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Abstract
We consider the problem of clustering incom-
plete data drawn from a union of subspaces.
Classical subspace clustering methods are not ap-
plicable to this problem because the data are in-
complete, while classical low-rank matrix com-
pletion methods may not be applicable because
data in multiple subspaces may not be low rank.
This paper proposes and evaluates two new ap-
proaches for subspace clustering and completion.
The first one generalizes the sparse subspace
clustering algorithm so that it can obtain a sparse
representation of the data using only the observed
entries. The second one estimates a suitable ker-
nel matrix by assuming a random model for the
missing entries and obtains the sparse represen-
tation from this kernel. Experiments on synthetic
and real data show the advantages and disadvan-
tages of the proposed methods, which all outper-
form the natural approach (low-rank matrix com-
pletion followed by sparse subspace clustering)
when the data matrix is high-rank or the percent-
age of missing entries is large.

1. Introduction
In many real world applications, we are faced with the
problem of clustering incomplete data drawn from a union
of low-dimensional subspaces. For example, in the motion
segmentation problem in computer vision, feature point tra-
jectories extracted from a video sequence with multiple
moving objects lie in multiple low-dimensional subspaces,
one per moving object. However, due to occlusions or ob-
jects entering or leaving the field of view, such trajecto-
ries are often incomplete. Therefore, we are faced with the
problem of clustering these incomplete trajectories in order
to segment the video into multiple motions.
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Prior work. The problem of clustering complete data in a
union of subspaces has received increasing attention over
the past decade (see Vidal (2011) for a tutorial). Classi-
cal methods, such as K-subspaces (Bradley & Mangasar-
ian, 2000; Tseng, 2000) and mixture of probabilistic PCAs
(Tipping & Bishop, 1999) suffer from local minima, while
algebraic methods such as Generalized Principal Compo-
nent Analysis (Vidal et al., 2005) suffer from robustness
to data corruptions. This has motivated the development
of convex optimization methods based on sparse (Elham-
ifar & Vidal, 2009; 2010; 2013) and low-rank (Liu et al.,
2010; 2013; Lu et al., 2012; Favaro et al., 2011; Vidal &
Favaro, 2014) representation techniques. For example, the
Sparse Subspace Clustering (SSC) algorithm of (Elhamifar
& Vidal, 2009) is based on expressing each data point as
a sparse linear combination of all other data points. When
the subspaces are sufficiently separated, and the data points
are sufficiently well distributed inside the subspaces, the
nonzero coefficients of one point correspond to other points
in the same subspace. Hence the sparse representation can
be used to construct an affinity for clustering the data using
spectral clustering. The theoretical conditions guarantee
the correctness of clustering and are applicable to noise-
less data (Elhamifar & Vidal, 2013), data corrupted by out-
liers (Soltanolkotabi & Candès, 2013; Soltanolkotabi et al.,
2014) and data corrupted by noise (Wang & Xu, 2013).

In sharp contrast, the case where the data points are incom-
plete has received significantly less attention. Gruber &
Weiss (2004) model the data with a mixture of probabilistic
PCAs and use the EM algorithm to both segment the data
and find the missing entries. However, this approach suf-
fers from local minima and cannot guarantee exact matrix
completion or exact clustering. Vidal & Hartley (2004) as-
sume that, although the data lie in a union of subspaces, the
data matrix is still low-rank, hence they use low-rank ma-
trix completion techniques followed by subspace clustering
techniques. In practice, the number of subspaces and their
dimensions may not be small enough so that the data matrix
is low rank. Eriksson et al. (2012) use a local neighborhood
of each incomplete point to complete it, and refine the es-
timated subspaces to recover the full matrix. Under certain
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conditions, this method can complete the data with high
accuracy. However, the conditions require having an arbi-
trarily large number of points, which makes it impractical.
Finally, in an unpublished abstract, Candes et al. (2014)
propose to extend SSC to the case of missing data by re-
placing a certain incomplete kernel matrix by its expected
value and then computing the sparse representation of each
point using a bias corrected Dantzig selector. While the
first step is very clever and promising, the precise incom-
plete data model and the computation of the expectation are
not given. Moreover, using a bias corrected Dantzig selec-
tor for finding the sparse representation is computationally
more complex than classical SSC, which is based on an
ADMM implementation of LASSO.

