_{g}^{1}=\bigcup_{i \in \mathcal{I}} \bigcup_{k \in[l]} \mathcal{C}_{i}^{k} \cup\left(\mathcal{S}_{g}^{0} \backslash \bigcup_{i \in \mathcal{I}} \mathcal{C}_{i}\right)
$$

For simplicity, we use \mathcal{S}_{g} instead of \mathcal{S}_{g}^{1} in the following parts.
Step 3. We now analyze the properties of the fused graph. We view each cluster \mathcal{U}_{i} in $\bigcup_{i=1}^{m} \mathcal{S}_{g_{i}}$ as a super node V_{i}. If $\left|\mathcal{U}_{i}\right|>1, V_{i}$ is added into the "high confidence node" set \mathcal{H}, which means V_{i} is a high confidence node in the fused graph. Otherwise, V_{i} is an ordinary node. For two nodes V_{i} and V_{j}, we say " V_{i} and V_{j} are in the same cluster" if the nodes in \mathcal{U}_{i} and \mathcal{U}_{j} belong to the same cluster. From the construction of the edge between V_{i} and V_{j}, we know that when V_{i} and V_{j} are both ordinary nodes, $E_{i j}=1$ with probability at least p if V_{i} and V_{j} are in the same cluster or $E_{i j}=1$ with probability at most q otherwise. If one of V_{i} and V_{j} is a high confidence node, we compute

$$
\hat{E}\left(V_{i}, V_{j}\right):=\frac{\sum_{u \in \mathcal{U}_{i}} \sum_{v \in \mathcal{U}_{j}} A_{u v}}{\sum_{u \in \mathcal{U}_{i}} \sum_{v \in \mathcal{U}_{j}} 1}
$$

We let $X \triangleq \hat{E}\left(V_{i}, V_{j}\right)$ and $Z \triangleq \sum_{u \in \mathcal{U}_{i}} \sum_{v \in \mathcal{U}_{j}} 1$. Clearly, V_{i} and V_{j} being in the same cluster means that $\mathbb{E}\left[A_{u v}\right] \geq p$ for any $u \in \mathcal{U}_{i}$ and $v \in \mathcal{U}_{j}$, which implies that $\mathbb{E}[X] \geq p$. From the Hoeffding's inequality, we have

$$
\mathbb{P}[|X-\mathbb{E}[X]| \geq \theta] \leq 2 \exp \left(-2 Z \theta^{2}\right) \leq 2 \exp \left(-\frac{1+3 \rho}{2(1+\rho) m l} \min _{i \in \mathcal{I}} \lambda_{i} K_{i} \theta^{2}\right)
$$

Thus, $X \geq p-\theta$ holds with probability at least $1-2 \exp \left(-\frac{1+3 \rho}{2(1+\rho) m l} \min _{i \in \mathcal{I}} \lambda_{i} K_{i} \theta^{2}\right)$. Similarly, V_{i} and V_{j} being in different clusters means $\mathbb{E}\left[A_{u v}\right] \leq q$ for any $u \in \mathcal{U}_{i}$ and $v \in \mathcal{U}_{j}$, which implies that $\mathbb{E}[X] \leq q$. From the Hoeffding's inequality, we have $X \leq q+\theta$ holds with probability at least $1-2 \exp \left(-\frac{1+3 \rho}{2(1+\rho) m l} \min _{i \in \mathcal{I}} \lambda_{i} K_{i} \theta^{2}\right)$.
In Algorithm 2, we set $E_{i j}=1$ if $X \geq t$ or $E_{i j}=0$ otherwise. Hence from the analysis above, we know that $E_{i j}=1$ with probability at least $1-2 \exp \left(-\frac{1+3 \rho}{2(1+\rho) m l} \min _{i \in \mathcal{I}} \lambda_{i} K_{i}(p-t)^{2}\right)$ if V_{i} and V_{j} are in the same cluster, while $E_{i j}=1$ with probability at most $2 \exp \left(-\frac{1+3 \rho}{2(1+\rho) m l} \min _{i \in \mathcal{I}} \lambda_{i} K_{i}(t-q)^{2}\right)$ if V_{i} and V_{j} are in different clusters. Recall that $t \in$ $\left(\frac{1}{4} p+\frac{3}{4} q, \frac{3}{4} p+\frac{1}{4} q\right)$. Since $p-q \geq c_{2} \sqrt{\frac{(1+\rho) m l \log \frac{n}{K}}{(1+3 \rho) \min _{i \in \mathcal{I}} \lambda_{i} K_{i}}}$, we have

$$
\tau \triangleq 1-2 \exp \left(-\frac{1+3 \rho}{32(1+\rho) m l} \min _{i \in \mathcal{I}} \lambda_{i} K_{i}(p-q)^{2}\right) \geq 1-c_{\tau} \frac{K}{n}
$$

where c_{τ} and c_{2} are universal constants. Then we have

- $E_{i j}=1$ with probability at least p if V_{i} and V_{j} are ordinary and in the same cluster;
- $E_{i j}=1$ with probability at most q if V_{i} and V_{j} are ordinary and in different clusters;
- $E_{i j}=1$ with probability at least τ if V_{i} or V_{j} is high confident and they are in the same cluster;
- $E_{i j}=1$ with probability at most $1-\tau$ if V_{i} or V_{j} is high confident and they are in different clusters;

