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Abstract
Given a dictionary Π and a signal ξ = Πx gen-
erated by a few linearly independent columns of
Π, classical sparse recovery theory deals with the
problem of uniquely recovering the sparse rep-
resentation x of ξ. In this work, we consider
the more general case where ξ lies in a low-
dimensional subspace spanned by a few columns
of Π, which are possibly linearly dependent. In
this case, x may not unique, and the goal is
to recover any subset of the columns of Π that
spans the subspace containing ξ. We call such
a representation x subspace-sparse. We study
conditions under which existing pursuit methods
recover a subspace-sparse representation. Such
conditions reveal important geometric insights
and have implications for the theory of classical
sparse recovery as well as subspace clustering.

1. Introduction
Classical sparse recovery theory studies the problem of rep-
resenting a signal in terms of an over-complete dictionary
by using as few dictionary atoms as possible (Baraniuk,
2007; Candès & Wakin, 2008). Since this problem is gener-
ally intractable, it is usually approached using approximate
algorithms such as Orthogonal Matching Pursuit (OMP)
(Pati et al., 1993) and Basis Pursuit (BP) (Chen et al.,
1998). The study of these algorithms has been the topic
of various works in the past two decades, see e.g., (Tropp,
2004; Candès & Tao, 2005; Donoho et al., 2006; Daven-
port & Wakin, 2010; Cai & Zhang, 2014). Such work has
shown that if the dictionary is incoherent or satisfies the so-
called restricted isometry property (RIP), the true sparsest
solution can be found by these algorithms.

More recently, motivated by applications in subspace clas-
sification (Wright et al., 2009) and subspace clustering (Vi-
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dal, 2011), sparse recovery theory has been extended to the
analysis of subspace-structured dictionaries where the dic-
tionary atoms lie in a union of several low-dimensional sub-
spaces of the ambient space. In this case, the data permits
a subspace-sparse representation, where any atom from a
given subspace can be written as a sparse linear combina-
tion of other atoms from the same subspace, a concept that
is fundamental to several subspace clustering techniques
(see below). While in principle a subspace-sparse repre-
sentation could possibly be recovered via BP or OMP, clas-
sical sparse recovery theory typically requires that the dic-
tionary atoms satisfy certain incoherence or RIP properties.
For the problem of finding subspace-sparse representations,
the data points themselves function as the dictionary ele-
ments, so these properties are rarely satisfied. For example,
the dictionary could be highly coherent since points from
the same subspace could be arbitrarily close. This severely
limits the applicability of classical sparse recovery theory
to subspace-sparse models.

Following the initial work of (Elhamifar & Vidal, 2009),
several recent works (Elhamifar & Vidal, 2010; 2013;
Soltanolkotabi & Candès, 2013; Soltanolkotabi et al., 2014;
Wang & Xu, 2013; Dyer et al., 2013) have studied this
subspace-sparse recovery problem in the context of sub-
space clustering, where the task is to cluster a collection
of points lying in a union of subspaces. In this case, the
problem is solved by first finding a subspace-sparse repre-
sentation of each point in terms of a dictionary composed
of all other points and then applying spectral clustering
to these subspace-sparse representations. Notice, however,
that these analyses are specific for the correctness of sub-
space clustering. In this work we study the more general
problem where the dictionary is composed of some “in-
lier” points lying in a subspace and some arbitrary “outlier”
points in the ambient space, while the signal to be repre-
sented is an arbitrary point in the inlier subspace. The goal
of this paper is to study this more general subspace-sparse
recovery problem, and to derive conditions on the dictio-
nary under which the OMP and BP algorithms are guar-
anteed to give subspace-sparse solutions. Furthermore, we
obtain new theoretical conditions for classical sparse recov-
ery as well as subspace clustering.
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1.1. Problem formulation

Suppose we are given a dictionary Π that can be partitioned
into a set of “inliers” and a set of “outliers”. The matrix of
inliers Φ = [φ1, · · · , φM ] consists of M points that span
a low-dimensional subspace of dimension s := rank(Φ) ≤
M . The matrix of outliers Ψ = [ψ1, · · · , ψN ] contains
arbitrary points that do not lie in the inlier subspace. For
instance, in subspace clustering the outliers lie in a union
of several other subspaces. We assume that we do not know
which columns of Π are inliers and which are outliers, i.e.
the known matrix Π is equal to the matrix [Φ,Ψ] up to an
unknown permutation of its columns. Given an arbitrary
point ξ in the inlier subspace ξ ∈ R(Φ), where R(·) de-
notes the range, the goal is to find a representation of ξ that
is subspace-preserving, i.e. a vector x ∈ RM+N such that
1) ξ = Πx, and 2) xj = 0 if the j-th column of Π corre-
sponds to an outlier. We can see that a subspace-preserving
representation always exists since ξ ∈ R(Φ), but it may
not be unique if s < M . As such, our goal is to find
any subspace-preserving representation, and we consider
all such solutions equally good for our purpose.