Paper contributions. We present two new approaches for
subspace clustering and completion. The first one uses the
knowledge of which entries are observed to formulate a
convex optimization problem that estimates a sparse repre-
sentation of the data. The second one is based on the obser-
vation that the LASSO version of SSC does not require one
to know the full data matrix X , but rather the kernel matrix
X>X . Under a certain probability model for the missing
entries, we show that it is possible to obtain an unbiased
estimator for X>X from the observed entries of X and the
fraction of missing entries δ. (This approach was outlined
in (Candes et al., 2014) without proof.) The estimator is
then used to define a convex optimization problem for com-
puting a sparse representation of the data. The last step of
both approaches is the same as that of SSC: apply spectral
clustering to an affinity matrix built from the sparse rep-
resentation. Experiments on synthetic and real data show
that the proposed algorithms are effective with each having
advantages and disadvantages, as well as complementary
strengths when compared to the basic approach of matrix
completion followed by SSC. In particular, whenX is low-
rank and the fraction of missing entries δ is small, matrix
completion works extremely well and our approaches are
inferior. However, when either X is high rank or δ is large,
matrix completion fails, and our approaches are superior.

2. SSC with Complete Data: A Review
Consider n linear or affine subspaces {Sl ⊂ RD}nl=1, each
of dimension dl < D for l = 1, . . . , n. Assume we are
given N data points {xj ∈ RD}Nj=1 lying in the union of
the n subspaces. Then the observed data matrix is

X = [x1 . . .xN ] ∈ RD×N . (1)

The goal of subspace clustering is to identify the number of
subspaces, their dimensions, a basis for each subspace, and
the membership of each data point to its correct subspace.

The SSC algorithm (Elhamifar & Vidal, 2009) is based on
the observation that data in a union of subspaces are self-
expressive. That is, each data point can be represented as

a linear combination of other points that lie in the same
subspace. Therefore, we can write each data point as

xj = Xcj , cjj = 0, (1>cj = 1), (2)

where the vector of coefficients cj has at most dl nonzero
entries if xj ∈ Sl. The additional constraint 1>cj = 1,
where 1 is the vector of all ones, is used in the case of affine
subspaces, because the coefficients must add up to 1 to give
an affine combination rather than a linear combination.

When the subspaces are sufficiently separated and the data
points are well distributed inside each subspace, the theo-
retical analysis in (Elhamifar & Vidal, 2013; Soltanolkotabi
& Candès, 2013; Soltanolkotabi et al., 2014) shows that the
solutions of the set of `1 minimization problems

min
cj

||cj ||1 s. t. xj = Xcj , cjj = 0, j = 1, . . . , N, (3)

satisfy cij 6= 0 only if points xi and xj are in the same
subspace. In matrix form, we can write this problem as

min
C
||C||1 s. t. X = XC, diag(C) = 0, (4)

where C = [c1 · · · cN ] ∈ RN×N is the coefficient matrix.

When the data are contaminated by noise, the self-
expressiveness constraint X = XC is relaxed and the fol-
lowing LASSO problem is solved:

min
C
||C||1 +

λ

2
‖X −XC‖2F s. t. diag(C) = 0, (5)

where λ > 0 is a parameter. In this case, Wang &
Xu (2013) show that when the amount of noise is small
enough, the subspaces are sufficiently separated, and the
data are well distributed, the matrix of coefficients gives
the correct clustering with high probability.

Given the matrix of sparse coefficients C, SSC constructs
a weighted graph with affinity matrix A = |C|+ |C|> and
uses spectral clustering algorithms to cluster the data.

3. SSC with Missing Entries
Let us now consider the case where some entries of the data
matrix X = [xij ] ∈ RD×N are missing. Specifically, let
W = [wij ] ∈ {0, 1}D×N be a matrix such that wij = 1 if
xij is observed, and wij = 0 otherwise. The locations of
the observed entries for the jth data point or for the entire
data matrix can then be indexed, respectively, by the sets:

Ωj = {i : wij = 1} and Ω = {(i, j) : wij = 1}. (6)

Given the observed entries of X , {xij}(i,j)∈Ω, our goal is
to determine which columns of X belong to the same sub-
space. SSC does so by solving for the matrix of coefficients
C in (5). However, since some entries ofX are missing, we
cannot directly solve the optimization problem in (5). In
this section, we present various approaches for addressing
this problem and discuss their strengths and weaknesses.
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3.1. Matrix Completion + SSC (MC+SSC)
A first approach is to apply a matrix completion (MC) algo-
rithm to recover the missing entries inX and then solve (5).
More specifically, let PΩ(X) denote the entries of X in Ω.
The MC+SSC approach to subspace clustering with miss-
ing entries uses the MC approach in (Cai et al., 2008) fol-
lowed by the SSC approach in (5), that is:

