Appendix

A. Notation

$\mathcal{N}=\{1,2, \ldots, N\}=:[N]$ is the whole set of data points. $i, j \in \mathcal{N}$ denote points. $d_{i j}:=\mathbb{D}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) . D$ is the number of data sets. $\mathcal{T}_{d} \subseteq \mathcal{N}$ denotes the set of points in the d-th dataset, i.e. $\cup_{d=1}^{D} \mathcal{T}_{d}=\mathcal{N} . N_{d}=\left|\mathcal{T}_{d}\right|$ is the number of points in Dataset d. $d(i) \in[D]$ denotes the dataset index of Point $i . \mathcal{M} \subseteq \mathcal{N}$ is the set of medoids. $k, l \in \mathcal{M}$ denote clusters and themselves are medoids. \mathcal{S}_{k} is the set of points in Cluster $k . N_{k}=\left|\mathcal{S}_{k}\right|$ is the number of points in Cluster $k . M(i) \in \mathcal{M}$ denotes the cluster/representative of Point i. Let $\mathcal{D}_{k} \subseteq[D]$ denote the data sets contained or partially contained in Cluster k. Denote $\mathcal{S}_{k, d}:=\mathcal{S}_{k} \cap \mathcal{T}_{d}$ for $d \in \mathcal{D}_{k}$. Thus $\cup_{d \in \mathcal{D}_{k}} \mathcal{S}_{k, d}=\mathcal{S}_{k}$. Denote $N_{k, d}:=\left|\mathcal{S}_{k, d}\right|$ for $d \in \mathcal{D}_{k}$.

B. Proof of Theorem 1

Theorem 1 is a direct corollary of Theorem 2 , by setting $\theta=0$.

C. Proof of Theorem 2

First, the convex program (6) has same set of optimal solutions with the following linear program

$$
\begin{array}{ll}
\min _{w_{i j} \geq 0, \zeta_{d, j}, \xi_{j}} & \sum_{i=1}^{N} \sum_{j=1}^{N} d_{i j} w_{i j}+\theta \sum_{d=1}^{D} \sum_{j=1}^{N} \zeta_{d, j}+\lambda \sum_{j=1}^{N} \xi_{j} \\
\text { s.t. } & \sum_{j=1}^{N} w_{i j}=1 \tag{14}\\
& w_{i j} \leq \zeta_{d, j}, \forall i \in \mathcal{T}_{d} \\
& w_{i j} \leq \xi_{j}, \forall i \in[N]
\end{array}
$$

The KKT condition of the linear programming can be written as

$$
\begin{align*}
& d_{i j}-\alpha_{i j}-\beta_{i}+\gamma_{i j}+\delta_{i j}=0 \tag{15}\\
& \theta=\sum_{i \in \mathcal{T}_{d}} \delta_{i j} \tag{16}\\
& \lambda=\sum_{i} \gamma_{i j} \tag{17}\\
& \tag{18}\\
& \delta_{i j}\left(w_{i j}-\zeta_{d j}\right)=0 \tag{19}\\
& \gamma_{i j}\left(w_{i j}-\xi_{j}\right)=0 \tag{20}\\
& \alpha_{i j} w_{i j}=0 \tag{21}\\
& \alpha_{i j} \geq 0 \tag{22}\\
& \gamma_{i j} \geq 0 \tag{23}\\
& \delta_{i j} \geq 0
\end{align*}
$$

Our goal is to find a structure of $d_{i j}$, for which there exists a set of $\alpha_{i j}, \beta_{i}, \gamma_{i j}, \delta_{i j}, \theta$ and λ satisfying the above conditions (with $\alpha_{i j}, \gamma_{i j}, \delta_{i j}$ strictly positive for binding constraints). Then a clustering $\left\{\mathcal{S}_{k}\right\}_{k \in \mathcal{M}}$ with such structure will be an unique solution to (14). We will discuss the cases entry-by-entry.
C.1. $\xi_{j}=1, \zeta_{d j}=1, w_{i j}=1$
$j=M(i), \alpha_{i, M(i)}=0$

$$
\begin{equation*}
\gamma_{i, M(i)}+\delta_{i, M(i)}=\beta_{i}-d_{i, M(i)}, \quad \forall i \tag{24}
\end{equation*}
$$