Step 4. We perform the graph clustering algorithm (1) on the fused graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$. From the analysis above, we know that the number of the high confidence nodes in \mathcal{G} is at least $m l|\mathcal{I}|$, the size of the smallest cluster in \mathcal{G} that contains no
ordinary nodes is at least $m l$, the total number of the ordinary nodes in \mathcal{G} is at most $n-\sum_{i \in \mathcal{I}} \lambda_{i} K_{i}$, and the total number of the nodes is at least $m r$. Let \mathcal{J} be the set $\left\{i \in \mathcal{I}: \lambda_{i} \neq 1\right\}$, then the size of the smallest cluster that contains at least one ordinary node is at least $S(m, l)=\min \left\{\min _{i \in \mathcal{J}}\left\{m l+\left(1-\lambda_{i}\right) K_{i}\right\}, \min _{i \in \mathcal{I}^{c}} K_{i}\right\}$. From Theorem 1, if $m l \geq c_{3} \log n$ and

$$
\frac{p-q}{\sqrt{p(1-q)}} \geq c_{1} \max \left\{\frac{\sqrt{\left(n-\sum_{i \in \mathcal{I}} \lambda_{i} K_{i}\right) \log n}}{S(m, l)}, \sqrt{\frac{\log n}{S(m, l)}}\right\}
$$

then the clusters in graph \mathcal{G} can be correctly recovered with probability at least $1-(m r)^{-10}$.
Overall, if $c_{3} \log n \leq m \leq \frac{1-\rho}{4(1+\rho)} \sqrt{\frac{K}{\log n}}$ and

$$
p-q \geq \max \left\{c_{1} \sqrt{p(1-q)} \max \left\{\frac{\sqrt{\left(n-\sum_{i \in \mathcal{I}} \lambda_{i} K_{i}\right) \log n}}{S(m, l)}, \sqrt{\frac{\log n}{S(m, l)}}\right\}, c_{2} \sqrt{\frac{(1+\rho) m l \log \frac{n}{K}}{(1+3 \rho) \min _{i \in \mathcal{I}} \lambda_{i} K_{i}}}\right\}
$$

hold, Algorithm 1 outputs the true clusters w.h.p. By minimizing the right hand side over l, we obtain this theorem.

4. Proof of Theorem 3

We use the same notation as that in the proof of Theorem 2.
Step 1. This step is similar to Step 1 in the proof of Theorem 2 . The n nodes are uniformly randomly separated into m groups which form m subgraphs $\left\{g_{1}, \cdots, g_{m}\right\}$. As shown above, we can prove that

$$
\begin{equation*}
\frac{1+3 \rho}{2(1+\rho) m} K_{i} \leq K_{i}^{g} \leq \frac{3+\rho}{2(1+\rho) m} K_{i} \text { for } i \in[r], g \in\left\{g_{1}, \cdots, g_{m}\right\} \text { and } \frac{1+3 \rho}{2(1+\rho) m} n \leq n^{g} \leq \frac{3+\rho}{2(1+\rho) m} n \tag{A-2}
\end{equation*}
$$

hold with probability at least $1-n^{-6}$ since $m \leq \frac{1-\rho}{4(1+\rho)} \sqrt{\frac{K}{\log n}}$.
Step 2. After the subgraphs are obtained, we perform algorithm \mathfrak{A} on each subgraph $g \in\left\{g_{1}, \cdots, g_{m}\right\}$. Let \mathcal{S}_{g} be the set of the recovered clusters in g. Since algorithm \mathfrak{A} is $(\boldsymbol{\lambda}, \mathcal{I}, \boldsymbol{\epsilon})$-pseudo-workable and $\frac{1+3 \rho}{2(1+\rho) m} K_{i} \leq K_{i}^{g} \leq \frac{3+\rho}{2(1+\rho) m} K_{i}$ for $i \in$ [r] holds with high probability, when (p, q) is in $\mathfrak{C}\left(n / m, K_{1} / m, \cdots, K_{r} / m, \boldsymbol{\lambda}, \mathcal{I}, \boldsymbol{\epsilon}\right)$, we know that with probability at least $1-n^{-2}, \mathcal{S}_{g}$ satisfies that 1) for each $i \in \mathcal{I}$, there exists $\mathcal{C}_{i} \in \mathcal{S}_{g}$ so that \mathcal{C}_{i} contains at least $\lambda_{i} K_{i}^{g}$ nodes in the i th cluster and at most $\epsilon_{i} K_{i}^{g}$ nodes not in the i th cluster, which implies that $\left.\left|\mathcal{C}_{i}\right| \geq \lambda_{i} K_{i}^{g} \geq \frac{1+3 \rho}{2(1+\rho) m} \lambda_{i} K_{i}, 2\right)$ for each cluster $\mathcal{C} \in \mathcal{S}_{g} \backslash \bigcup_{i \in \mathcal{I}} \mathcal{C}_{i}$, we have $|\mathcal{C}|<\min _{i \in \mathcal{I}} \rho \lambda_{i} K_{i}^{g} \leq \frac{3 \rho+\rho^{2}}{2(1+\rho) m} \min _{i \in \mathcal{I}} \lambda_{i} K_{i}$. By the union bound, with probability at least $1-n^{-1}$, all of $\mathcal{S}_{g_{1}}, \cdots, \mathcal{S}_{g_{m}}$ satisfy these two properties.
In the "breaking up small clusters" step, note that $\frac{T}{\min _{i \in \mathcal{I}} \lambda_{i} K_{i}} \in\left(\frac{3 \rho+\rho^{2}}{2(1+\rho) m}, \frac{1+3 \rho}{2(1+\rho) m}\right)$, and each $\mathcal{C}_{i} \in \mathcal{S}_{g}$ is divided into l clusters $\left\{\mathcal{C}_{i}^{1}, \cdots, \mathcal{C}_{i}^{l}\right\}$ while the clusters in $\mathcal{S}_{g} \backslash \bigcup_{i \in \mathcal{I}} \mathcal{C}_{i}$ are broken up to single nodes. By the Hoeffding's inequality and the union bound, we have for all $\mathcal{S}_{g} \in\left\{\mathcal{S}_{g_{1}}, \cdots, \mathcal{S}_{g_{m}}\right\}$ and $\mathcal{C}_{i} \in \mathcal{S}_{g}$