A = arg min
A

‖A‖∗+
τ

2
‖A‖2F s. t. PΩ(X)=PΩ(A),

C = arg min
C

‖C‖1+
λ

2
‖A−AC‖2F s. t. diag(C)=0,

for appropriately chosen positive constants τ and λ. The
MC+SSC approach is likely to be a good strategy when
the rank of the data matrix and the percentage of miss-
ing entries are sufficiently small. In this case, existing
results (Cai et al., 2008; Candès & Recht, 2009; Candès
& Tao, 2010; Gross, 2011; Keshavan et al., 2010; Zhou
et al., 2010; Recht, 2011) guarantee the correctness of
completion, while existing results (Elhamifar & Vidal,
2013; Soltanolkotabi & Candès, 2013; Soltanolkotabi et al.,
2014) guarantee the correctness for clustering. However,
MC+SSC is likely to fail as soon as the data matrix is full
rank, e.g., a data matrix from 20 subspaces of dimension 5
in R100 can be of full rank 100, or the percentage of miss-
ing entries is high, as in both cases the MC step may fail.

3.2. SSC by Entry-Wise Zero-Fill (SSC-EWZF)
A second approach is to fill the missing entries in X with
0s, i.e., to replace X by Xmiss = W � X where � is the
Hadamard product, and then solve (5). We call this ap-
proach Zero-Fill+SSC (ZF+SSC). However, this heuristic
may fail because it may not provide the correct completion
of the data, hence SSC may not provide the correct cluster-
ing either. Moreover, the ZF approach does not minimize
the correct error. Specifically, the self-expressiveness error

‖X −XC‖2F =

D∑
i=1

N∑
j=1

(xij −
N∑
k=1

xikckj)
2 (7)

becomes

‖Xmiss−XmissC‖2F =

D∑
i=1

N∑
j=1

(wijxij−
N∑
k=1

wikxikckj)
2. (8)

When wij = 0, this encourages the term
∑N
k=1 wikxikckj

to be close to zero, while this term should not be penalized
because we do not observe xij when wij = 0. We could
address this by summing only over observed entries of X:

‖PΩ(X−XC)‖2F =

D∑
i=1

N∑
j=1

wij

(
xij−

N∑
k=1

xikckj

)2

. (9)

However, PΩ(XC) cannot be computed whenX has miss-
ing entries. To address this issue, we propose to replace (9)
by ‖PΩ(Xmiss −XmissC)‖2F , which is equal to:

D∑
i=1

N∑
j=1

wij(xij −
N∑
k=1

wikxikckj)
2. (10)

This modified self-expressiveness error was proposed in
(Balzano et al., 2010) for a different but related problem
(column subset selection with missing entries). In princi-
ple, this modified error is not correct either since it replaces
the linear combination

∑N
k=1 xikckj by

∑N
k=1 wikxikckj .

However, notice that the two sums coincide if for all k such
that wik = 0 it happens to be the case that ckj = 0. Since
the `1 term will bias ckj to be zero by penalizing |ckj |, the
SSC by Entry-Wise Zero-Fill (SSC-EWZF) approach,

min
C
‖C‖1+

λ

2
‖PΩ(Xmiss−XmissC)‖2F s. t.diag(C)=0,

(11)
will effectively try to express the jth column of X , xj , as
a linear combination of other columns of X that are in the
same subspace as xj and whose entries in Ωj are the most
complete. Ideally, this approach will work perfectly if, for
each point xj ∈ Sl, there are at least dl other data points
xj1 , . . . ,xjdl , whose ith entries are known for all i ∈ Ωj .
However, the use of the projection PΩ could affect the cor-
rectness of clustering, e.g., if two different subspaces be-
come indistinguishable after projection. As it is customary
in classical matrix completion results, we need to assume
that each subspace is incoherent with the pattern of missing
entries. We conjecture that the SSC-EWZF is guaranteed to
give the correct clustering and completion provided that (1)
the subspaces are sufficiently separated, (2) the data points
are well distributed inside the subspaces, and (3) the sub-
spaces are incoherent with the pattern of missing entries.

3.3. SSC by Expectation-based Completion (SSC-EC)

This approach exploits the fact that the self-expressiveness
error depends on X>X rather than X because

‖X −XC‖2F = trace((I − C)>X>X(I − C)). (12)

This observation was the basis for the Kernel SSC method
of Patel & Vidal (2014). Here, we use this idea to complete
the kernel matrixX>X in lieu of the data matrixX . To this
end, we assume a random model in which each entry of X
is missing independently and with equal probability δ ∈
[0, 1]. Under this model, the following lemma, which was
stated in (Candes et al., 2014) without proof, shows how to
obtain an unbiased estimator for X>X from Xmiss and δ.
Lemma 1. Let Z = [zij ] ∈ {0, 1}D×N be a random ma-
trix whose entries are i.i.d. Bernoulli with parameter δ, i.e.,