Notice that one can always find a subspace-preserving rep-
resentation ξ = Πx where x has at most s non-zero entries,
and if s � N + M , then such a representation is sparse.
This motivates us to search for a sparse representation, i.e.

min
x
‖x‖0 s.t. ξ = Πx, (1)

where ‖ · ‖0 counts the number of nonzero entries in x.
Since this problem is intractable, it is usually solved in
an approximate manner using classical pursuit methods,
such as OMP and BP. We call a representation x found
by such sparsity pursuit algorithms subspace-sparse if it
is subspace-preserving. The main goal of this paper is thus
to study the conditions on Φ,Ψ under which these two al-
gorithms give subspace-sparse solutions for any ξ ∈ R(Φ).

1.2. Relation with Sparse Recovery

Classical sparse recovery is a particular case of subspace-
sparse recovery. In sparse recovery one is given a dictio-
nary Π and a vector ξ := Πx which is a linear combination
of a few, say M , columns of Π, and the goal is to find the
M -sparse vector x. In order for this problem to be well
posed, a necessary condition is that the M columns of Π
corresponding to the M nonzero entries of x must be lin-
early independent so that the solution of ξ = Πx is unique.
Therefore, the classical sparse recovery problem is a par-
ticular case of the subspace-sparse recovery problem where
the inlier matrix Φ is composed of theM columns of Π that
generate ξ, which must be linearly independent. Therefore,
the conditions for guaranteeing subspace-sparse recovery
are also applicable for guaranteeing sparse recovery.

1.3. Results and Contributions

This section briefly summarizes the major contributions of
the paper.

Theorems 4 and 5 introduce, respectively, the principal re-
covery condition (PRC) and the dual recovery condition
(DRC) for subspace-sparse recovery. Both of them are
conditions on the dictionary Π under which both OMP and
BP give a subspace-sparse solution for every ξ ∈ R(Φ).

The PRC requires that

r(K(±Φ)) > µ(Ψ,R(Φ)), (2)

where the left hand side, r(K(±Φ)), is the radius of the
largest ball inscribed in the convex hull of the symmetrized
columns of the inliers, K(±Φ). This inradius measures
how well distributed the inlier points are in the inlier sub-
spaceR(Φ), and should be relatively large if the points are
equally distributed in all directions within the inlier sub-
space and not skewed in a certain direction. The right hand
side, µ(Ψ,R(Φ)), is the coherence between all outliers Ψ
and all the points in R(Φ), defined as the maximum co-
herence (cosine of acute angle) between any pair of points
each taken from one set. The coherence is small when all
pairs of points from the two sets are sufficiently separated,
so intuitively, the PRC requires the inlier points to be suf-
ficiently well spread-out and the outliers to be sufficiently
away from the inlier subspace.

The PRC has the drawback that R(Φ) on the right hand
side contains infinitely many points, making the condition
too strong. We show that a finite subset of the points in
R(Φ) is sufficient for this purpose, leading to the DRC:

r(K(±Φ)) > µ(Ψ,D(Φ)), (3)

whereD(Φ) is a finite subset of the points in the inlier sub-
space R(Φ), which will be defined in Section 2.2. Hence,
the DRC is implied by the PRC, thus it gives a stronger
result. That is, the DRC does not require all points in the
inlier subspace to be incoherent with the outliers, as done
by the PRC. Instead, only a finite number of points, the
columns of D(Φ), are sufficient for all the points inR(Φ).

As a corollary, we show that the PRC and DRC are also
sufficient conditions for traditional sparse recovery when
Φ has full column rank. Moreover, we compare the result
with traditional theories of sparse recovery, and establish
that PRC is implied by the incoherence condition

µ(Π) <
1

2M − 1
, (4)

where µ(·) is the coherence of a matrix, defined as the max-
imum absolute inner product between any two columns of
the matrix. Thus the PRC provides a stronger and geomet-
rically more interpretable result for sparse recovery.



