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Abstract

Graph clustering is about identifying clusters of
closely connected nodes, and is a fundamental
technique of data analysis with many applica-
tions including community detection, VLSI net-
work partitioning, collaborative filtering, etc. In
order to improve the scalability of existing graph
clustering algorithms, we propose a novel divide
and conquer framework for graph clustering, and
establish theoretical guarantees of exact recovery
of the clusters. One additional advantage of the
proposed framework is that it can identify small
clusters – the size of the smallest cluster can be
of size o(

√
n), in contrast to Ω(

√
n) required

by standard methods. Extensive experiments on
synthetic and real-world datasets demonstrate the
efficiency and effectiveness of our framework.

1. Introduction
Graph clustering is a widely-used tool for exploiting the
relationships between nodes connected in a graph. Such
graph usually consists of a large number of nodes, e.g., the
friendship graph on Facebook, the co-author graph in bib-
liographic records. The pairwise connection between two
nodes indicates their similarity or affinity, whereas the dis-
connection represents their dissimilarity or difference. The
goal of graph clustering is to partition the nodes into clus-
ters so that the nodes within the same cluster have more
connections than those in different clusters, in other words,
the closely connected nodes are grouped together.

Various kinds of graph models have been proposed and
studied in literature (e.g., Holland et al., 1983; Watts &
Strogatz, 1998; Goldenberg et al., 2010), among which the
stochastic block model (Holland et al., 1983), also known
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as the planted partition model (Condon & Karp, 2001), is
arguably the most natural one for clustering. The stochas-
tic block model assumes that the nodes are partitioned into
several clusters and the probability of the connection be-
tween each pair of nodes depends on their cluster member-
ship, i.e., an edge is generated with probability p if they
are in the same cluster or with probability q if they are in
different clusters with p > q, and the goal is to recover
the ground truth clusters from the observed graph. Many
graph clustering algorithms have been analyzed under this
model. One of the most popular approaches is spectral
clustering (Luxburg, 2007). Rohe et al. (2011) analyzed
the performance of spectral clustering under the stochastic
block model and provided an upper bound of the misclas-
sified nodes. Another approach developed recently and has
attracted great attention is based on convex optimization
using trace-norm and l1 norm as a surrogate of the rank
and sparsity functions respectively (e.g., Oymak & Has-
sibi, 2011; Jalali et al., 2011; Chen et al., 2014b; Ames &
Vavasis, 2011; Chen et al., 2014a). The main advantages of
the trace-norm based clustering are their theoretically guar-
antees for the exact recovery of the ground-truth clustering
and their outstanding empirical performance. Indeed, one
of them, proposed by Chen et al. (2014b), can provably re-
cover the ground-truth clustering even in the face of outlier
nodes (nodes that are not in any cluster) and can be used to
solve planted clique and planted coloring problems.

However, both spectral clustering and trace-norm based
clustering algorithms have difficulties tackling very large
graphs. Indeed, for a graph with n nodes, both approaches
need to compute the spectral decomposition of a n×n ma-
trix which requires O(n3) operations and O(n2) storage.
Hence it is impractical to apply them even on medium-
sized graphs with 10,000 nodes on a desktop PC. How
to reduce the memory and computational cost of these
methods to improve their scalability is undoubtedly a sig-
nificant problem, as real-world applications often involve
graphs with tens of thousands to even millions of nodes
(Günnemann et al., 2010; Macropol & Singh, 2010; Whang
et al., 2012). To address this, one approach is to perform
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a multilevel clustering that reduces the size of the graph
by collapsing vertices and edges, partitions the smaller
graph and then uncoarsens to recover clusters in the orig-
inal graph (Karypis & Kumar, 1998a;b; Yan et al., 2009;
Chen et al., 2011; Liu et al., 2013). Another approach is
to apply the Nyström method to approximate the similar-
ity matrix for acceleration (Fowlkes et al., 2004; Drineas
& Mahoney, 2005). While these approaches are empir-
ically evaluated by the experiments on synthetic or real-
world datasets, it is not clear whether any theoretical guar-
antees on exact recovery of the ground truth can be ob-
tained. Moreover, it is hard to extend them to improve the
scalability of trace-norm based clustering algorithms.

The goal of this paper is to make trace-norm based clus-
tering algorithms applicable for clustering large graphs.
Specifically, we develop and analyze a novel divide and
conquer framework for improving the scalability of a wide
range of graph clustering algorithms including spectral
clustering and trace-norm based clustering. Our framework
divides the original graph into several easily handled sub-
graphs, executes a selected graph clustering algorithm on
the subgraphs in parallel, and then combines the results
using a new algorithm called “graph clustering with high
confidence nodes”. Our analysis provides sufficient condi-
tions on when the proposed framework can exactly recover
the ground-truth clustering. Moreover, applying our frame-
work on trace-norm based clustering algorithms offers ad-
ditional benefits for identifying small clusters – the size of
the smallest cluster can in fact be smaller than O(

√
n).