P [zij = k] = δ1−k(1− δ)k, k = 0, 1, (13)

for all i = 1, . . . , D and all j = 1, . . . , N . Then the matrix

Γ , Y >Y − δ diag(Y >Y ), (14)

where Y , 1
1−δZ�X , is an unbiased estimator forX>X .
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Proof. If j 6= i, then

γij = (Y >Y )ij = y>i yj =
1

(1− δ)2

D∑
k=1

xkixkjzkizkj ,

where yi is the ith column of Y , i = 1, . . . N . Then,

E[γij ] =
1

(1− δ)2

D∑
k=1

xkixkjE[zkizkj ]

=

D∑
k=1

xkixkj = x>i xj = (X>X)ij ,

where we have E[zkizkj ] = E[zki]E[zkj ] because of inde-
pendence, and E[zki] = 1− δ by (13).

If j = i, then

γii = (Y >Y )ii − δ(Y >Y )ii = (1− δ)(Y >Y )ii

= (1− δ)
D∑
k=1

ykiyki =
1

1− δ

D∑
k=1

x2
kiz

2
ki.

So the expectation of γii for all i = 1, . . . , N is

E[γii] =
1

1− δ

D∑
k=1

x2
kiE[z2

ki] = (X>X)ii,

where we use the fact that E[z2
ki] = 1− δ by (13).

Combining the above two cases, we have

E[γij ]=(X>X)ij for all i = 1, . . . , D and j = 1, . . . , N,

hence Γ is an unbiased estimator forX>X as claimed.

Lemma 1 suggests a simple approach for solving the in-
complete SSC problem where we solve the problem in (5)
after replacing the kernel matrix X>X by

Γ̂ =
1

(1− δ)2
(X>missXmiss − δ diag(X>missXmiss)). (15)

Notice, however that, while the matrix X>X is positive
semidefinite, the matrix Γ̂ in (15) might not be, hence the
optimization problem in (5) may no longer be convex. To
address this issue, we regularize Γ̂ as follows:

Γ̃ = Γ̂ +
δ

(1− δ)2
max{diag(X>missXmiss)}I, (16)

where max{diag(X>missXmiss)} is the maximum value of
the diagonal entries of X>missXmiss. One can check that Γ̃ is
positive semi-definite. This leads to the following SSC by
Expectation-based Completion (SSC-EC) algorithm:

min
C
||C||1 +

λ

2
trace((I − C)>Γ̃(I − C))

s. t. diag(C) = 0.
(17)

We use the Alternating Direction Method of Multipliers
(ADMM) (Boyd et al., 2010) to solve (17). The steps of
the ADMM algorithm for solving the original problem (5)
are given in (Elhamifar & Vidal, 2013). Since the ADMM
algorithm for SSC depends only on X>X , to solve (17)
we simply replace X>X by Γ̃ in the ADMM algorithm of
Elhamifar & Vidal (2013).

3.4. SSC by Column-wise Expectation-based
Completion (SSC-CEC)

A concern with the SSC-EC method is that it is based on
the self-expressiveness error ‖X − XC‖2F , rather than its
incomplete version ‖PΩ(X−XC)‖2F . As discussed in §3.2
for the ZF+SSC method, this introduces an undesired bias
in the estimation of C. Moreover, observe that when δ is
small enough, the expression for Γ̂ in (15) becomes Γ̂ ≈

1
(1−δ)2X

>
missXmiss. Thus, the SSC-EC method effectively

reduces to the ZF+SSC method with λ replaced by λ
(1−δ)2 .

To address this issue, we modify the self-expressiveness
error to account only for observed entries, similar to our
SSC-EWZF method. As it turns out, rather than solving for
the entire matrix of coefficients as per (5), it will be more
convenient to equivalently solve N optimization problems,
one for each column cj , j = 1, . . . , N , of C:

min
cj

‖cj‖1 +
λ

2
‖xΩj ,j −XΩj

cj ||22 s. t. cjj = 0. (18)

Here xΩj ,j is a vector with the entries of xj indexed by Ωj
(i.e., the observed entries of xj), and XΩj

is a matrix with
the rows of X indexed by Ωj . After expanding the second
term in the objective function above, we obtain

‖xΩj ,j‖22 − 2c>j X
>
Ωj
xΩj ,j + c>j X

>
Ωj
XΩj

cj . (19)

Therefore, to solve the above optimization problem, we
only need to estimate X>Ωi

xΩj ,j and X>Ωj
XΩj

, which are
specifically tuned to each data point and its missing entries.
The following lemma gives unbiased estimators for them.
Lemma 2. For an arbitrary matrix A, let Aω denote
the submatrix of A whose rows are indexed by ω ⊆
{1, . . . , D}. Then, under the random model in Lemma 1,
the kernel matrix Γ(ω) ∈ RN×N defined as

Γ(ω) , Y >ω Yω − δ diag(Y >ω Yω) (20)

is an unbiased estimator for X>ω Xω .