Geometric Conditions for Subspace-Sparse Recovery

2. Background
This section presents some background material that will
be needed for the main results of the paper. We first briefly
introduce the OMP and BP methods, and then define vari-
ous geometric properties that characterize the dictionary.

2.1. Algorithms

OMP and BP are two methods for approximately solving
the problem (1).

OMP is a greedy method that sequentially chooses one dic-
tionary atom in a locally optimal manner. It keeps track of
a residual ηk at step k, initialized as the input signal ξ, and
a set Λk that contains the atoms already chosen, initialized
as the empty set. At each step, Λk is updated to Λk+1 by
adding the dictionary atom that has the maximum absolute
inner product with ηk. Then, ηk is updated to ηk+1 by set-
ting it to be the component of ξ that is orthogonal to the
space spanned by the atoms indexed by Λk+1. The process
is terminated when a precise representation of ξ is estab-
lished, i.e. when ηk = 0 for some k.

BP is a convex relaxation approach. The idea is to use the
`1 norm in lieu of the `0 norm in (1),

P (Π, ξ) := arg min
x
‖x‖1 s.t. Πx = ξ, (5)

and has the benefit that (5) is convex and can be solved
efficiently. We will denote the objective value of (5) by
p(Π, ξ), i.e. p(Π, ξ) = ‖x‖1 where x ∈ P (Π, ξ), and by
convention, p(Π, ξ) = +∞ if the problem is infeasible.
The dual of the above optimization program is

D(Π, ξ) := arg max
ω
〈ω, ξ〉 s.t. ‖Π>ω‖∞ ≤ 1. (6)

Let d(Π, ξ) be the objective value of the dual problem (6).
If the primal problem is feasible, then strong duality holds
and p(Π, ξ) = d(Π, ξ).

2.2. Geometric characterization of the dictionary

Our subspace-sparse recovery conditions rely on geomet-
ric properties of the dictionary Π that characterize the dis-
tribution of the inliers and the separation between inliers
and outliers. The distribution of the inliers is characterized
by the inradius r(K(±Φ)) of the symmetric convex body
K(±Φ) = conv{±φ1, · · · ,±φM}, where conv{·} denotes
the convex hull. The notions of convex body, symmetric
convex body and inradius are defined as follows.
Definition 1 (Symmetric convex body). A convex set P
that satisfies P = −P is called symmetric. A compact
convex set with nonempty interior is called a convex body.
Definition 2 (Inradius). The (relative) inradius r(P) of a
convex body P is defined as the radius of the largest Eu-
clidean ball in the space span(P) that is inscribed in P .
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Figure 1. Illustration of inlier characterization. Dictionary atoms
are {φi}3i=1 that lie on the unit circle (drawn in black) of a two-
dimensional subspace. K(±Φ) and its inradius are illustrated in
green. The polar set Ko(±Φ) and its circumradius are illustrated
in blue. The six blue dots are the dual points.

The inradius r(K(±Φ)) characterizes the distribution of
the inliers inR(Φ): if the atoms are well distributed across
all directions the inradius is large, while if the atoms are
skewed towards certain directions the inradius is small (see
Figure 1 for an illustration in R2).

Another characterization of the distribution of the inliers is
in terms of the circumradius of the polar set of K(±Φ):

Definition 3 (Polar Set). The (relative) polar of a set P is
defined as Po = {η ∈ span(P) : 〈η, θ〉 ≤ 1, ∀θ ∈ P}.
Definition 4 (Circumradius). The circumradius R(P) of a
convex body P is defined as the radius of the smallest ball
containing P .

Notice that the polar set of K(±Φ) is given by Ko(±Φ) =
{η ∈ R(Φ) : ‖Φ>η‖∞ ≤ 1}. It is also a symmetric convex
body, as the polar of a convex body is also a convex body
(Brazitikos et al., 2014).

A subset of the points in Ko(±Φ) will play a critical role.

Definition 5 (Extreme Point). A point η in a convex setP is
an extreme point if it cannot be expressed as a strict convex
combination of two other points in P , i.e. there are no λ ∈
(0, 1), η1, η2 ∈ P , η1 6= η2, such that η = (1−λ)η1 +λη2.