Notations. We use lower-case boldface letters to denote
column vectors and upper-case boldface letters to denote
matrices. The minimum of an empty set is defined as +∞.
Three matrix norms are used: ∥M∥2 is the spectral norm,
∥M∥∗ is the nuclear norm, and ∥M∥1 is the element-wise
ℓ1 norm. We use [r] to denote the set {1, 2, · · · , r} for
integer r, and |S| to denote the cardinality of set S. For
a set of matrix indices Ω, we let PΩ(X) be the matrix by
setting the entries outside Ω to zero.

2. Divide and Conquer for Graph Clustering
We first provide a brief introduction about the generalized
stochastic blockmodel (Chen et al., 2014b) which is an ex-
tension of the standard stochastic block model (Holland
et al., 1983; Condon & Karp, 2001), and then present our
graph clustering framework in details.

2.1. Generalized Stochastic Blockmodel (GSBM)

We consider a random graph with n nodes. These n nodes
are divided into two sets V1 and V2 which have n1 inlier
nodes and n2 outlier nodes, respectively. The n1 inlier
nodes are partitioned into r disjoint clusters, which we will

refer to as the true clusters. The sizes of these r clusters
are K1, · · · ,Kr. Let K = mini∈[r] Ki, i.e., the minimum
cluster size. The edges of the graph are generated as fol-
lows: For each pair of nodes i, j that belong to the same
cluster, edge (i, j) exists with probability at least p; for
each pair of nodes that are in different clusters the edge
exists with probability at most q. The n2 outlier nodes are
loosely connected to other nodes, namely, edge (i, j) exists
with probability at most q for outlier node i and each node
j ̸= i. The adjacency matrix of the graph is denoted by A.
Our goal is to recover, from A, the adjacency matrix Y∗

of the ground-truth clusters, i.e., 1) Y ∗
ii = 1 if node i is an

inlier node and Y ∗
ii = 0 otherwise, 2) for i ̸= j, Y ∗

ij = 1 if
i, j are in the same cluster and equals 0 otherwise.

2.2. Intuition

Before formally presenting the proposed framework, we
explain its intuition first. Our framework involves three
steps: 1) dividing step: uniformly randomly partition the n
nodes into m groups and then construct the corresponding
m subgraphs of A, 2) clustering step: recover clusters in
each subgraph in parallel using some graph clustering al-
gorithm, and 3) combining step: construct the final cluster-
ing by combining the recovered clusters in the subgraphs.

We need to answer four questions to make the above proce-
dure concrete: 1) How does m – the number of subgraphs
– affect the performance of this framework? 2) How to
choose the graph clustering algorithm used in the “clus-
tering step”? 3) How to “combine” the recovered clusters
from the subgraphs? 4) Under what conditions can we re-
cover the ground-truth clustering via this framework?

Question 1, 2 and 4 will be studied in Section 3. We now
focus on Question 3. For convenience, we suppose that
the nodes in the graph are labeled by consecutive integers
{1, · · · , n}. We denote the m subgraphs by {g1, · · · , gm}
and the set of the clusters recovered in subgraph gi by Sgi .
To illustrate our main idea, we take the graph shown in
Figure 1 containing 12 nodes and two clusters as an ex-
ample. Suppose that this graph is divided into two sub-
graphs g1 and g2 in the “dividing step” as shown in Figure
1(b), and the clusters in each subgraph are recovered by
a certain algorithm, i.e., Sg1 = {{1, 2, 3}, {7, 8, 9}} and
Sg2 = {{4, 5, 6}, {10, 11, 12}}, in the “clustering” step.

Now we discuss how to combine these clusters. For clus-
ters U and V which may or may not belong to the same
subgraph, let U ↔ V represent that the nodes in U and V
belong to the same cluster, and U ̸↔ V denote otherwise.
Under the GSBM, we observe that for the bipartite graph
generated by nodes in U and in V , the expected edge den-
sity is at least p if U ↔ V , while it is at most q if U ↮ V .
Therefore, if the edge density is greater than some thresh-
old t where q ≤ t ≤ p, we have U ↔ V w.h.p. In our
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Figure 1. A simple graph with 12 nodes and two clusters YEL-
LOW and PURPLE. (a) The observed graph. (b) Two subgraphs
generated in the “dividing” step. (c) The fused graph. (d) The
final recovered clusters.

example, the edge density corresponding to {7, 8, 9} and
{10, 11, 12} is 0.56, while the edge density correspond-
ing to {7, 8, 9} and {4, 5, 6} is 0.11, so select t = 0.3
and we conclude that w.h.p {7, 8, 9} ↔ {10, 11, 12} and
{7, 8, 9} ↮ {4, 5, 6}. Of course, estimating ↔ and ↮ re-
lationship based on edge density is not always correct, and
may even lead to results contradicting each other. There-
fore, instead of naively merging clusters based on the edge
density, we build a new (meta-)graph whose nodes corre-
spond to the clusters in Sg1 ∪ Sg2 and edges are formed
according to the edge density between two clusters, i.e., an
edge is constructed between them if their edge density is
greater than threshold t. We call this graph “fused graph”
and call its nodes “super nodes”, as shown in Figure 1(c).
Then the final clustering result can be obtained by perform-
ing a certain graph clustering algorithm on this fused graph,
which is shown in Figure 1(d).