Proof. For this proof, we let γij denote the (i, j)th entry of
Γ(ω). Similar to the proof of Lemma 1, we have

γij = (Y >ω Yω)ij =
1

(1− δ)2

∑
k∈ω

xkixkjzkizkj (j 6= i),

γii = (1− δ)(Y >ω Yω)ii =
1

1− δ
∑
k∈ω

x2
kiz

2
ki.
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Then, since E[zkizkj ] = E[zki]E[zkj ] = (1− δ)2 if j 6= i,
and E[z2

ki] = 1− δ, we have

E[γij ]=(X>ωXω)ij for all i = 1, . . . , D and j = 1, . . . , N.

Thus Γ(ω) is an unbiased estimator for X>ω Xω .

It follows from Lemma 2 that the matrix

Γ̂(j) =
(Xmiss)

>
Ωj

(Xmiss)Ωj
− δ diag

(
(Xmiss)

>
Ωj

(Xmiss)Ωj

)
(1− δ)2

and its jth column γ̂(j), respectively, estimate the matrix
X>Ωj

XΩj
and vector X>Ωj

xΩj ,j . However, since Γ̂(j) may
not be positive semidefinite, like before we regularize it as:

Γ̃(j) = Γ̂(j)+
δ

(1− δ)2
max{diag

(
(Xmiss)

>
Ωj

(Xmiss)Ωj

)
}I.

Similarly, we define γ̃(j) as the jth column of Γ̃(j). This
leads to the convex optimization problem:

min
cj

‖cj‖1 +
λ

2

(
c>j Γ̃(j)cj−2c>j γ̃

(j)
)

s. t. cjj = 0, (21)

which we solve using the ADMM algorithm, as before.

3.5. Discussion and Bias-corrected Dantzig Selector

Notice that solving the problem in (17) is more efficient
than solving the N problems in (21) because (17) involves
inverting a matrix that is common for all columns of C,
while (21) involves inverting a different matrix for each
column of C. Notice also that both methods are different
from the bias-corrected Dantzig selector (BCDS)

min
cj

‖cj ||1 s. t. ‖γ̂(j)−Γ̂(j)cj‖∞ ≤ λ and cjj = 0 (22)

proposed by (Candes et al., 2014) because, instead of trying
to penalize the standard reconstruction error ‖xj −Xcj‖22,
this approach tries to penalize ‖X>xj − X>Xcj‖∞. In
our experience, this approach is computationally more ex-
pensive than SSC-CEC and sensitive to the choice of λ: a
value that is too small leads to infeasible problems, while
too large of a value leads to poor clustering performance.

4. Experiments
In this section, we evaluate the performance of MC+SSC,
ZF+SSC, SSC-EWZF, SSC-EC, SSC-CEC, and BCDS on
both synthetic data and the Hopkins 155 motion segmenta-
tion dataset (Tron & Vidal, 2007). All algorithms involve
a penalty parameter λ that should be carefully chosen so as
to balance reconstruction error and sparsity: a small λ may
lead to sparse solutions, but a large reconstruction error,
while a large λ may give very good reconstruction, but non

sparse solutions. In (Elhamifar & Vidal, 2013), an adaptive
choice for λ in (5) is given for a complete data matrixX as:

λ = α/min
j

max
i 6=j
|X>X|ij , (23)

where α ≥ 1 is a new tuning parameter. The justification
for this choice for λ is that, if α ≥ 1, every column of C
is guaranteed to be nonzero. Considering the specific form
of ZF+SSC, SSC-EWZF, SSC-EC, and SSC-CEC, the de-
nominator in (23) changes to minj maxi 6=j |X>missXmiss|ij ,
maxi 6=j |(Xmiss)

>
Ωj

(Xmiss)Ωj |ij , minj maxi6=j |γ̃ij |, and

maxi 6=j |γ̃(j)
ij |, respectively.

The clustering accuracy or alternatively the clustering er-
ror is used as the metric for comparing the performance of
different methods. Specifically, the clustering accuracy is
the ratio of correctly classified data points over all the data
points and the clustering error = 1− clustering accuracy.