$$
\begin{equation*}
\left|\mathcal{C}_{i}^{k}\right| \geq \frac{1+3 \rho}{4(1+\rho) m l} \lambda_{i} K_{i}, \forall i \in \mathcal{I}, k \in[l] \tag{A-3}
\end{equation*}
$$

holds with probability at least $1-n^{-6}$ when $l \leq \frac{1}{4} \sqrt{\frac{(1+3 \rho) \min _{i \in \mathcal{I}} \lambda_{i} K_{i}}{2(1+\rho) m \log n}}$ or $l=1$. Then after this step, \mathcal{S}_{g} becomes

$$
\mathcal{S}_{g}=\bigcup_{i \in \mathcal{I}} \bigcup_{k \in[l]} \mathcal{C}_{i}^{k} \cup\left\{\{u\}: \forall u \in \mathcal{C}, \forall \mathcal{C} \in \mathcal{S}_{g} \backslash \bigcup_{i \in \mathcal{I}} \mathcal{C}_{i}\right\}
$$

Step 3. In the "building the fused graph" step, we view each cluster \mathcal{U}_{i} in $\bigcup_{i=1}^{m} \mathcal{S}_{g_{i}}$ as a super node V_{i}. If $\left|\mathcal{U}_{i}\right|>1, V_{i}$

A Divide and Conquer Framework for Distributed Graph Clustering

is added into the "high confidence node" set \mathcal{H}, which means V_{i} is a high confidence node. Otherwise, V_{i} is an ordinary node. For two nodes V_{i} and V_{j}, from the construction of the edge between V_{i} and V_{j}, we know that if V_{i} and V_{j} are both ordinary nodes, then $E_{i j}=1$ with probability at least p if V_{i} and V_{j} are in the same cluster while $E_{i j}=1$ with probability at most q if V_{i} and V_{j} are in different clusters. If one of V_{i} and V_{j} is high confident, we compute

$$
\hat{E}\left(V_{i}, V_{j}\right)=\frac{\sum_{u \in \mathcal{U}_{i}} \sum_{v \in \mathcal{U}_{j}} A_{u v}}{\sum_{u \in \mathcal{U}_{i}} \sum_{v \in \mathcal{U}_{j}} 1}
$$

Note that because \mathfrak{A} is $(\boldsymbol{\lambda}, \mathcal{I}, \boldsymbol{\epsilon})$-pseudo-workable, \mathcal{U}_{i} may contain some outliers when $\left|\mathcal{U}_{i}\right|>1$. We denote the inlier and outlier nodes in \mathcal{U}_{i} by $\overline{\mathcal{U}}_{i}$ and $\hat{\mathcal{U}}_{i}$, respectively. Suppose that the inlier nodes belong to the k th cluster, then from Inequality (A-2) and (A-3), we know that $\left|\overline{\mathcal{U}}_{i}\right| \geq \frac{1+3 \rho}{4(1+\rho) m l} \lambda_{k} K_{k}$ and $\left|\hat{\mathcal{U}}_{i}\right| \leq \frac{3+\rho}{2(1+\rho) m} \epsilon_{k} K_{k}$ hold with high probability.