There is an interesting property of these super nodes: each
edge/no-edge connecting with a super node is very likely to
be correct, because it is estimated by averaging many edges
in the original graph (recall that a super-node corresponds
to a cluster in a subgraph). We call a node with such prop-
erty a high confidence node, formally defined as follows:

Definition 1. For a graph with n nodes, node i is called
a high confidence node if 1) for each node j in the same
cluster as i, edge (i, j) exists with probability at least τ1,
and 2) for each node j in different clusters from i, edge
(i, j) exists with probability at most 1 − τ2, where τ1, τ2
satisfies min{τ1, τ2} ≥ 0.8 and 1 − min{τ1, τ2} ≤ cτ

K
n

for some constant cτ . Node i is an ordinary node if it is a
not high confident.

To cluster the fused graph, we used a variant of the trace-
norm based optimization approach for graph clustering. In
particular, since we know that the super-nodes are of high
confidence, we put more weights on the penalty of the edge
disagreement related to high confidence nodes:

min
Y,S

∥Y∥∗ + cA∥PA∩CcS∥1 + cAc∥PAc∩CcS∥1 + cC∥PCS∥1

s.t. Y + S = A, 0 ≤ Y ≤ 1,
(1)

where cA, cAc , cC , cCc are parameters whose values are de-
termined later, A ≜ {(i, j) : Aij = 1} and C ≜ {(i, j) :
i or j is a high confidence node}. The solution Y is the
clustering relationship we recover, and S is the disagree-
ment between the observation and the recovered cluster-
ing. Thus, when we set cC large, Y and A are less likely to
disagree on edges/no-edges connecting to high confidence
nodes. We analyze this formulation in Section 3 and show
that it offers important benefits.

2.3. Algorithm

Based on the intuitive idea discussed in the previous sec-
tion, we design the following framework shown in Algo-
rithm 1 for distributed graph clustering. Clearly, if a clus-

Algorithm 1 Large Graph Clustering
Input: Graph clustering algorithm A, observed adjacency

matrix A and parameter m, l, t, T .
Procedure:
1) Uniformly randomly partition the n nodes into m
groups and then extract the corresponding m subgraphs
{g1, · · · , gm};
2) Find clusters in each subgraph in parallel by applying
A. Denote the set of the recovered clusters in gi by Sgi ;
3) Build the fused graph G based on {Sg1 , · · · ,Sgm} by
Algorithm 2;
4) Find clusters in G by solving (1). Denote the set of
the recovered clusters by SG ;
5) Merge {Sg1 , · · · ,Sgm} based on SG .

ter from a subgraph is too small, it may not be truly high
confident. Hence, we break up the clusters with size less
than some threshold T into single nodes, so that only the
large clusters form high confidence nodes. Moreover, as
we will show in the next section, high confidence nodes
can assist in achieving the exact recovery of clustering, so
we divide each large cluster recovered in subgraphs into l
parts to generate more high confidence nodes for more help
for recovering clusters in the fused graph.

3. Theoretical Analysis
In this section we establish the conditions under which the
proposed framework provably recovers the ground truth.
Indeed, even when the clusters in the subgraphs are par-
tially recovered, we can still recover the correct clustering
relationship of the entire graph. We first investigate the
theoretical guarantee for the weighted clustering shown in
Equation (1). Based on this, we then provide the perfor-
mance guarantees of Algorithm 1. Along the way, we also
provide answers to Question 1 and 2 mentioned in the pre-
vious section.
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Algorithm 2 Build a Fused Graph
Input: Observed adjacency matrix A, the sets of the re-

covered clusters Sg1 , · · · ,Sgm and parameter l, t, T .
Procedure:
1) Break up small clusters: For each g ∈ {g1, · · · , gm}
and each U ∈ Sg , if |U| < T , let Sg := (Sg \ U) ∪
{{k} for each k ∈ U}. Otherwise, uniformly randomly
partition the nodes in U into l clusters U1, · · · ,Ul and let
Sg := (Sg \ U) ∪ {U1, · · · ,Ul};
2) Create super nodes: Create a corresponding super
node V for each cluster U in

∪m
i=1 Sgi . This relation-

ship is represented by V ∼ U ;
3) Build the fused graph G: For super nodes Vi and Vj

where Vi ∼ Ui and Vj ∼ Uj , edge Eij that connects
them is generated as follows: If |Ui| = |Uj | = 1, let
Eij := Auv where u ∈ Ui and v ∈ Uj . Otherwise, we
compute

Ê(Vi, Vj) :=

∑
u∈Ui

∑
v∈Uj

Auv∑
u∈Ui

∑
v∈Uj

1
.