4.1. Synthetic Data

The synthetic data is generated by drawing N0 ≥ d points
per subspace from a union of n subspaces of equal dimen-
sion d � D in RD. The data is generated as follows. Let
Al ∈ RD×d, Bl ∈ Rd×N0 be independent random Gaus-
sian matrices, for l = 1, . . . , n. Since rank(AlBl) = d
with high probability, the columns of AlBl lie in a d-
dimensional linear subspace Sl = span(AlBl). Also
the randomness guarantees that the subspaces {Sl}nl=1

are independent with high probability. Therefore the
complete data matrix X can be constructed as X =
[A1B1, . . . , AnBn], where X ∈ RD×N if N0 = N/n. We
also normalize the columns of X to have unit `2 norm. To
generate the incomplete data, we draw a random matrix W
whose entries are i.i.d. Bernoulli with missing rate δ.

In order to study the influence of the rank of the data ma-
trix on the clustering performance, we evaluate all methods
both in the low-rank and high-rank regimes. Note that the
rank of X will be approximately equal to the sum of the
dimensions of the subspaces, i.e., rank(X) ≈ nd, since
the subspaces are independent with high probability. In our
experiments, we use D = 100, N0 = 50, d = 5, n = 2 to
simulate the low-rank case (dn � D), and D = 25, N0 =
50, d = 5, n = 5 to simulate the high-rank case (dn ≈ D).

Effect of the penalty parameter. Figures 1(a)-1(b) show
the clustering error versus α in the low-rank case for a miss-
ing rate of δ = 0.5 and 0.8. When δ = 0.5, we can see
that methods that use the complete self-expressiveness er-
ror (ZF+SSC and SSC-EC) are very sensitive to the choice
of α. In contrast, methods based on the incomplete error
(SSC-EWZF and SSC-CEC) work perfectly for almost all
values of α. Also, SSC-EC is better than ZF+SSC, as ex-
pected. The performance of MC+SSC is not very sensitive
to α, but as δ increases from 0.5 to 0.8 the clustering error
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(a) low rank case: δ = 0.5
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(b) low rank case for δ = 0.8
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(c) high rank case for δ = 0.3
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(d) high rank case for δ = 0.5

Figure 1. Clustering error versus α (log scale). (a)-(b) show the
low-rank case with D = 100, N0 = 50, d = 5, n = 2. (c)-(d)
show the high-rank case with D = 25, N0 = 50, d = 5, n = 5.

increases drastically. This may be explained because MC
fails when the missing rate is too high. The clustering er-
rors of SSC-EWZF and SSC-CEC also increase with δ, but
less dramatically. Overall, SSC-EWZF and SSC-CEC are
the most accurate and robust methods against changes in α.

Figures 1(c)-1(d) show the corresponding results in the
high-rank case for a missing rate of δ = 0.3 and 0.5. By
comparing Figures 1(d) and 1(a), we see that the clustering
errors of all methods increase, arguably due to the increase
in the number of subspaces. Notice also that, as before,
ZF+SSC and SSC-EC give the highest errors, but this time
MC+SSC also gives high errors because the MC step fails
as the data matrix is not low rank. SSC-CEC performs bet-
ter than the previous methods, but its sensitivity with re-
spect to α increases. Overall, SSC-EWZF performs best as
it gives lower errors for a broader range of values of α.

Effect of the missing rate. To evaluate performance as a
function of the missing rate, we first need to decide how to
do a fair comparison. This is because performance depends
on the choice of the parameter α and the optimal range for
α may not be the same for different methods. One possi-
bility is to choose the optimal α for each method and then
compare their performance. In practice, however, we may
not know the best α, hence fixing α for all methods is an-
other possibility. We evaluate performance in both ways.

Figures 2(a)-2(b) show the clustering error versus δ in the
low-rank case. Observe that all methods give nearly per-
fect clustering for δ < 0.6. As before, the performance
of ZF+SSC and SSC-EC deteriorates very quickly as δ in-
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(a) low rank case for optimal α
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(b) low rank case for α = 5
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(c) high rank case for optimal α
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(d) high rank case for α = 5

Figure 2. Clustering error versus missing rate δ. (a)-(b) show the
low-rank case with D = 100, N0 = 50, d = 5, n = 2. (c)-(d)
show the high-rank case with D = 25, N0 = 50, d = 5, n = 5.

creases, while the performance of MC+SSC, SSC-EWZF,
and SSC-CEC remains very good. For this experiment only
we evaluate the BCDS method. While BCDS uses the same
completion strategy as SSC-CEC, the sparse representation
is found by solving (22) instead of (21). As we can see, this
change results in a higher clustering error. As discussed be-
fore, we believe this is because the performance of (22) is
highly dependent on the choice of λ in (22). We choose

λ =
√

2δ logN
n(1−δ) , as suggested in (Candes et al., 2014).

