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Appendix

A. Notation
N = {1, 2, ..., N} =: [N ] is the whole set of data points. i, j ∈ N denote points. dij := D(xi,xj). D is the number of
data sets. Td ⊆ N denotes the set of points in the d-th dataset, i.e. ∪Dd=1Td = N . Nd = |Td| is the number of points in
Dataset d. d(i) ∈ [D] denotes the dataset index of Point i. M ⊆ N is the set of medoids. k, l ∈ M denote clusters and
themselves are medoids. Sk is the set of points in Cluster k. Nk = |Sk| is the number of points in Cluster k. M(i) ∈ M
denotes the cluster/representative of Point i. Let Dk ⊆ [D] denote the data sets contained or partially contained in Cluster
k. Denote Sk,d := Sk ∩ Td for d ∈ Dk. Thus ∪d∈Dk

Sk,d = Sk. Denote Nk,d := |Sk,d| for d ∈ Dk.

B. Proof of Theorem 1
Theorem 1 is a direct corollary of Theorem 2, by setting θ = 0.

C. Proof of Theorem 2
First, the convex program (6) has same set of optimal solutions with the following linear program

min
wij≥0,ζd,j ,ξj

N∑
i=1

N∑
j=1

dijwij + θ

D∑
d=1

N∑
j=1

ζd,j + λ

N∑
j=1

ξj

s.t.

N∑
j=1

wij = 1

wij ≤ ζd,j , ∀i ∈ Td
wij ≤ ξj , ∀i ∈ [N ].

(14)

The KKT condition of the linear programming can be written as

dij − αij − βi + γij + δij = 0 (15)

θ =
∑
i∈Td

δij (16)

λ =
∑
i

γij (17)

δij(wij − ζdj) = 0 (18)
γij(wij − ξj) = 0 (19)
αijwij = 0 (20)
αij ≥ 0 (21)
γij ≥ 0 (22)
δij ≥ 0. (23)

Our goal is to find a structure of dij , for which there exists a set of αij , βi, γij , δij , θ and λ satisfying the above conditions
(with αij , γij , δij strictly positive for binding constraints). Then a clustering {Sk}k∈M with such structure will be an
unique solution to (14). We will discuss the cases entry-by-entry.

C.1. ξj = 1, ζdj = 1, wij = 1

j = M(i), αi,M(i) = 0

γi,M(i) + δi,M(i) = βi − di,M(i), ∀i (24)
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C.2. ξj = 1, ζdj = 1, wij = 0

j ∈M, but j 6= M(i)
δij = 0, γij = 0⇒ αij = dij − βi > 0, i.e.,

βi < dij , ∀j ∈M but j 6= M(i) and Dj ∩ DM(i) 6= ∅. (25)

Summary of Section C.1 and C.2
We can set γi,M(i) = λ

NM(i)
such that Eq. (17) holds and δi,M(i) = θ

NM(i),d(i)
such that Eq. (16) holds. Thus,

βi =
λ

NM(i)
+

θ

NM(i),d(i)
+ di,M(i) (26)

C.3. ξj = 1, ζdj = 0, wij = 0

j ∈M, but j 6= M(i)
γij = 0⇒ αij = dij − βi + δij > 0. Now we have

δij > βi − dij
δij > 0

Thus
θ =

∑
i∈Td

δij >
∑
i∈Td

(βi − dij)+, ∀d /∈ Dj , j ∈M (27)

If we set βi − dij < θ
Nd(i)

, Eq. (27) will be satisfied. That is

λ

NM(i)
+

θ

NM(i),d(i)
+ di,M(i) − dij <

θ

Nd(i)
(28)

C.4. ξj = 0, ζdj = 0, wij = 0

In this case, we have αij = dij − βi + δij + γij > 0, that is,

γij > βi − dij − δij (29)

λ =
∑
i

γij >
∑
i

(βi − dij − δij)+, ∀j /∈M (30)

θ =
∑
i∈Td

δij , ∀d ∈ [D],∀j /∈M (31)

To analyze this case, we divide i ∈ [N ] into three parts. The first part is the points in the same cluster as j denoted by
SM(j). The second part is the points who have sister points (sister points mean they belong to the same dataset) in SM(j)

but themselves are not in SM(j), denoted by S1,M(j) :=
(
∪d∈DM(j)

Td
)
\ SM(j). The third part is all the points who don’t

have sister points in SM(j), denoted by S2,M(j) := ∪d∈[D]\DM(j)
Td

λ >
∑

i∈SM(j)

(βi − dij − δij)+

+
∑

i∈S1,M(j)

(βi − dij − δij)+

+
∑

i∈S2,M(j)

(βi − dij − δij)+

(32)



A Convex Exemplar-based Approach to MAD-Bayes Dirichlet Process Mixture Models

In the following we will show our strategy to make this inequality hold.
If we set δij to be

θ =

 ∑
i∈SM(j),d

δij

 , ∀d ∈ DM(j),∀j /∈M (33)

δij = 0, ∀i ∈ S1,M(j),∀j /∈M (34)

δij =
θ

Nd(i)
, ∀i ∈ S2,M(j),∀j /∈M (35)

such that Eq. (16) is satisfied.
Further more, if we can get the following equations satisfied,

βi − dij − δij ≥ 0, ∀i ∈ SM(j)

βi − dij − δij < 0, ∀i ∈ S1,M(j)

βi − dij − δij < 0, ∀i ∈ S2,M(j)

(36)

the only thing we need to show is

λ >
∑

i∈SM(j)

(βi − dij − δij)

=
∑

i∈SM(j)

(
λ

NM(i)
+ di,M(i) − dij)

It is equivalent to ∑
i∈SM(j)

di,M(i) <
∑

i∈SM(j)

dij ,

which is satisfied by medoid definition.
In the following, we analyze the conditions under which the three inequalities of Eq. (36) hold.