We first consider the case that V_{i} and V_{j} are in the same cluster, e.g., V_{i}, V_{j} belong to the k th cluster. Then

$$
\hat{E}\left(V_{i}, V_{j}\right) \geq \frac{\sum_{u \in \overline{\mathcal{U}}_{i}} \sum_{v \in \overline{\mathcal{U}}_{j}} A_{u v}}{\left(\left|\overline{\mathcal{U}}_{i}\right|+\left|\hat{\mathcal{U}}_{i}\right|\right)\left(\left|\overline{\mathcal{U}}_{j}\right|+\left|\hat{\mathcal{U}}_{j}\right|\right)} \geq \frac{\sum_{u \in \overline{\mathcal{U}}_{i}} \sum_{v \in \overline{\mathcal{U}}_{j}} A_{u v}}{\left|\overline{\mathcal{U}}_{i}\right|\left|\overline{\mathcal{U}}_{j}\right|}\left(1-\frac{\left|\hat{\mathcal{U}}_{i}\right|}{\left|\overline{\mathcal{U}}_{i}\right|}-\frac{\left|\hat{\mathcal{U}}_{j}\right|}{\left|\overline{\mathcal{U}}_{j}\right|}-\frac{\left|\hat{\mathcal{U}}_{i}\right|\left|\hat{\mathcal{U}}_{j}\right|}{\left|\overline{\mathcal{U}}_{i}\right|\left|\overline{\mathcal{U}}_{j}\right|}\right) .
$$

Since $l \leq \frac{p-q}{72} \min _{k \in \mathcal{I}} \frac{\lambda_{k}}{\epsilon_{k}}$, we have $\frac{\left|\hat{\mathcal{U}}_{i}\right|}{\left|\mathcal{U}_{i}\right|}, \frac{\left|\hat{\mathcal{U}}_{j}\right|}{\left|\hat{\mathcal{U}}_{j}\right|} \leq \frac{2(3+\rho)}{1+3 \rho} \cdot \frac{\epsilon_{k} l}{\lambda_{k}} \leq \frac{6 \epsilon_{k} l}{\lambda_{k}} \leq 1$, which implies that

$$
\hat{E}\left(V_{i}, V_{j}\right) \geq \frac{\sum_{u \in \overline{\mathcal{U}}_{i}} \sum_{v \in \overline{\mathcal{U}}_{j}} A_{u v}}{\left|\overline{\mathcal{U}}_{i}\right|\left|\overline{\mathcal{U}}_{j}\right|}\left(1-\max _{k \in \mathcal{I}} \frac{18 \epsilon_{k} l}{\lambda_{k}}\right) .
$$

From the Hoeffding's inequality, one can easily verify that $\hat{E}\left(V_{i}, V_{j}\right) \geq(p-\theta)\left(1-\max _{k \in \mathcal{I}} \frac{18 \epsilon_{k} l}{\lambda_{k}}\right)$ holds with probability at least $1-2 \exp \left(-\frac{1+3 \rho}{2(1+\rho) m l} \min _{i \in \mathcal{I}} \lambda_{i} K_{i} \theta^{2}\right)$.
Similarly, when V_{i} and V_{j} are in different clusters, we have

$$
\hat{E}\left(V_{i}, V_{j}\right) \leq \frac{\sum_{u \in \overline{\mathcal{U}}_{i}} \sum_{v \in \overline{\mathcal{U}}_{j}} A_{u v}+\left|\overline{\mathcal{U}}_{i}\right|\left|\hat{\mathcal{U}}_{j}\right|+\left|\hat{\mathcal{U}}_{i}\right|\left|\overline{\mathcal{U}}_{j}\right|+\left|\hat{\mathcal{U}}_{i}\right|\left|\hat{\mathcal{U}}_{j}\right|}{\left|\overline{\mathcal{U}}_{i}\right|\left|\overline{\mathcal{U}}_{j}\right|} \leq \frac{\sum_{u \in \overline{\mathcal{U}}_{i}} \sum_{v \in \overline{\mathcal{U}}_{j}} A_{u v}}{\left|\overline{\mathcal{U}}_{i}\right|\left|\overline{\mathcal{U}}_{j}\right|}+\max _{k \in \mathcal{I}} \frac{18 \epsilon_{k} l}{\lambda_{k}} .
$$

From the Hoeffding's inequality, we know that $\hat{E}\left(V_{i}, V_{j}\right) \leq q+\theta+\max _{k \in \mathcal{I}} \frac{18 \epsilon_{k} l}{\lambda_{k}}$ holds with probability at least $1-$ $2 \exp \left(-\frac{1+3 \rho}{2(1+\rho) m l} \min _{i \in \mathcal{I}} \lambda_{i} K_{i} \theta^{2}\right)$.
Let $\varphi \triangleq \max _{k \in \mathcal{I}} \frac{18 \epsilon_{k} l}{\lambda_{k}}$. Since $l \leq \frac{p-q}{72} \min _{k \in \mathcal{I}} \frac{\lambda_{k}}{\epsilon_{k}}, \varphi \leq \frac{1}{4}(p-q)$, which implies that the inequality $\frac{1}{4} p+\frac{3}{4} q+\varphi \leq\left(\frac{3}{4} p+\right.$ $\left.\frac{1}{4} q\right)(1-\varphi)$ hold. Therefore, there exists t such that $\frac{1}{4} p+\frac{3}{4} q+\varphi \leq t \leq\left(\frac{3}{4} p+\frac{1}{4} q\right)(1-\varphi)$. In Algorithm 2, we set $E_{i j}=1$ if $X \geq t$ or $E_{i j}=0$ otherwise. Hence $E_{i j}=1$ with probability at least $1-2 \exp \left(-\frac{1+3 \rho}{2(1+\rho) m l} \min _{i \in \mathcal{I}} \lambda_{i} K_{i}\left(p-\frac{t}{1-\varphi}\right)^{2}\right)$ if V_{i} and V_{j} are in the same cluster, while $E_{i j}=1$ with probability at most $2 \exp \left(-\frac{1+3 \rho}{2(1+\rho) m l} \min _{i \in \mathcal{I}} \lambda_{i} K_{i}(t-q-\varphi)^{2}\right)$ if V_{i} and V_{j} are in different clusters. Since $\frac{1}{4} p+\frac{3}{4} q+\varphi \leq t \leq\left(\frac{3}{4} p+\frac{1}{4} q\right)(1-\varphi)$, we have