C.2. $\xi_{j}=1, \zeta_{d j}=1, w_{i j}=0$
$j \in \mathcal{M}$, but $j \neq M(i)$
$\delta_{i j}=0, \gamma_{i j}=0 \Rightarrow \alpha_{i j}=d_{i j}-\beta_{i}>0$, i.e.,

$$
\begin{equation*}
\beta_{i}<d_{i j}, \quad \forall j \in \mathcal{M} \text { but } j \neq M(i) \text { and } \mathcal{D}_{j} \cap \mathcal{D}_{M(i)} \neq \emptyset \tag{25}
\end{equation*}
$$

Summary of Section C. 1 and C. 2

We can set $\gamma_{i, M(i)}=\frac{\lambda}{N_{M(i)}}$ such that Eq. (17) holds and $\delta_{i, M(i)}=\frac{\theta}{N_{M(i), d(i)}}$ such that Eq. (16) holds. Thus,

$$
\begin{equation*}
\beta_{i}=\frac{\lambda}{N_{M(i)}}+\frac{\theta}{N_{M(i), d(i)}}+d_{i, M(i)} \tag{26}
\end{equation*}
$$

C.3. $\xi_{j}=1, \zeta_{d j}=0, w_{i j}=0$
$j \in \mathcal{M}$, but $j \neq M(i)$
$\gamma_{i j}=0 \Rightarrow \alpha_{i j}=d_{i j}-\beta_{i}+\delta_{i j}>0$. Now we have

$$
\begin{aligned}
& \delta_{i j}>\beta_{i}-d_{i j} \\
& \delta_{i j}>0
\end{aligned}
$$

Thus

$$
\begin{equation*}
\theta=\sum_{i \in \mathcal{T}_{d}} \delta_{i j}>\sum_{i \in \mathcal{T}_{d}}\left(\beta_{i}-d_{i j}\right)_{+}, \quad \forall d \notin \mathcal{D}_{j}, j \in \mathcal{M} \tag{27}
\end{equation*}
$$

If we set $\beta_{i}-d_{i j}<\frac{\theta}{N_{d(i)}}$, Eq. (27) will be satisfied. That is

$$
\begin{equation*}
\frac{\lambda}{N_{M(i)}}+\frac{\theta}{N_{M(i), d(i)}}+d_{i, M(i)}-d_{i j}<\frac{\theta}{N_{d(i)}} \tag{28}
\end{equation*}
$$

C.4. $\xi_{j}=0, \zeta_{d j}=0, w_{i j}=0$

In this case, we have $\alpha_{i j}=d_{i j}-\beta_{i}+\delta_{i j}+\gamma_{i j}>0$, that is,

$$
\begin{gather*}
\gamma_{i j}>\beta_{i}-d_{i j}-\delta_{i j} \tag{29}\\
\lambda=\sum_{i} \gamma_{i j}>\sum_{i}\left(\beta_{i}-d_{i j}-\delta_{i j}\right)_{+}, \quad \forall j \notin \mathcal{M} \tag{30}\\
\theta=\sum_{i \in \mathcal{T}_{d}} \delta_{i j}, \quad \forall d \in[D], \forall j \notin \mathcal{M} \tag{31}
\end{gather*}
$$