Let Eij := 1 if Ê(Vi, Vj) ≥ t or Eij := 0 otherwise;
4) Construct the set of high confidence nodes: H ≜ {Vi :
|Ui| > 1 for Vi ∈ V};
5) Return G and H.

3.1. Graph Clustering with High Confidence Nodes

Let us consider a graph with high confidence nodes: more
specifically, the graph is generated according to the GSBM
which contains n nodes and r clusters, and its ith cluster
contains si high confidence nodes. Let s ≜

∑r
i=1 si, i.e.,

the total number of the high confidence nodes, K is the size
of the smallest cluster, and K∗ be the minimum size of the
clusters containing at least one ordinary node. We have the
following theorem:

Theorem 1. Let λ = c0√
max{n−s,K∗} logn

, cA = λ
√

1−t
t ,

cAc = λ
√

t
1−t and cC = c0√

K logn
, where t satisfies 1

4p +
3
4q ≤ t ≤ 3

4p+
1
4q, then Y∗ is the unique optimal solution

of (1) with high probability if K ≥ cK log n and

p− q√
p(1− q)

≥ c1 max

{√
(n− s) log n

K∗ ,

√
log n

K∗

}
(2)

hold for some universal constants cK , c0 and c1. Fur-
thermore, if there exist no outliers in the graph and λ =

c0√
max{K∗,maxi{

∑
j ̸=i(Ki−si)}} logn

, (2) can be replaced by

a milder condition

p− q√
p(1− q)

≥ c1 max


√
maxi{

∑
j ̸=i(Ki − si)} log n

K∗ ,

√
log n

K∗

 .

Remark. This theorem makes no assumptions on how
the confidence nodes are distributed over different clusters.
Consider an extreme case: fix r = O(1) and let the r clus-
ters have equal size n

r and the nodes in the first r
2 clusters

are all highly confident while the nodes in the remaining
r
2 clusters are all ordinary. By an information-theoretic ar-
gument (Chen et al., 2014b;a), one can show that for any
algorithm to correctly recover the clusters with probability
at least 3

4 , the inequality

p− q√
p(1− q)

≥ c
1√
n
, (3)

should hold for some universal constant c. Theorem 1
shows that in this case p, q should satisfy

p− q√
p(1− q)

≥ c1

√
r log n

n
,

This matches the condition (3) up to a logarithmic factor,
and thus cannot be substantially improved unless additional
assumptions are made.

3.2. Performance Guarantee of Algorithm 1

Graph clustering algorithm A used to find clusters in sub-
graphs is crucial to our framework. Clearly, if A generates
many misclassified nodes, it is impossible for Algorithm 1
to correctly recover the true clusters. We now characterize
two sets of algorithms used in our framework.

Definition 2 (Workable Algorithm). For vector λ ∈ Rr

and non-empty set I ⊆ [r], A is (λ, I)-workable if the
followings hold with probability at least 1 − n−2: when
(p, q) is in a set C parameterized by (n,K1, · · · ,Kr,λ, I),
A is able to recover a set of clusters RC satisfying 1) ∀i ∈
I, ∃Ci ∈ RC so that Ci is a subset of the ith cluster and
|Ci| ≥ λiKi, and 2) |C| ≤ mini∈I ρλiKi for any C ∈
RC \

∪
i∈I Ci, for some constant ρ < 1.

Example 1. Most of the trace-norm based graph clus-
tering algorithms (e.g., Oymak & Hassibi, 2011; Ames &
Vavasis, 2011; Chen et al., 2014b; Jalali et al., 2011) are
workable. For example, the algorithm proposed by Chen
et al. (2014b) has a performance guarantee that when

p−q√
p(1−q)

≥ cmax{
√
n

K ,
√

log2 n
K } for universal constant c,

its output is the same as the true adjacency matrix Y∗ with
probability at least 1−n−8, which means that it is (1, [r])-
workable. Ailon et al. (2013) provided a refined analysis
of this algorithm showing that small clusters do not hinder
recovery of sufficiently large ones under some mild condi-
tions, i.e., it is (λ, [r])-workable where λi = 1 if the ith
cluster is relatively large or 0 otherwise.

Definition 3 (Pseudo-workable Algorithm). For vector
λ, ϵ ∈ Rr and non-empty set I ⊆ [r], A is (λ, I, ϵ)-
pseudo-workable if the followings hold with probability at
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least 1 − n−2: when (p, q) is in a set C parameterized by
(n,K1, · · · ,Kr,λ, I, ϵ), A is able to recover a set of clus-
ters RC satisfying 1) ∀i ∈ I, ∃Ci ∈ RC so that Ci con-
tains at least λiKi nodes in the ith cluster and at most ϵiKi

nodes not in the ith cluster, and 2) |C| ≤ mini∈I ρλiKi for
any C ∈ RC \

∪
i∈I Ci, for some constant ρ < 1.