$$
\frac{1}{4} p+\frac{3}{4} q \leq \frac{t}{1-\varphi} \leq \frac{3}{4} p+\frac{1}{4} q, \text { and } \frac{1}{4} p+\frac{3}{4} q \leq t-c \leq \frac{3}{4} p+\frac{1}{4} q .
$$

When $p-q \geq c_{2} \sqrt{\frac{(1+\rho) m l \log \frac{n}{K}}{(1+3 \rho) \min _{i \in \mathcal{I}} \lambda_{i} K_{i}}}$, we have

$$
\tau \triangleq 1-2 \exp \left(-\frac{1+3 \rho}{32(1+\rho) m l} \min _{i \in \mathcal{I}} \lambda_{i} K_{i}(p-q)^{2}\right) \geq 1-c_{\tau} \frac{K}{n}
$$

where c_{τ} and c_{2} are universal constants. Hence we have

A Divide and Conquer Framework for Distributed Graph Clustering

- $E_{i j}=1$ with probability at least p if V_{i} and V_{j} are ordinary and in the same cluster;
- $E_{i j}=1$ with probability at most q if V_{i} and V_{j} are ordinary and in different clusters;
- $E_{i j}=1$ with probability at least τ if V_{i} or V_{j} is high confident and the inlier nodes of \mathcal{U}_{i} and \mathcal{U}_{j} are in the same cluster;
- $E_{i j}=1$ with probability at most $1-\tau$ if V_{i} or V_{j} is high confident and the inlier nodes of \mathcal{U}_{i} and \mathcal{U}_{j} are in different clusters;

Step 4. We run the graph clustering algorithm (1) on the fused graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$. From the analysis above, we know that the number of the high confidence nodes in \mathcal{G} is at least $m l|\mathcal{I}|$, the size of the smallest cluster in \mathcal{G} that contains no ordinary nodes is at least $m l$, the total number of the ordinary nodes in \mathcal{G} is at most $n-\sum_{i \in \mathcal{I}} \lambda_{i} K_{i}$, and the total number of the nodes is at least $m r$. Let \mathcal{J} be the set $\left\{i \in \mathcal{I}: \lambda_{i} \neq 1\right\}$, then the size of the smallest cluster that contains at least one ordinary node is at least $S(m, l)=\min \left\{\min _{i \in \mathcal{J}}\left\{m l+\left[\left(1-\lambda_{i}\right) K_{i}-\sum_{j \in \mathcal{I}, j \neq i} \epsilon_{j} K_{j}\right]_{+}\right\}, \max \left\{\min _{i \in \mathcal{I}^{c}} K_{i}-\sum_{j \in \mathcal{I}} \epsilon_{j} K_{j}, 1\right\}\right\}$. From Theorem 1, if $m l \geq c_{3} \log n$ and

$$
\frac{p-q}{\sqrt{p(1-q)}} \geq c_{1} \max \left\{\frac{\sqrt{\left(n-\sum_{i=1}^{r} \lambda_{i} K_{i}\right) \log n}}{S(m, l)}, \sqrt{\frac{\log n}{S(m, l)}}\right\}
$$

then the clusters in graph \mathcal{G} can be correctly recovered with probability at least $1-(m r)^{-10}$.
Overall, if $c_{3} \log n \leq m \leq \frac{1-\rho}{4(1+\rho)} \sqrt{\frac{K}{\log n}}$ and

$$
p-q \geq \max \left\{c_{1} \sqrt{p(1-q)} \max \left\{\frac{\sqrt{\left(n-\sum_{i=1}^{r} \lambda_{i} K_{i}\right) \log n}}{S(m, l)}, \sqrt{\frac{\log n}{S(m, l)}}\right\}, c_{2} \sqrt{\frac{(1+\rho) m l \log \frac{n}{K}}{(1+3 \rho) \min _{i \in \mathcal{I}} \lambda_{i} K_{i}}}, 72 \max _{i \in \mathcal{I}} \frac{\epsilon_{i}}{\lambda_{i}}\right\}
$$

hold, the output of Algorithm 1 contains at most $\sum_{i=1}^{r} \epsilon_{i} K_{i}$ misclassified nodes.