Figures 2(c)-2(d) show the results for the high-rank case.
Observe that all methods give nearly perfect clustering for
δ < 0.2, but their performance deteriorates quickly as δ in-
creases. In particular, MC+SSC fails since the data matrix
is no longer low-rank, giving a clustering error that is sim-
ilar to that of ZF+SSC, SSC-EC and BCDS. SSC-EWZF
and SSC-CEC give clustering errors that are similar and
clearly lower than those of ZF+SSC, SSC-EC and BCDS.

Effect of the number of subspaces, the dimension of the
subspaces, and the number of samples per subspace.
Figure 3 evaluates the performance of SSC-CEC as a func-
tion of the number of subspaces n, the dimension of the
subspaces d, and the number of samples N0 per subspace.

In Figure 3(a), we fix N0 = 30, D = 100, d = 5, and
vary n as 2, 3, 5, 7, 10. We can see that the break point for
perfect clustering (δ ≈ 0.55) does not change too much as
n varies. This means that SSC-CEC is robust to variations
of the number of clusters when the missing rate is low. For
a high missing rate, however, the clustering error increases
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Figure 3. Clustering error versus number of subspaces n, dimen-
sion of the subspaces d, and number of samples N0 per subspace
for SSC-CEC. (a) Varying n when N0 = 30, D = 100 and
d = 5; (b) Varying d when N0 = 30, D = 100, n = 2; (c)
Varying N0 when D = 100, d = 5, n = 2; (d) Varying d and n
while fixing their product nd = D when N0 = 30 and D = 30.

very quickly as the number of subspaces increases.

In Figure 3(b), we fix N0 = 30, D = 100, n = 2, and vary
d as 1, 3, 5, 7, 9. We can see that as the dimension of each
subspace increases, the clustering error increases. This is
expected because the data is not as well distributed inside
the subspaces when N0/d decreases, hence SSC may fail.

In Figure 3(c), we fix D = 100, d = 5, n = 2, and vary N0

as 5, 10, 20, 50, 100. Observed that as more samples are
added, the performance of SSC-CEC becomes more and
more stable. This is because the self-expressiveness prop-
erty may fail when the number of samples per subspace is
too small. Also, increasing the number of samples per sub-
space improves the break point for perfect clustering.

In Figure 3(d), we fix N0 = 30, D = 30, and vary both
d and n while keeping their product constant as nd = D.
By construction, the subspaces are independent with high
probability. Hence, this choice for n and d will make the
data matrix almost full rank. It is interesting to see that
when the missing rate is low, SSC-CEC performs best for
low-dimensional subspaces, but when the missing rate is
high, it performs best for high-dimensional subspaces.

SSR error and connectivity. While clustering error is the
ultimate performance metric for subspace clustering, such a
metric depends on the spectral clustering step. To evaluate
the direct output of the SSC algorithms, it is also customary
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(a) δ = 0.5 in low-rank case
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(b) δ = 0.8 in low-rank case
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(c) δ = 0.3 in high-rank case
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(d) δ = 0.5 in high-rank case

Figure 4. SSR error versus connectivity by varying the parameter
α. (a) Missing rate δ = 0.5 in low-rank case; (b) Missing rate
δ = 0.8 in low-rank case; (c) Missing rate δ = 0.3 in high-rank
case; and (d) Missing rate δ = 0.5 in high-rank case.

to evaluate the quality of the sparse representation matrixC
by measuring the subspace sparse representation (SSR) er-
ror and the connectivity of each cluster. For SRR, we com-
pute the proportion of the sum of the absolute values of the
entries from other subspaces in each column of C and then
average over all the columns. Since separability of differ-
ent subspaces is desired, a lower SSR error is preferable.
For connectivity, we calculate the second smallest eigen-
value λ2 of the normalized Laplacian matrix for each clus-
ter, which measures the connectivity of the corresponding
subgraph. We take the smallest λ2 (across all groups) as a
measure of the connectivity for all groups. Note that higher
connectivity is preferable, since it prevents over-clustering.

We report both the SSR error and connectivity by varying
the penalty parameter α. We observe that connectivity usu-
ally goes up when the SSR error increases. Thus we plot
them together in an ROC-like curve, as shown in Figure 4.

Figures 4(a) and 4(b) plot SSR error versus connectivity
for a missing rate δ of 0.5 and 0.8, respectively, in the low-
rank case. Observe that MC+SSC is slightly better than
SSC-EWZF and SSC-CEC when δ = 0.5 since its curve is
above and to the left of that for SSC-EWZF and SSC-CEC.
Observe also that MC+SSC produces very low SSR errors
but also very low connectivity for all values of α. When
δ = 0.8, the performance of MC+SSC deteriorates, which
is consistent with the fact that MC fails for very high miss-
ing rate. On the other hand, SSC-EWZF and SSC-CEC
continue to be the best methods, with SSC-EWZF being
slightly better for small SSR errors, and SSC-CEC being
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slightly better for high SSR errors.