Example 2. Rohe et al. (2011) analyzed the performance
of spectral clustering under the standard stochastic block-
model and provided an upper bound of the number of mis-
classified nodes. For clarity, we here present a special-
ized version of their theorem as shown in Proposition 1
where the clusters are equal-sized, from which one can eas-
ily observe that spectral clustering is indeed (1− ϵ, [r], ϵ)-
pseudo-workable where ϵ = cr4 log2 n

n 1.

Proposition 1. Suppose that the graph has n nodes with
r equal-sized clusters and satisfies that the probability of
a connection between two nodes in the same cluster is p
and the probability of a connection between two nodes in
different clusters is q. If p and q do not vary as n and r =
O(n

1
4 log−1 n), then the size of the set of the misclassified

nodes M after running spectral clustering on this graph is
upper bounded by |M| ≤ cr3 log2 n for some constant c.

We now present our main theorems, which establish the
performance guarantee of Algorithm 1 when A used to
find clusters in subgraphs is either workable or pseudo-
workable, respectively.

Theorem 2. If A is (λ, I)-workable, t ∈ ( 14p +
3
4q,

3
4p +

1
4q), and T

mini∈I λiKi
∈ ( 3ρ+ρ2

2(1+ρ)m , 1+3ρ
2(1+ρ)m ), then when

(p, q) belongs to the set C(n/m,K1/m, · · · ,Kr/m,λ, I),
c3 log n ≤ m ≤ 1−ρ

4(1+ρ)

√
K

logn , and

p− q ≥ min
l̄≥l≥1

max

{
c2

√
(1 + ρ)ml log n

K

(1 + 3ρ)mini∈I λiKi
,

c1
√
p(1− q)max

{√
(n−

∑
i∈I λiKi) log n

S(m, l)
,

√
log n

S(m, l)

}}
,

with probability at least 1−max{(mr)−10, n−1} the true
clusters can be recovered by Algorithm 1, where S(m, l) =
min{mini∈I:λi ̸=1{ml + (1 − λi)Ki},mini∈Ic Ki}, l̄ =

max
{

1
4

√
(1+3ρ)mini∈I λiKi

2(1+ρ)m logn , 1
}

, and c1, c2, c3 are univer-
sal constants.

Remark. Our framework can guarantee exact recovery
even when each cluster in the subgraphs is partially re-
covered. This happens especially when trace-norm based
clustering algorithms are applied on a sparse graph where
p − q < 0.2 as shown in the experiments in (Chen et al.,
2014b) or spectral clustering runs with a relatively large
cluster number. Parameter T and m are well defined when
ρ < 1 and K = Ω(log3 n). Recall that m controls the num-
ber of the separated subgraphs. From the bound related to

(p, q), we observe that increasing m leads to a smaller C
which increases the difficulty of recovering the true clus-
ters in subgraphs, but a larger S(m, l) which means that
the difficulty of recovering clusters in the fused graph is
reduced.

Theorem 3. Suppose that A is (λ, I, ϵ)-pseudo-workable,
t ∈ ( 14p + 3

4q + φ, ( 34p + 1
4q)(1 − φ)), T

mini∈I λiKi
∈

( 3ρ+ρ2

2(1+ρ)m , 1+3ρ
2(1+ρ)m ), then when (p, q) belongs to the set

C(n/m,K1/m, · · · ,Kr/m,λ, I, ϵ), c3 log n ≤ m ≤
1−ρ

4(1+ρ)

√
K

logn , and

p− q ≥ max

{
c2

√
(1 + ρ)ml log n

K

(1 + 3ρ)mini∈I λiKi
, 72max

i∈I

ϵi
λi

,

c1
√
p(1− q)max

{√
(n−

∑
i∈I λiKi) log n

S(m, l)
,

√
log n

S(m, l)

}}
,

with probability at least 1−max{(mr)−10, n−1} the clus-
ters recovered by Algorithm 1 contain at most

∑
i∈I ϵiKi

misclassified nodes, where

l ≤ min
{
max

{
1
4

√
(1+3ρ)mini∈I λiKi

2(1+ρ)m logn , 1
}
, p−q

72 mini∈I
λi

ϵi

}
,

S(m, l) =min

 min
i∈I:λi ̸=1

ml + [(1− λi)Ki −
∑

j∈I,j ̸=i

ϵjKj ]+

 ,

max

min
i∈Ic

Ki −
∑
j∈I

ϵjKj , 1


 ,

φ = 18maxi∈I
ϵil
λi

, and c1, c2, c3 are universal constants.

Remark. Theorem 3 states the “error-tolerant” property of
Algorithm 1. In particular, even when A does not guarantee
exact recovery, the total number of the misclassified nodes
in the clusters recovered by Algorithm 1 is still small as
long as the recovered clusters in subgraphs do not contain
too many misclassified nodes.