5. Proof of Corollary 1

Since algorithm \mathfrak{A} recovers clusters by solving (1) with $\mathcal{C}=\emptyset$, we have that \mathfrak{A} is $(\mathbf{1},[r])$-workable with $\rho=0$ and set \mathfrak{C} defined by

$$
\mathfrak{C}=\left\{(p, q): \frac{p-q}{\sqrt{p(1-q)}} \geq c_{1} \frac{\sqrt{n \log n}}{K}\right\}
$$

where K is the size of the smallest cluster in the graph and c_{1} is a universal constant.
Then from Theorem 2,we know that in order to recover the true clusters, (p, q) should satisfy

$$
\frac{p-q}{\sqrt{p(1-q)}} \geq c_{1} \frac{\sqrt{m n \log n}}{K}
$$

and

$$
\begin{aligned}
p-q & \geq \min _{l \geq l \geq 1} \max \left\{c_{1} \sqrt{p(1-q)} \max \left\{\frac{\sqrt{\left(n-\sum_{i \in \mathcal{I}} \lambda_{i} K_{i}\right) \log n}}{S(m, l)}, \sqrt{\frac{\log n}{S(m, l)}}\right\}, c_{2} \sqrt{\frac{(1+\rho) m l \log \frac{n}{K}}{(1+3 \rho) \min _{i \in \mathcal{I}} \lambda_{i} K_{i}}}\right\} \\
& =\min _{l \geq l \geq 1} c_{2} \sqrt{\frac{(1+\rho) m l \log \frac{n}{K}}{(1+3 \rho) \min _{i \in \mathcal{I}} \lambda_{i} K_{i}}}=c_{2} \sqrt{\frac{m \log \frac{n}{K}}{K}} .
\end{aligned}
$$

Hence we obtain Corollary 1.

6. Proof of Corollary 2

Recall that algorithm \mathfrak{A} recovers clusters by solving (1) with $\mathcal{C}=\emptyset$. For a graph containing n nodes and r clusters with size $\left\{K_{1}, \cdots, K_{r}\right\}$, we define

$$
u=c_{3} \frac{\sqrt{p(1-q) n}}{p-q} \log ^{2} n, \text { and } l=c_{4} \frac{\sqrt{p(1-q) n}}{p-q}
$$

Let \mathcal{K}_{u} be the set of the clusters whose sizes are greater than or equal to u and \mathcal{K}_{l} be the set of the clusters whose sizes are less than or equal to l. Let \mathbf{Y}^{*} be the true adjacent matrix, then by Theorem 1 in (Ailon et al., 2013), if each cluster is included in either \mathcal{K}_{u} or \mathcal{K}_{l}, then $(\hat{\mathbf{Y}}, \mathbf{A}-\hat{\mathbf{Y}})$ is an optimal solution of (1) with probability at least $1-n^{-3}$, where $\hat{\mathbf{Y}}$ is defined as

$$
\hat{\mathbf{Y}}(i, j)= \begin{cases}\mathbf{Y}^{*}(i, j), & \text { node } i \text { and } j \text { belongs to the same cluster in } \mathcal{K}_{u} \\ 0, & \text { otherwise }\end{cases}
$$

Let $\mathcal{I}=\left\{i: K_{i} \geq u\right\}$ and $\boldsymbol{\lambda}$ be a vector whose entry $\lambda_{i}=1$ if $i \in \mathcal{I}$ or 0 otherwise. The conditions above related to (p, q) is denoted by $\mathfrak{C}\left(n, K_{1}, \cdots, K_{r}, \boldsymbol{\lambda}, \mathcal{I}\right)$. Clearly, \mathfrak{A} is $(\boldsymbol{\lambda}, \mathcal{I})$-workable with $\rho=0$ and $\operatorname{set} \mathfrak{C}\left(n, K_{1}, \cdots, K_{r}, \boldsymbol{\lambda}, \mathcal{I}\right)$.

From Theorem 2, in order to recover the true clusters, (p, q) should be in $\mathfrak{C}\left(n, K_{1} / m, \cdots, K_{r} / m, \boldsymbol{\lambda}, \mathcal{I}\right)$, which means that for all $i \in[r]$, either $K_{i} \geq u$ or $K_{i} \leq l$ where

$$
u=c_{3} \frac{\sqrt{p(1-q) m n}}{p-q} \log ^{2} n, \text { and } l=c_{4} \frac{\sqrt{p(1-q) m n}}{p-q}
$$