Definition 6 (Dual Point). The set of dual points of the
matrix Φ = [φ1, · · · , φM ], denoted by D(Φ), is defined as
the set of extreme points of the set Ko(±Φ).

The following result gives a relationship between the inra-
dius of a set and the circumradius of its polar set.

Theorem 1 (Soltanolkotabi & Candès (2013)). Let P be a
symmetric convex body and Po be its polar. Then we have
r(P)R(Po) = 1.
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Applying the above theorem to K(±Φ) we get

r(K(±Φ)) ·R(Ko(±Φ)) = 1. (7)

The following result is well-studied in linear programming.
We sketch its proof, as it provides bounds on the size of the
dual set, which we will use later.

Theorem 2 (Nocedal & Wright (2006)). The set D(Φ) is
finite.

Proof sketch. Consider a linear program with variable η,
constraint η ∈ Ko(±Φ), and arbitrary objective. Since
the dual points D(Φ) are the extreme points of Ko(±Φ),
they are the same as the basic feasible solutions of the
linear program. Assume Φ has M columns and let s =
dim(R(Φ)). Each basic feasible solution is determined by
s linearly independent constraints from the 2M constraints
of ‖Φ>η‖∞ ≤ 1. Obviously, there are at most 2s ·

(
M
s

)
ways to choose such set of constraints. It follows that there
are finitely many dual points.

Moreover, all points in Ko(±Φ) are convex combinations
of these finitely many dual points in D(Φ). This is implied
by the following stronger result (Brazitikos et al., 2014).

Theorem 3. The set of the extreme points of a convex body
P is the smallest subset of P with convex hull P .

At the end of this section, we present two definitions that
characterize the incoherence between the outliers {ψi} and
(a subset of) points in the inlier subspace. Specifically, let

µ(Ψ,R(Φ)) := maxη∈R(Φ)\{0} ‖Ψ>η‖∞/‖η‖2, (8)

µ(Ψ,D(Φ)) := maxη∈D(Φ)\{0} ‖Ψ>η‖∞/‖η‖2. (9)

They measure how close the outliers are from the inlier sub-
spaceR(Φ) or the dual points D(Φ).

3. Subspace-Sparse Recovery
3.1. Major results

Throughout this section, we assume that the inlier and out-
lier points are normalized to unit Euclidean norm. Let
BP(Π, ξ) and OMP(Π, ξ) be the (sets of) solutions given
by the two algorithms. We present conditions under which
the solutions BP(Π, ξ) and OMP(Π, ξ) are subspace-sparse
for all the ξ in the inlier subspace R(Φ). Concretely, we
identify the following two conditions for our analysis.

Definition 7. The dictionary Π = [Φ,Ψ] with normalized
columns is said to satisfy the principal subspace-sparse re-
covery condition (PRC) if

r(K(±Φ)) > µ(Ψ,R(Φ)), (10)

where R(·) is the range of the matrix. It is said to satisfy
the dual subspace-sparse recovery condition (DRC) if

r(K(±Φ)) > µ(Ψ,D(Φ)), (11)

where D(·) is the set of dual points.

The results for subspace-sparse recovery are as follows.

Theorem 4. If Π=[Φ,Ψ] satisfies the PRC, then BP(Π, ξ)
and OMP(Π, ξ) are both subspace-sparse for all ξ ∈ R(Φ).

Theorem 5. If Π=[Φ,Ψ] satisfies the DRC, then BP(Π, ξ)
and OMP(Π, ξ) are both subspace-sparse for all ξ ∈ R(Φ).

As both theorems show, two major factors affect subspace-
sparse recovery. The first is that the inlier points should be
well populated and spread out across the subspace R(Φ),
as measured by the inradius on the left hand side of (10)
and (11). Specifically, as the inliers get denser, the inra-
dius increases to 1. The second factor is that the outlier
points should be incoherent with R(Φ) in the case of PRC
or D(Φ) in the case of DRC. In the extreme case where
the outliers are all in the orthogonal complement of R(Φ),
both two coherences are zero.

Furthermore, note that the incoherence for PRC is mea-
sured between outliers and all points in the subspaceR(Φ).
The DRC, however, is a weaker requirement since it only
needs the outliers to be incoherent with D(Φ), a finite sub-
set ofR(Φ). Thus, Theorem 4 is implied by Theorem 5.