We now specialize our main theorem. For simplicity, we
set l = 1 in Algorithm 1. The following corollaries con-
sider the case where A is the trace-norm based clustering
algorithm proposed by Chen et al. (2014b), i.e., A solves
the optimization problem shown in (1) with no high con-
fidence nodes, i.e., C = ∅. We call this algorithm CSX
following author acronym in the sequel.

Corollary 1. If A is CSX, t ∈ ( 14p + 3
4q,

3
4p + 1

4q), 0 ≤
T ≤ mini Ki

2m , c3 log n ≤ m ≤ 1
4

√
K

logn , and

p− q ≥ max

{
c1

√
p(1− q)mn log n

K
, c2

√
m log n

K

}
(4)

where c1, c2, c3 are universal constants, then Algorithm
1 recovers the true clusters with probability at least 1 −
max{(mr)−10, n−1}.
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Remark. “Speedup is not a free lunch”: Increasing m re-
duces the computational time but requires stronger condi-
tions to guarantee exact recovery, i.e., the lower bound of
p − q is

√
m times greater than the one shown in (Chen

et al., 2014b). In practice p − q can be smaller than (4)
while exact recovery is still achieved, since the exact re-
covery of clusters in subgraphs is not necessary as stated in
Theorem 1. More discussion can be found in Section 4.

Our framework also offers benefits to dealing with small
clusters. Most of graph clustering algorithms (Giesen &
Mitsche, 2005; Shamir & Tsur, 2007; Chen et al., 2014b;
Oymak & Hassibi, 2011; Ames, 2014; Chaudhuri et al.,
2012) require K = Ω(

√
n), but our algorithm requires a

much weaker condition where K can be o(
√
n).

Corollary 2. If A is CSX, then there exist universal con-
stants c0, c1, c2, c3, c4 such that the following holds with
probability at least 1−max{(mr)−10, n−1}: Let

u = c1

√
p(1− q)mn

p− q
log2 n, and l = c2

√
p(1− q)mn

p− q
.

if for all i ∈ [r], either Ki ≥ u or Ki ≤ l and if t ∈
( 14p+

3
4q,

3
4p+

1
4q), 0 ≤ T ≤ minKi≥u Ki

2m ,

c0 logn ≤ m ≤ min

{
1

4

√
K

logn
, c4

(p− q)2 minKi≥u Ki

logn

}
and

K ≥ max

{
c3

√
p(1−q)

∑
Ki≤l Ki logn

p−q , c23
p(1−q) logn

(p−q)2

}
,

Algorithm 1 recovers the true clusters.

Remark. We may observe that if the graph only has O(1)
small clusters whose sizes have the same order of magni-
tude, then there exists a constant c so that K = c log3 n
satisfies the conditions above. Note that the iterative algo-
rithm proposed by Ailon et al. (2013) can recover almost
all clusters via a so-called peeling strategy. But it has com-
putational complexity O(n3) which becomes unaffordable
when the number of nodes is large, say more than 5000.
In contrast, as we show in Section 3.3, the computational
complexity of our algorithm is much lower.

We now address clustering partially observed graph. The
graph is first generated by the GSBM, and then Aij is set
to ? (unknown) with probability 1− µ for each (i, j) inde-
pendently. Clearly, if we construct a new graph by setting
Aij = 0 when Aij =?, we can convert it into the fully
observed case. Based on Corollary 1, we have
Corollary 3. If A is CSX, t ∈ ( 14µp +

3
4µq,

3
4µp +

1
4µq),

0 ≤ T ≤ mini Ki

2m , c3 logn ≤ m ≤ 1
4

√
K

logn and

√
µ(p− q) ≥ max

{
c1

√
pmn log n

K
, c2

√
m log n

K

}
,

where c1, c2, c3 are universal constants, then Algorithm
1 recovers the true clusters with probability at least 1 −
(mr)−10.

3.3. Complexity

The computational cost of our graph clustering framework
can be much less than the trace-norm based clustering, e.g.,
(Oymak & Hassibi, 2011; Ames & Vavasis, 2011; Chen
et al., 2014b; Jalali et al., 2011) and spectral clustering
(Luxburg, 2007).
Theorem 4. If A is (λ, I)-workable or (λ, I, ϵ)-
pseudo-workable, and has computational complexity
O(f(n)) and memory complexity O(g(n)), then the
computational and memory complexity of Algorithm
1 are O

(
f( n

m )m+ (mrl + n−
∑

i∈I λiKi)
3
)
, and

O
(
g( n

m )m+ (mrl + n−
∑

i∈I λiKi)
2
)
, respectively.