To analyze this case, we divide $i \in[N]$ into three parts. The first part is the points in the same cluster as j denoted by $S_{M(j)}$. The second part is the points who have sister points (sister points mean they belong to the same dataset) in $S_{M(j)}$ but themselves are not in $S_{M(j)}$, denoted by $S_{1, M(j)}:=\left(\cup_{d \in \mathcal{D}_{M(j)}} \mathcal{T}_{d}\right) \backslash S_{M(j)}$. The third part is all the points who don't have sister points in $S_{M(j)}$, denoted by $S_{2, M(j)}:=\cup_{d \in[D] \backslash \mathcal{D}_{M(j)}} \mathcal{T}_{d}$

$$
\begin{align*}
\lambda> & \sum_{i \in S_{M(j)}}\left(\beta_{i}-d_{i j}-\delta_{i j}\right)_{+} \\
& +\sum_{i \in S_{1, M(j)}}\left(\beta_{i}-d_{i j}-\delta_{i j}\right)_{+} \tag{32}\\
& +\sum_{i \in S_{2, M(j)}}\left(\beta_{i}-d_{i j}-\delta_{i j}\right)_{+}
\end{align*}
$$

In the following we will show our strategy to make this inequality hold.
If we set $\delta_{i j}$ to be

$$
\begin{align*}
\theta & =\left(\sum_{i \in \mathcal{S}_{M(j), d}} \delta_{i j}\right), \quad \forall d \in \mathcal{D}_{M(j)}, \forall j \notin \mathcal{M} \tag{33}\\
\delta_{i j} & =0, \quad \forall i \in \mathcal{S}_{1, M(j)}, \forall j \notin \mathcal{M} \tag{34}\\
\delta_{i j} & =\frac{\theta}{N_{d(i)}}, \quad \forall i \in \mathcal{S}_{2, M(j)}, \forall j \notin \mathcal{M} \tag{35}
\end{align*}
$$

such that Eq. (16) is satisfied.
Further more, if we can get the following equations satisfied,

$$
\begin{align*}
& \beta_{i}-d_{i j}-\delta_{i j} \geq 0, \forall i \in \mathcal{S}_{M(j)} \\
& \beta_{i}-d_{i j}-\delta_{i j}<0, \forall i \in \mathcal{S}_{1, M(j)} \tag{36}\\
& \beta_{i}-d_{i j}-\delta_{i j}<0, \forall i \in \mathcal{S}_{2, M(j)}
\end{align*}
$$

the only thing we need to show is

$$
\begin{aligned}
\lambda & >\sum_{i \in S_{M(j)}}\left(\beta_{i}-d_{i j}-\delta_{i j}\right) \\
& =\sum_{i \in S_{M(j)}}\left(\frac{\lambda}{N_{M(i)}}+d_{i, M(i)}-d_{i j}\right)
\end{aligned}
$$

It is equivalent to

$$
\sum_{i \in S_{M(j)}} d_{i, M(i)}<\sum_{i \in S_{M(j)}} d_{i j}
$$

which is satisfied by medoid definition.
In the following, we analyze the conditions under which the three inequalities of Eq. (36) hold.
First part $i \in S_{M(j)}$ In this part we try to let $\beta_{i}-d_{i j}-\delta_{i j} \geq 0$. As $\delta_{i j}>0$, we require

$$
\beta_{i}-d_{i j}>0, \quad \forall i \in S_{M(j)}
$$

That is, for $\forall i, j$ s.t. $M(i)=M(j)$,

$$
\begin{equation*}
\frac{\lambda}{N_{M(i)}}+\frac{\theta}{N_{M(i), d(i)}}+d_{i, M(i)}>d_{i j}, \tag{37}
\end{equation*}
$$

Then we can always find a $\delta_{i j}$ such that $0<\delta_{i j}<\beta_{i}-d_{i j}$. To satisfy Eq. (33), we require

$$
\theta<\sum_{i \in \mathcal{S}_{k, d}} \beta_{i}-d_{i j}, \quad \forall d \in \mathcal{D}_{k}, k=M(j)
$$

Equivalently, we have

$$
\begin{equation*}
\lambda>\frac{N_{k}}{N_{k, d}} \sum_{i \in \mathcal{S}_{k, d}} d_{i j}-d_{i, M(i)}, \forall d \in \mathcal{D}_{k}, \forall j \in \mathcal{S}_{k}, \forall k \tag{38}
\end{equation*}
$$