Besides, (p, q) should also satisfy

$$
\begin{equation*}
p-q \geq \min _{l \geq l \geq 1} \max \left\{c_{1} \sqrt{p(1-q)} \max \left\{\frac{\sqrt{\left(n-\sum_{i \in \mathcal{I}} \lambda_{i} K_{i}\right) \log n}}{S(m, l)}, \sqrt{\frac{\log n}{S(m, l)}}\right\}, c_{2} \sqrt{\frac{(1+\rho) m l \log \frac{n}{K}}{(1+3 \rho) \min _{i \in \mathcal{I}} \lambda_{i} K_{i}}}\right\} \tag{A-4}
\end{equation*}
$$

where $S(m, l)=\min \left\{\min _{i \in \mathcal{I}: \lambda_{i} \neq 1}\left\{m l+\left(1-\lambda_{i}\right) K_{i}\right\}, \min _{i \in \mathcal{I}^{c}} K_{i}\right\}$. Since \mathfrak{A} is $(\boldsymbol{\lambda}, \mathcal{I})$-workable, (A-4) becomes

$$
\begin{aligned}
p-q & \geq \max \left\{c_{1} \sqrt{p(1-q)} \max \left\{\frac{\sqrt{\sum_{i \in \mathcal{I}^{c}} K_{i} \log n}}{\min _{i \in \mathcal{I}^{c}} K_{i}}, \sqrt{\frac{\log n}{\min _{i \in \mathcal{I}^{c}} K_{i}}}\right\}, c_{2} \sqrt{\frac{m \log \frac{n}{K}}{\min _{i \in \mathcal{I}} K_{i}}}\right\} \\
& =\max \left\{c_{1} \sqrt{p(1-q)} \max \left\{\frac{\sqrt{\sum_{i \in \mathcal{I}^{c}} K_{i} \log n}}{K}, \sqrt{\frac{\log n}{K}}\right\}, c_{2} \sqrt{\frac{m \log \frac{n}{K}}{\min _{i \in \mathcal{I}} K_{i}}}\right\}
\end{aligned}
$$

which implies that

$$
K \geq \max \left\{c_{1} \frac{\sqrt{p(1-q) \sum_{i \in \mathcal{I}^{c}} K_{i} \log n}}{p-q}, c_{1}^{2} \frac{p(1-q) \log n}{(p-q)^{2}}\right\}, \text { and } m \leq \frac{(p-q)^{2} \min _{i \in \mathcal{I}} K_{i}}{c_{2}^{2} \log \frac{n}{K}}
$$

Besides, m should also satisfy $c_{3} \log n \leq m \leq \frac{1}{4} \sqrt{\frac{K}{\log n}}$. Hence, by combining these inequalities together, we obtain this corollary.

7. Proof of Theorem 4

It requires $O\left(f\left(\frac{n}{m}\right) m\right)$ computation and $O\left(g\left(\frac{n}{m}\right) m\right)$ memory for \mathfrak{A} recovering the clusters in the subgraphs. From the proof of Theorem 3, we know that the size of the fused graph is $O\left(m r l+n-\sum_{i \in \mathcal{I}} \lambda_{i} K_{i}\right)$. Thus, recovering clusters in the
fused graph by solving (1) needs $O\left(\left(m r l+n-\sum_{i \in \mathcal{I}} \lambda_{i} K_{i}\right)^{3}\right)$ computation and $O\left(\left(m r l+n-\sum_{i \in \mathcal{I}} \lambda_{i} K_{i}\right)^{2}\right)$ memory. Hence we obtain this theorem.

8. Useful Lemmas

The following two lemmas are derived from the matrix Bernstein inequality (Tropp, 2012).
Theorem A-1. (Matrix Bernstein, (Tropp, 2012)) Let $\mathbf{X}_{1}, \cdots, \mathbf{X}_{n}$ be independent random matrices with common dimension $d_{1} \times d_{2}$. Assume that each matrix has bounded deviation from its mean:

$$
\left\|\mathbf{X}_{k}-\mathbb{E} \mathbf{X}_{k}\right\| \leq R \text { for each } k=1, \cdots, n
$$

Form the sum $\mathbf{Z}=\sum_{k=1}^{n} \mathbf{X}_{k}$, and introduce a variance parameter

$$
\sigma^{2}=\max \left\{\left\|\mathbb{E}\left[(\mathbf{Z}-\mathbb{E} \mathbf{Z})(\mathbf{Z}-\mathbb{E} \mathbf{Z})^{\top}\right]\right\|,\left\|\mathbb{E}\left[(\mathbf{Z}-\mathbb{E} \mathbf{Z})^{\top}(\mathbf{Z}-\mathbb{E} \mathbf{Z})\right]\right\|\right\}
$$

then

$$
\mathbb{P}[\|\mathbf{Z}-\mathbb{E} \mathbf{Z}\| \geq t] \leq\left(d_{1}+d_{2}\right) \exp \left(\frac{-t^{2} / 2}{\sigma^{2}+R t / 3}\right)
$$

Lemma A-5. Suppose \mathbf{W} is a $n \times n$ random matrix whose entries are independent random variables satisfying that $\mathbb{E}[\mathbf{W}]=0,\|\mathbf{W}\|_{\infty} \leq b, \operatorname{Var}\left[W_{i j}\right] \leq \sigma_{0}^{2}$ for $(i, j) \in \mathcal{C}$ and $\operatorname{Var}\left[W_{i j}\right] \leq \sigma_{1}^{2}$ for $(i, j) \in \mathcal{C}^{c}$, then the following inequality holds with probability at least $1-n^{-10}$:

$$
\|\mathbf{W}\| \leq c\left(b \log n+\sqrt{\left(n \sigma_{0}^{2}+(n-s) \sigma_{1}^{2}\right) \log n}\right)
$$

where c is a universal constant.