When we use CSX for A, and Algorithm 1 runs on a ma-
chine with B cores, we obtain the following corollary.
Corollary 4. If A is CSX, then when the conditions in
Corollary 1 are satisfied, the computational and mem-
ory complexity for Algorithm 1 running in parallel on
a machine with B cores are O

(
n3

Bm2 + (mrl)3
)

and

O
(

Bn2

m + (mrl)2
)

, respectively.

Clearly, when r, l ≪ n, our algorithm is approximately
Bm2 times faster than applying A on the entire graph.

4. Experiments
We now investigate the performance of Algorithm 1 on a
variety of simulated and real-world datasets, and compare
it with other algorithms, e.g., spectral clustering (Luxburg,
2007), Metis (Karypis & Kumar, 1998b), CSX (Chen et al.,
2014b), and ESCG that is recently proposed by Liu et al.
(2013) and is designed for large graph clustering based
on spectral clustering. Except for Metis implemented by
Karypis & Kumar (1998b), we implement the other al-
gorithms in Python. The experiments are conducted on a
desktop PC with an i7 3.4GHz CPU and 4GB memory.

4.1. Simulations on Synthetic Data

The simulated graphs are generated based on the standard
stochastic blockmodel with n nodes, r clusters, and prob-
abilities p and q. We select CSX – the trace-norm based
algorithm proposed by Chen et al. (2014b) – as A. Given
the output refined adjacency matrices generated by A or
the clustering algorithm shown in (1), the clusters are con-
structed by simply finding the connected components. In
the simulations, we repeat each test 10 times and use the
averaged ratio of non-exact recovery (RNER) and the wall-
clock time to measure the performance of each algorithm.
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Figure 2. Comparison between DC and Trace-norm when n =
2000 and m = 4, 6, 8. (Left) Each curve presents the pairs of p
and q for which a method succeeds. (Right) The running time.

RNER is the fraction of attempts where the output cluster-
ing is not exactly the same as the the ground truth.

We set l = 1, t = (p + q)/2 and T = 10 in the following
experiments. When p and q are unknown, we use Algo-
rithm 2 in Chen et al. (2014b) to estimate t. One can also
apply the cross validation to determine t such that the in-
cluster edge density of the recovered clusters is maximized.
Parameter λ and cC in (1) are set to 1.6 and 5, respectively.
For simplicity, we use DC, Trace-norm and Spectral to de-
note the proposed Algorithm 1, CSX, and spectral cluster-
ing, respectively. For small graphs with around 1000 to
2000 nodes, Trace-norm has been extensively compared
with Spectral, SLINK (Sibson, 1973), etc., (Chen et al.,
2014b), and typically outperforms the others. Hence in the
first two experiments, we mainly compare the performance
of DC and Trace-norm.

The first experiment compares the performance of DC and
Trace-norm when m varies. Corollary 1 is established
based on analyzing the conditions when the exact recovery
of clustering for each subgraph is achieved, which leads
to a lower bound of p − q that is

√
m times larger than

that of Trace-norm. This lower bound is conservative since
Theorem 1 shows that the it is possible to achieve exact re-
covery when A correctly classifies at least λiKi nodes in
the ith cluster, which means that empirically, DC can do
better than predicted by Corollary 1. Figure 2 shows the
comparison results. It can be observed that p− q is approx-
imately 0.2 for Trace-norm, and 0.25 for DC when m = 4.
Clearly, 0.25 for DC is less than 0.4 predicted by Corollary
1. Figure 2 also shows their running time. We observe that
DC is almost 7 times faster than Trace-norm when m = 4.
Therefore, DC is able to recover clusters much faster that
Trace-norm without much loss of performance.

The second experiment compares the performance of DC
and Trace-norm when small clusters exist. Figures 3(a) and
(b) plot the ratio of exact recovery and running time of each
algorithm against the number of clusters and the size of the
smallest cluster, respectively. As shown in Corollary 2, DC
requires a weaker condition on K than Trace-norm, which
implies that DC will perform better than Trace-norm in the
face of small clusters. The simulation results empirically
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Figure 3. The comparison between DC and Trace-norm (n =
1000, p = 0.8, q = 0.2). (a) Nearly equal-sized clusters: the
sizes of the first r − 1 clusters are [n

r
] while the size of the rth

cluster is n − (r − 1)[n
r
]. (b) Small clusters: there exist three

clusters whose sizes are 500, 500−K and K, respectively.
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Figure 4. (Left) The fraction of successes for different m and p.
(Right) The average running time.

validate this conclusion, from which we observe that Trace-
norm fails when K is less than 50 but DC still succeeds.
Moreover, the running time of DC is again much shorter
than that of Trace-norm. Interestingly, we observe form
Figure 3(b) that the running time of Trace-norm has a sharp
rise when K is about 40, because it appears more iterations
needed to converge.