Second part $i \in S_{1, M(j)} \quad$ As set in Eq. (34), $\delta_{i j}=0$, we require

$$
\beta_{i}-d_{i j}<0, \forall i \in \mathcal{S}_{1, M(j)}
$$

That is, for $\forall i, j$ s.t. $\mathcal{D}_{M(i)} \cap \mathcal{D}_{M(j)} \neq \emptyset$ and $M(i) \neq M(j)$

$$
\begin{equation*}
\frac{\lambda}{N_{M(i)}}+\frac{\theta}{N_{M(i), d(i)}}+d_{i, M(i)}<d_{i j} . \tag{39}
\end{equation*}
$$

This requirement also implies Eq. (25) will hold.

Third part $i \in S_{2, M(j)} \quad$ For this part,

$$
\beta_{i}-d_{i j}<\frac{\theta}{N_{d(i)}}, \forall i \in \mathcal{S}_{2, M(j)}
$$

That is, for $\forall i, j$ s.t. $\mathcal{D}_{M(i)} \cap \mathcal{D}_{M(j)}=\emptyset$,

$$
\begin{equation*}
\frac{\lambda}{N_{M(i)}}+\theta\left(\frac{1}{N_{M(i), d(i)}}-\frac{1}{N_{d(i)}}\right)+d_{i, M(i)}<d_{i j} \tag{40}
\end{equation*}
$$

This requirement also implies Eq. (28) will hold.

D. Proof of Proposition 1

Given the conditions in the proposition, we have

$$
\begin{align*}
& \mathbb{D} \circ W_{1}^{*}+\lambda_{1}\left\|W_{1}^{*}\right\|_{\infty, 1} \\
& \leq \mathbb{D} \circ W_{2}^{*}+\lambda_{1}\left\|W_{2}^{*}\right\|_{\infty, 1} \\
& <\mathbb{D} \circ W_{2}^{*}+\lambda_{2}\left\|W_{2}^{*}\right\|_{\infty, 1} \tag{41}\\
& \leq \mathbb{D} \circ W_{1}^{*}+\lambda_{2}\left\|W_{1}^{*}\right\|_{\infty, 1}
\end{align*}
$$

So we have

$$
\begin{aligned}
& \mathbb{D} \circ W_{1}^{*} \leq \mathbb{D} \circ W_{2}^{*} \\
& \mathbb{D} \circ W_{2}^{*} \leq \mathbb{D} \circ W_{1}^{*}
\end{aligned}
$$

And under the unique optimum assumption, we have $W_{1}^{*}=W_{2}^{*}$.
For the rest of the proof, we first prove that $\left\|W^{*}(\lambda)\right\|_{\infty, 1}$ is a non-increasing function. From Eq. (41),

$$
\lambda_{2}\left\|W_{2}^{*}\right\|_{\infty, 1}-\lambda_{1}\left\|W_{2}^{*}\right\|_{\infty, 1} \leq \lambda_{2}\left\|W_{1}^{*}\right\|_{\infty, 1}-\lambda_{1}\left\|W_{1}^{*}\right\|_{\infty, 1}
$$

that is,

$$
\left(\lambda_{2}-\lambda_{1}\right)\left(\left\|W_{2}^{*}\right\|_{\infty, 1}-\left\|W_{1}^{*}\right\|_{\infty, 1}\right) \leq 0
$$