Figures 4(c) and 4(d) plot the SSR error versus connectivity
for a missing rate δ of 0.3 and 0.5, respectively, in the high-
rank case. As before, SSC-EWZF and SSC-CEC continue
to be the best methods, showing that they are clearly ad-
vantageous in the high-rank case when MC does not work.

4.2. Motion Segmentation

In this experiment, we evaluate the performance of dif-
ferent subspace clustering and completion methods on the
motion segmentation problem in computer vision. Given a
video with multiple moving objects, feature extraction and
tracking methods are used to extract N feature points and
track them across F frames of the video. Under the affine
projection model, the trajectories associated with one mov-
ing object lie in an affine subspace of R2F of dimension
d = 1, 2, 3. The task is to cluster these trajectories accord-
ing to their corresponding motion subspaces.

We evaluate different methods on the Hopkins 155 data set,
which contains 155 video sequences with 2 or 3 moving ob-
jects. Since in this case the dimension of each motion sub-
space is d = 1, 2, 3, the number of motions is n = 2, 3, and
the dimension of the ambient space is D = 2F ≥ 30, the
data matrix is always low rank, and so we expect MC+SSC
to work very well. Thus, to simulate the high-rank case, we
also do experiments on subsampled trajectories with 3 or 6
frames so that the dimension of the ambient space isD = 6
or 12. The sampled frames are chosen to be as equally
spaced and spread out as possible. For example, if the orig-
inal data has 20 frames, and the number of sampled frames
is 3, then we sample the 1st, 10th and 19th frame. Thus,
the full data, 6-frame data and 3-frame data cases represent
the low-rank, mid-rank and high-rank cases, respectively.
To make the data incomplete, we generate a mask matrix
W ∈ {0, 1}D×N whose entries are i.i.d. Bernoulli with
missing rate δ and let Xmiss = W � X . Unlike the syn-
thetic data experiments, in the Hopkins 155 data set the
subspaces are affine. We handle this by adding the con-
straint 1>C = 1> to each convex optimization problem,
which enforces the sparse coefficients to add up to 1.

Figure 5 shows the clustering error of different methods
as a function of the missing rate δ with fixed α = 5. As
we can see, SSC-CEC outperforms ZF+SSC and SSC-EC
in all cases. For the low-rank case shown in Figure 5(a),
MC+SSC does a very good job as expected. However,
as the dimension of the ambient space reduces, MC starts
to fail. As a result, the clustering error for MC+SSC in-
creases rapidly in Figure 5(b), and even more so in Figure
5(c). Meanwhile, SSC-EWZF and SSC-CEC are less sen-
sitive to the dimension of the ambient space or the rank of
the data matrix, and outperform MC+SSC in the high-rank
case (Figure 5(c)) when the missing rate is higher than 0.3.
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(a) All frames
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(b) Sample 6 frames
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(c) Sample 3 frames

Figure 5. Variation of performance with respect to missing rate
δ on Hopkins 155 data set. Penalty parameter α is fixed as 5.
Experiments are conducted on (a) full data, (b) 6 frames sampled
data and (c) 3 frames sampled data respectively.

Therefore, SSC-EWZF and SSC-CEC are potentially better
methods for the high-rank and high-missing rate scenario.

5. Conclusions
We have proposed two algorithms for subspace clustering
with missing entries called sparse subspace clustering by
entry wise zero fill (SSC-EWZF) and sparse subspace clus-
tering by column wise expectation completion (SSC-CEC).
SSC-EWZF is a natural generalization of SSC in which the
self-expressiveness error is restricted only to the observed
entries, while SSC-CEC is a natural generalization of SSC
where the kernel matrix X>X restricted to the observed
entries is replaced by an unbiased estimator under a random
model. Both algorithms were compared against the natural
approaches of first filling in the missing entries either with
zeros (ZF+SSC) or using matrix completion (MC+SSC).
The results show that MC+SSC is competitive only when
the data matrix is low rank and the percentage of missing
entries is low. Otherwise, SSC-EWZF and SSC-CEC per-
form significantly better. Moreover, we conjectured that
SSC-EWZF should give perfect clustering provided that
the subspaces are sufficiently separated, the data are well
distributed inside the subspaces, and the subspaces are in-
coherent with respect to the missing entries. Such condi-
tions for correctness will be investigated in future work.
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