Proof. Let \mathbf{e}_{i} be the i th standard basis vector, then

$$
\mathbf{W}-\mathbb{E} \mathbf{W}=\sum_{i, j} W_{i j} \mathbf{e}_{i} \mathbf{e}_{j}^{\top} \triangleq \sum_{i, j} \mathbf{X}_{i j}
$$

Thus, $\left\|\mathbf{X}_{i j}\right\|=\left|W_{i j}\right| \leq b$ for all (i, j). Since the entries of \mathbf{W} are independent,

$$
\begin{aligned}
&\left\|\mathbb{E}\left[(\mathbf{W}-\mathbb{E} \mathbf{W})(\mathbf{W}-\mathbb{E} \mathbf{W})^{\top}\right]\right\|=\left\|\mathbb{E} \sum_{i, j} W_{i j}^{2} \mathbf{e}_{i} \mathbf{e}_{j}^{\top} \mathbf{e}_{j} \mathbf{e}_{i}^{\top}\right\| \\
& \leq\left\|\mathbb{E} \sum_{(i, j) \in \mathcal{C}^{c}} W_{i j}^{2} \mathbf{e}_{i} \mathbf{e}_{j}^{\top} \mathbf{e}_{j} \mathbf{e}_{i}^{\top}\right\|+\left\|\mathbb{E} \sum_{(i, j) \in \mathcal{C}} W_{i j}^{2} \mathbf{e}_{i} \mathbf{e}_{j}^{\top} \mathbf{e}_{j} \mathbf{e}_{i}^{\top}\right\| \leq(n-s) \sigma_{1}^{2}+n \sigma_{0}^{2},
\end{aligned}
$$

where the last inequality follows from the definition of the high confidence nodes and the fact that the number of the high confidence nodes is s. Then from the matrix Bernstein inequality, there exists a universal constant c such that

$$
\|\mathbf{W}-\mathbb{E} \mathbf{W}\| \leq c\left(b \log n+\sqrt{\left(n \sigma_{0}^{2}+(n-s) \sigma_{1}^{2}\right) \log n}\right)
$$

holds with probability at least $1-n^{-10}$.

Lemma A-6. Suppose \mathbf{W} is a $n \times n$ random matrix whose entries are independent random variables satisfying that 1) $\mathbb{E}[\mathbf{W}]=0 ; 2) \max _{i j}\left|W_{i j}\right| \leq b_{0}$ and $\operatorname{Var}\left[W_{i j}\right] \leq \sigma_{0}^{2}$ for $\left.(i, j) \in \mathcal{C} ; 3\right) \max _{i j}\left|W_{i j}\right| \leq b_{1}$ and $\operatorname{Var}\left[W_{i j}\right] \leq \sigma_{1}^{2}$ for
$(i, j) \in \mathcal{C}^{c}$, then the following inequality holds with probability at least $1-n^{-10}$:

$$
\left|\left(\mathbf{U U}^{\top} \mathbf{W}\right)_{i j}\right| \leq \begin{cases}\frac{\sqrt{n \sigma_{0}^{2} \log n}}{K}+\frac{b_{0} \log n}{K}, & \text { all the nodes in } R(i) \text { are high confident } \\ \frac{\sqrt{\left(s \sigma_{0}^{2}+(n-s) \sigma_{1}^{2}\right) \log n}}{K^{*}}+\frac{\max \left\{b_{0}, b_{1}\right\} \log n}{K^{*}}, & \text { otherwise }\end{cases}
$$

where c is a universal constant and $R(i)$ is the cluster that node i belongs to.

Proof. Suppose cluster $R(i)$ contains $K(i)$ nodes, then

$$
\left(\mathbf{U} \mathbf{U}^{\top} \mathbf{W}\right)_{i j}=\frac{1}{K(i)} \sum_{j^{\prime}:\left(i, j^{\prime}\right) \in R(i)} \mathbf{W}_{i j^{\prime}}
$$

If all the nodes in cluster $R(i)$ are high confident, then

$$
\sum_{j^{\prime}:\left(i, j^{\prime}\right) \in R(i)} \mathbb{E}\left[\mathbf{W}_{i j^{\prime}}^{2}\right]=K(i) \sigma_{0}^{2} \leq n \sigma_{0}^{2}
$$

Otherwise, suppose that cluster $R(i)$ contains $c(i)$ high confidence nodes, then

$$
\sum_{j^{\prime}:\left(i, j^{\prime}\right) \in R(i)} \mathbb{E}\left[\mathbf{W}_{i j^{\prime}}^{2}\right]=(K(i)-c(i)) \sigma_{1}^{2}+c(i) \sigma_{0}^{2} \leq s \sigma_{0}^{2}+(n-s) \sigma_{1}^{2}
$$

By the standard Bernstein inequality, we can obtain this theorem.

References

Ailon, N., Chen, Y., and Xu, H. Breaking the small cluster barrier of graph clustering. In International Conference on Machine Learning, ICML '13, 2013.

Tropp, J. A. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4): 389-434, 2012.