Therefore, for any $\lambda_{1}<\lambda_{2}$, we have $\left\|W_{2}^{*}\right\|_{\infty, 1} \leq\left\|W_{1}^{*}\right\|_{\infty, 1}$. Now for any $\lambda \in\left[\lambda_{1}, \lambda_{2}\right]$, because $\left\|W^{*}\left(\lambda_{1}\right)\right\|_{\infty, 1}=$ $\left\|W^{*}\left(\lambda_{2}\right)\right\|_{\infty, 1}$, we have $\left\|W^{*}(\lambda)\right\|_{\infty, 1}=\left\|W_{1}^{*}\right\|_{\infty, 1}$, and further under the unique optimum assumption,

$$
W^{*}(\lambda)=W_{1}^{*}
$$

E. Proof of Proposition 2

According to Proposition 1, given $\left\|W_{1}^{*}\right\|_{\mathcal{G}}=\left\|W_{12}^{*}\right\|_{\mathcal{G}}$, we have $W_{1}^{*}=W_{12}^{*}$ and for any $\theta \in\left[\theta_{1}, \theta_{2}\right], W^{*}\left(\lambda_{1}, \theta\right)=W_{12}^{*}$. Given $\left\|W_{2}^{*}\right\|_{\infty, 1}=\left\|W_{12}^{*}\right\|_{\infty, 1}$, we have, for any $\lambda \in\left[\lambda_{1}, \lambda_{2}\right], W^{*}\left(\lambda, \theta_{2}\right)=W_{12}^{*}$.
Now we prove for any (λ, θ) on the line between point $\left(\lambda_{1}, \theta_{1}\right)$ and point $\left(\lambda_{2}, \theta_{2}\right)$ (defined by $\left.\mathcal{L}_{12}\right)$, $W^{*}(\lambda, \theta)=W_{1}^{*}$. We can write

$$
\begin{align*}
(\lambda, \theta) & =(1-\alpha)\left(\lambda_{1}, \theta_{1}\right)+\alpha\left(\lambda_{2}, \theta_{2}\right) \\
& =\left(\lambda_{1}+\alpha\left(\lambda_{2}-\lambda_{1}\right), \theta_{1}+\alpha\left(\theta_{2}-\theta_{1}\right)\right) \tag{42}
\end{align*}
$$

where $\alpha \in[0,1]$.
Define

$$
\begin{aligned}
f(\alpha, W)= & \mathbb{D} \circ W+\theta_{1}\|W\|_{\mathcal{G}}+\lambda_{1}\|W\|_{\infty, 1} \\
& +\alpha\left(\left(\theta_{2}-\theta_{1}\right)\|W\|_{\mathcal{G}}+\left(\lambda_{2}-\lambda_{1}\right)\|W\|_{\infty, 1}\right)
\end{aligned}
$$

If we see $\left(\theta_{2}-\theta_{1}\right)\|W\|_{\mathcal{G}}+\left(\lambda_{2}-\lambda_{1}\right)\|W\|_{\infty, 1}$ as the new regularization term, according to Proposition 1 and $\operatorname{argmin}_{W} f(0, W)=\operatorname{argmin}_{W} f(1, W)$, we have for any $\alpha \in[0,1], \operatorname{argmin}_{W} f(\alpha, W)=W_{1}^{*}$.

So now we proved that the optimal solutions corresponding to the regularization parameters on the line \mathcal{L}_{12} are identical. For any

$$
(\lambda, \theta) \in \operatorname{Conv}\left(\left(\lambda_{1}, \theta_{1}\right),\left(\lambda_{1}, \theta_{2}\right),\left(\lambda_{2}, \theta_{2}\right)\right)
$$

we can find two points: one is $A:=\left(\lambda, \theta_{2}\right)$ on the line between point $\left(\lambda_{1}, \theta_{2}\right)$ and $\left(\lambda_{2}, \theta_{2}\right)$; the other is $B:=\left(\lambda, \frac{\lambda_{2}-\lambda}{\lambda_{2}-\lambda_{1}} \theta_{1}+\right.$ $\frac{\lambda-\lambda_{1}}{\lambda_{2}-\lambda_{1}} \theta_{2}$) which is on the line \mathcal{L}_{12}. Similarly, we obtain that the optimal solutions corresponding to any points on the line between points A and B are identical. Therefore, we finish the proof.