In the third experiment, we investigate the performance of
DC for different values of p, q and m. We repeat each
test 10 times. Figure 4 displays the fraction of successes
when p,m vary and the corresponding averaged running
time for different m when n = 10000. Obviously, when
the gap between p and q becomes larger, one can increase
m to achieve more speedup without affecting the clustering
performance. This agrees with our theoretic result shown in
Corollary 1 and 4. Figure 5 shows the fraction of successes
when p, q vary. We observe that in this case when p− q ≥
0.15, DC works pretty well. In real applications, when the
gap between p and q is large enough, one can try to apply
DC with proper m instead of performing Trace-norm or
Spectral on the entire graph.
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Table 1. Running time (second unit) of different clustering algorithms (“-” means “out of memory”).

n 500 1000 2000 3000 4000 6000 10000 20000 50000 100000
DC 1.550 2.501 5.120 8.392 13.036 23.108 53.134 607.690 2355.972 10281.718

Trace-norm 3.419 21.072 177.752 3031.910 - - - - - -
Spectral 0.128 0.736 5.543 18.142 41.585 - - - - -
ESCG 9.176 12.391 24.747 46.046 74.940 165.108 376.787 1041.690 6516.708 26658.519

Table 2. Running time (second unit) of different plant clique algorithms (“-” means “out of memory”).

n 500 600 700 800 1000 2000 3000
DC 1.655 1.830 2.367 2.670 2.445 5.099 8.450

(Ames & Vavasis, 2014) 116.2672 244.4297 490.5083 819.0086 - - -
(Ames, 2014) 1.8915 49.5097 113.5927 150.8029 550.4 4485.0 15197.5
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Figure 5. The fraction of successes for different p and q.

In the fourth experiment, we compare the running time of
DC with other methods. Table 1 shows the running times of
four algorithms, i.e., DC, Trace-norm, Spectral and ESCG.
The simulated graphs are generated with different n but
fixed p, q, r (p = 0.8, q = 0.2, r = 5). All these methods
can recover the true clusters in this setting. Obviously, DC
has the least running time when n ≥ 3000. Indeed, when
n is relatively large,Trace-norm and Spectral break down
due to high memory and computational demand. Since the
plant clique model is a special case of the GSBM, we also
compare DC with two recently proposed plant clique algo-
rithms as shown in Table 2. The graphs are generated with
p = 1.0, q = 0.2 and r = 5. The computational advantage
of the proposed DC algorithm is obvious.

4.2. Real-world Datasets

We now evaluate DC on three real-world datasets, namely,
MNIST (LeCun et al., 1995), Arxiv1 and DBLP2. For
MNIST, 10,000 samples were randomly selected from the
digit images with label 0, 1, or 7, and the graph was gener-
ated by connecting each sample to its 1000-nearest neigh-
bors where the distance measure is the Euclidean distance.
For Arxiv, we used the texts from the years 1999-2003 to
build the graph whose nodes and edges represent texts and

1http://www.cs.cornell.edu/projects/kddcup/datasets.html
2http://dblp.uni-trier.de/

Table 3. The performance of different algorithms on the real
world datasets MNIST, Arxiv and DBLP, which is measured by
computing the in-cluster and cross-cluster edge densities.

MNIST (10000 nodes, 13005198 edges)
Algorithm DC Metis Spectral ESCG

In-cluster (10−2) 35.00 33.94 34.94 35.05
Cross-cluster (10−2) 1.77 2.53 1.81 1.74

Arxiv (12480 nodes, 252906 edges)
Algorithm DC Metis Spectral ESCG

In-cluster (10−4) 114.46 106.22 22.39 16.55
Cross-cluster (10−4) 8.40 9.73 15.61 0.22

DBLP (24599 nodes, 376711 edges)
Algorithm DC Metis Spectral ESCG

In-cluster (10−4) 14.53 14.42 7.55 3.53
Cross-cluster (10−4) 5.63 5.64 6.07 44.30

citations, respectively. For DBLP, we randomly selected
a subset from it and constructed a co-author-graph where
each node corresponds to an author and each edge corre-
sponds to a co-authorship between two authors.

The setting of Algorithm 1 is different from that in the sim-
ulations. We choose Spectral or Metis as A depending on
whose result has a higher in-cluster edge density. Given
the output of (1) performed on the fuse graph, we apply
Metis to classify the nodes into a specific number of clus-
ters. Due to the memory limitation, for two of the baseline
algorithms, namely, Spectral and Metis, we apply a similar
algorithm as Algorithm 1 but replacing (1) with Spectral
and Metis respectively. For fair comparison, all the algo-
rithms are forced to partition the nodes of MNIST into 3
clusters and partition the nodes of Arxiv and DBLP into 15
clusters. The performance of each algorithm is measured
by computing the in-cluster and cross-cluster edge densi-
ties (Table 3). When the graph is dense (e.g., MNIST), DC
and ESCG have similar performance. But when the graph
is sparse (e.g., DBLP), Spectral and ESCG tend to classify
most of the nodes into one big cluster, so that the corre-
sponding in-cluster densities are low. In general, our algo-
rithm DC outperforms all three baselines on these datasets.
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