First part i ∈ SM(j) In this part we try to let βi − dij − δij ≥ 0. As δij > 0, we require

βi − dij > 0, ∀i ∈ SM(j)

That is, for ∀i, j s.t. M(i) = M(j),
λ

NM(i)
+

θ

NM(i),d(i)
+ di,M(i) > dij , (37)

Then we can always find a δij such that 0 < δij < βi − dij . To satisfy Eq. (33), we require

θ <
∑
i∈Sk,d

βi − dij , ∀d ∈ Dk, k = M(j)

Equivalently, we have

λ >
Nk
Nk,d

∑
i∈Sk,d

dij − di,M(i), ∀d ∈ Dk,∀j ∈ Sk,∀k (38)

Second part i ∈ S1,M(j) As set in Eq. (34), δij = 0, we require

βi − dij < 0, ∀i ∈ S1,M(j)

That is, for ∀i, j s.t. DM(i) ∩ DM(j) 6= ∅ and M(i) 6= M(j)

λ

NM(i)
+

θ

NM(i),d(i)
+ di,M(i) < dij . (39)

This requirement also implies Eq. (25) will hold.
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Third part i ∈ S2,M(j) For this part,

βi − dij <
θ

Nd(i)
, ∀i ∈ S2,M(j)

That is, for ∀i, j s.t. DM(i) ∩ DM(j) = ∅,

λ

NM(i)
+ θ

(
1

NM(i),d(i)
− 1

Nd(i)

)
+ di,M(i) < dij , (40)

This requirement also implies Eq. (28) will hold. �

D. Proof of Proposition 1
Given the conditions in the proposition, we have

D ◦W ∗1 + λ1‖W ∗1 ‖∞,1
≤ D ◦W ∗2 + λ1‖W ∗2 ‖∞,1
< D ◦W ∗2 + λ2‖W ∗2 ‖∞,1
≤ D ◦W ∗1 + λ2‖W ∗1 ‖∞,1

(41)

So we have

D ◦W ∗1 ≤ D ◦W ∗2
D ◦W ∗2 ≤ D ◦W ∗1

And under the unique optimum assumption, we have W ∗1 = W ∗2 .
For the rest of the proof, we first prove that ‖W ∗(λ)‖∞,1 is a non-increasing function. From Eq. (41),

λ2‖W ∗2 ‖∞,1 − λ1‖W ∗2 ‖∞,1 ≤ λ2‖W ∗1 ‖∞,1 − λ1‖W ∗1 ‖∞,1

that is,
(λ2 − λ1)(‖W ∗2 ‖∞,1 − ‖W ∗1 ‖∞,1) ≤ 0

Therefore, for any λ1 < λ2, we have ‖W ∗2 ‖∞,1 ≤ ‖W ∗1 ‖∞,1. Now for any λ ∈ [λ1, λ2], because ‖W ∗(λ1)‖∞,1 =
‖W ∗(λ2)‖∞,1, we have ‖W ∗(λ)‖∞,1 = ‖W ∗1 ‖∞,1, and further under the unique optimum assumption,

W ∗(λ) = W ∗1

�

E. Proof of Proposition 2
According to Proposition 1, given ‖W ∗1 ‖G = ‖W ∗12‖G , we have W ∗1 = W ∗12 and for any θ ∈ [θ1, θ2], W ∗(λ1, θ) = W ∗12.
Given ‖W ∗2 ‖∞,1 = ‖W ∗12‖∞,1, we have, for any λ ∈ [λ1, λ2], W ∗(λ, θ2) = W ∗12.
Now we prove for any (λ, θ) on the line between point (λ1, θ1) and point (λ2, θ2) (defined by L12), W ∗(λ, θ) = W ∗1 . We
can write

(λ, θ) = (1− α)(λ1, θ1) + α(λ2, θ2)

= (λ1 + α(λ2 − λ1), θ1 + α(θ2 − θ1))
(42)

where α ∈ [0, 1].
Define

f(α,W ) =D ◦W + θ1‖W‖G + λ1‖W‖∞,1
+ α ((θ2 − θ1)‖W‖G + (λ2 − λ1)‖W‖∞,1)

If we see (θ2 − θ1)‖W‖G + (λ2 − λ1)‖W‖∞,1 as the new regularization term, according to Proposition 1 and
argminW f(0,W ) = argminW f(1,W ), we have for any α ∈ [0, 1], argminW f(α,W ) = W ∗1 .
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So now we proved that the optimal solutions corresponding to the regularization parameters on the line L12 are identical.
For any

(λ, θ) ∈ Conv ((λ1, θ1), (λ1, θ2), (λ2, θ2)) ,

we can find two points: one isA := (λ, θ2) on the line between point (λ1, θ2) and (λ2, θ2); the other isB := (λ, λ2−λ
λ2−λ1

θ1+
λ−λ1

λ2−λ1
θ2) which is on the line L12. Similarly, we obtain that the optimal solutions corresponding to any points on the line

between points A and B are identical. Therefore, we finish the proof. �


