Geometric Conditions for Subspace-Sparse Recovery Supplementary Material

Chong You

Center for Imaging Science, Johns Hopkins University, Baltimore, MD, 21218, USA

René Vidal

Center for Imaging Science, Johns Hopkins University, Baltimore, MD, 21218, USA

Appendices

A. Proof of Lemma 2

Lemma. If the inlier dictionary $\Phi \in \mathbb{R}^{n \times M}$ has full column rank, then the set of dual points, $\mathcal{D}(\Phi)$, contains exactly 2^M points specified by $\{\Phi(\Phi^{\top}\Phi)^{-1} \cdot \mathbf{u}, \mathbf{u} \in U_M\}$, where $U_M := \{[u_1, \cdots, u_M], u_i = \pm 1, i = 1, \cdots, M\}$.

Proof. It can be seen in the proof of Theorem 2 that there are possibly at most 2^M dual points in the case where Φ is of full column rank. So in order to prove the result, it is enough to show that the set $\{\Phi(\Phi^{\top}\Phi)^{-1} \cdot \mathbf{u}, \mathbf{u} \in U_M\}$ contains 2^M points, and each of them is a dual point.

To show that there are 2^M different points, notice that U_M has 2^M points, so we are left to show that for any $\mathbf{u}_1, \mathbf{u}_2 \in U_M$ with $\mathbf{u}_1 \neq \mathbf{u}_2$, it has $\Phi(\Phi^{\top}\Phi)^{-1}\mathbf{u}_1 \neq \Phi(\Phi^{\top}\Phi)^{-1}\mathbf{u}_2$. This can be easily established by noticing that rank $(\Phi(\Phi^{\top}\Phi)^{-1}) = \operatorname{rank}(\Phi) = M$, i.e., $\Phi(\Phi^{\top}\Phi)^{-1}$ is also of full rank, so its null space contains only the origin.

Now we show that $\Phi(\Phi^{\top}\Phi)^{-1}\mathbf{u}_0$ is a dual point for any $\mathbf{u}_0 \in U_M$. Denote $\eta_0 = \Phi(\Phi^{\top}\Phi)^{-1}\mathbf{u}_0$. By definition, we need to show that η_0 is an extreme point of the set $\mathcal{K}^o(\pm\Phi) = \{\eta \in \mathcal{R}(\Phi) : \|\Phi^{\top}\eta\|_{\infty} \leq 1\}$. First, η_0 is in $\mathcal{K}^o(\pm\Phi)$ because $\|\Phi^{\top}\eta_0\|_{\infty} = \|\mathbf{u}_0\|_{\infty} = 1$. Second, suppose there are two points, $\eta_1, \eta_2 \in \mathcal{K}^o(\pm\Phi)$, such that

$$\eta_0 = (1 - \lambda)\eta_1 + \lambda\eta_2 \tag{1}$$

for some $\lambda \in (0, 1)$, we need to show that it must be the case that $\eta_1 = \eta_2$. Notice that the columns of $\Phi(\Phi^{\top}\Phi)^{-1}$ span the space $\mathcal{R}(\Phi)$ and that $\eta_1, \eta_2 \in \mathcal{K}^o(\pm \Phi) \subseteq \mathcal{R}(\Phi)$, there exists $\mathbf{x}_1, \mathbf{x}_2$ such that $\eta_i = \Phi(\Phi^{\top}\Phi)^{-1}\mathbf{x}_i, i = 1, 2$. Then by using (1), it has

$$\Phi(\Phi^{\top}\Phi)^{-1}\mathbf{u}_{0} = (1-\lambda)\Phi(\Phi^{\top}\Phi)^{-1}\mathbf{x}_{1} + \lambda\Phi(\Phi^{\top}\Phi)^{-1}\mathbf{x}_{2},$$

and by left multiplying Φ^+ , we have

$$\mathbf{u}_0 = (1 - \lambda)\mathbf{x}_1 + \lambda \mathbf{x}_2. \tag{2}$$

Now, consider the equation for each entry separately in (2), i.e., $[\mathbf{u}_0]_i = (1 - \lambda)[\mathbf{x}_1]_i + \lambda[\mathbf{x}_2]_i$, where *i* indexes an entry in the vector. The left hand side, being ± 1 , is a extreme point of the set [-1, 1], while the right hand side is the convex combination of two points in [-1, 1], so it necessarily has that $[\mathbf{x}_1]_i = [\mathbf{x}_2]_i$. This is true for all entries *i*, so $\mathbf{x}_1 = \mathbf{x}_2$, thus $\eta_1 = \eta_2$, which shows that η_0 is indeed an extreme point.

B. Proof of Theorem 14

Theorem. Given a dictionary Π . If it has $\mu(\Pi) < \frac{1}{2M-1}$, then for any partition of Π into Φ and Ψ where Φ has M columns, it has rank $(\Phi) = M$ and that PRC and DRC hold.

Proof. If $\mu(\Pi) < 1/(2M - 1)$, then it must have rank $(\Phi) = M$, this is an established result in sparse recovery. In the following, we show that PRC holds.

We start by giving an upper bound on $R(\mathcal{K}^o(\pm \Phi))$. From Lemma 2, given any $\eta \in \mathcal{K}^o(\pm \Phi)$ where $\eta \neq 0$, it can be written as $\eta = \Phi(\Phi^{\top}\Phi)^{-1}\mathbf{u}$ for some $\mathbf{u} \neq 0$ with $\|\mathbf{u}\|_{\infty} \leq$ 1. Thus,

$$\|\eta\|_2^2 = \eta^\top \eta = \mathbf{u}^\top (\Phi^\top \Phi)^{-1} \mathbf{u} \le M \cdot \frac{\mathbf{u}^\top (\Phi^\top \Phi)^{-1} \mathbf{u}}{\mathbf{u}^\top \mathbf{u}}.$$

Denote $\lambda_{\max}(\cdot), \lambda_{\min}(\cdot)$ to be the maximum and minimum eigenvalue of a symmetric matrix, respectively. We get

$$\begin{split} \|\eta\|_{2}^{2} &\leq M \cdot \max_{\mathbf{u} \neq 0} \frac{\mathbf{u}^{\top} (\Phi^{\top} \Phi)^{-1} \mathbf{u}}{\mathbf{u}^{\top} \mathbf{u}} \\ &= M \cdot \lambda_{\max} (\Phi^{\top} \Phi)^{-1} = \frac{M}{\lambda_{\min} (\Phi^{\top} \Phi)}. \end{split}$$

Notice that $\Phi^{\top}\Phi$ is very close to identity matrix, i.e., its diagonals are 1 and the magnitude of each off-diagonal entry is bounded above by $\mu(\Pi)$. By using Gersgorin's disc theorem, $\lambda_{\min}(\Phi^{\top}\Phi) \geq 1 - (M-1)\mu(\Pi)$, so

$$\|\eta\|_2^2 \le \frac{M}{1 - (M - 1)\mu(\Pi)}.$$

CYOU@CIS.JHU.EDU

RVIDAL@CIS.JHU.EDU

As a consequence, $R(\mathcal{K}^o(\pm \Phi)) \leq \sqrt{\frac{M}{1-(M-1)\mu(\Pi)}}$.

In the second step, we give an upper bound for the right hand side of PRC. By definition,

$$\mu(\Psi, \mathcal{R}(\Phi)) = \max_{\substack{\eta \in \mathcal{R}(\Phi), \\ \|\eta\|_2 = 1}} \|\Psi^{\top} \eta\|_{\infty}.$$

We thus need to bound $\|\Psi^{\top}\eta\|_{\infty}$ for any $\eta \in \mathcal{R}(\Phi)$ with $\|\eta\|_2 = 1$. Consider the optimization program

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \quad \text{s.t. } \eta = \Phi \mathbf{x}.$$

and its dual program

$$\max_{\omega} \langle \omega, \eta \rangle \quad \text{s.t.} \ \| \Phi^{\top} \omega \|_{\infty} \le 1.$$

The strong duality holds since the primal problem is feasible, and the objective of the dual is bounded by $\|\omega\|_2 \|\eta\|_2 \leq R(\mathcal{K}^o(\pm \Phi))$. Consequently, it has $\|\mathbf{x}^*\|_1 \leq R(\mathcal{K}^o(\pm \Phi))$. This leads to

$$\begin{aligned} \|\Psi^{\top}\eta\|_{\infty} &= \|\Psi^{\top}\Phi\mathbf{x}^{*}\|_{\infty} \leq \|\Psi^{\top}\Phi\|_{\infty}\|\mathbf{x}^{*}\|_{1} \\ &\leq \mu(\Pi)R(\mathcal{K}^{o}(\pm\Phi)), \end{aligned}$$

in which $\|\cdot\|_\infty$ for matrix treats the matrix as a vector.

Now we combine the results from the above two parts.

$$\begin{split} \mu(\Psi, \mathcal{R}(\Phi)) &\leq \mu(\Pi) R(\mathcal{K}^o(\pm \Phi)) \\ &= r(\mathcal{K}(\pm \Phi))(\mu(\Pi) R(\mathcal{K}^o(\pm \Phi))^2) \\ &\leq r(\mathcal{K}(\pm \Phi)) \frac{M}{1 - (M - 1)\mu(\Pi)}, \end{split}$$

in which

$$\frac{M}{1-(M-1)\mu(\Pi)} = 1 + \frac{\mu(\Pi)(2M-1)-1}{1-(M-1)\mu} < 1,$$

thus $\mu(\Psi, \mathcal{R}(\Phi)) < r(\mathcal{K}(\pm \Phi))$, which is the PRC. \Box

References