These two results, alongside with some auxiliary results,
are summarized in Figure 2. Each box contains a propo-
sition, and the arrows denote implication relations. The
topmost and the bottommost boxes are the properties of
subspace-sparse recovery by BP and OMP that we are pur-
suing. Both of them are implied by the PRC and the DRC.
In the following, we discuss in more detail theories of
subspace-sparse recovery by BP and OMP.

3.2. Subspace-sparse recovery by BP

We first establish an equivalent condition for subspace-
sparse recovery from BP, then show that this condition is
implied by PRC and DRC. See the upper half of Figure 2
for an illustration.

An equivalent condition for BP to give subspace-sparse so-
lutions appears in the context of subspace clustering (El-
hamifar & Vidal, 2013). We rephrase the result here for
our problem and the proof is omitted.

Theorem 6. (Elhamifar & Vidal, 2013) Given Π = [Φ,Ψ],
BP (Π, ξ) is subspace-sparse for all ξ ∈ R(Φ) if and only
if p(Φ, ξ) < p(Ψ, ξ) for all ξ ∈ R(Φ) \ {0}.
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∀ξ ∈ R(Φ),OMP(Π, ξ) is subspace-sparse

Equivalent condition: ∀ξ ∈ R(Φ) \ {0}, ‖Φ>ξ‖∞ > ‖Ψ>ξ‖∞

PRC: r(K(±Φ)) > µ(Ψ,R(Φ)) DRC: r(K(±Φ)) > µ(Ψ,D(Φ)) ‖Ψ>ω‖∞ < 1,∀ω ∈ D(Φ)

Equivalent condition: ∀ξ ∈ R(Φ) \ {0}, p(Φ, ξ) < p(Ψ, ξ)

∀ξ ∈ R(Φ),BP(Π, ξ) is subspace-sparse

Figure 2. Summary of the results of subspace-sparse recovery with dictionary Π = [Φ,Ψ]. Each box contains a proposition, and arrows
denote implications. The topmost (resp., bottommost) box is the property of subspace-sparse recovery by BP (resp., OMP). Two major
conditions for subspace-sparse recovery are the PRC and the DRC. In this paper we prove the solid arrows.

In the equivalent condition, it is required that for any ξ ∈
R(Φ) \ {0}, p(Φ, ξ), which is the objective value of BP
for recovering ξ by inlier dictionary Φ (see (5)), should be
smaller than p(Ψ, ξ), which is the objective value of recov-
ering by outlier dictionary Ψ.

We proceed to prove the result of PRC in Theorem 4. One
way to do this is by arguing that the PRC implies DRC, so
Theorem 4 is implied by Theorem 5. However, we choose
to prove the result directly by arguing that the PRC im-
plies the equivalent condition, since this proof reveals cer-
tain properties of the problem.

In the equivalent condition, p(Φ, ξ) depends purely on the
properties of inliers, while p(Ψ, ξ) depends on a relation
between the outliers and the subspace spanned by inliers.
This enlightens us to upper bound the former by inliers
characterization, and to lower bound the latter by inlier-
outlier relations.
Theorem 7. If PRC: r(K(±Φ)) > µ(Ψ,R(Φ)) holds then
∀ξ ∈ R(Φ) \ {0}, p(Φ, ξ) < p(Ψ, ξ).

Proof. We bound the left and right hand sides of the objec-
tive inequality separately.

First, we notice that p(Φ, ξ) = d(Φ, ξ) = 〈ω, ξ〉 by strong
duality, in which ω is dual optimal solution. Decompose ω
into two orthogonal components ω = ω⊥ + ω‖, in which
ω‖ ∈ R(Φ). It has ‖Φ>ω‖‖2 = ‖Φ>ω‖2 ≤ 1, then from
(7), ‖ω‖‖2 ≤ 1/r(K(±Φ)). Thus,

p(Φ, ξ) = 〈ω‖, ξ〉
≤ ‖ξ‖2‖ω‖‖2 ≤ ‖ξ‖2/r(K(±Φ)).

(12)

On the other hand, consider the optimization problem

P (Ψ, ξ) = arg min
x
‖x‖1 s.t. Ψx = ξ. (13)

If the problem is infeasible, then the objective of the above
optimization p(Ψ, ξ) = +∞, the conclusion follows triv-
ially. Otherwise, take any x∗ ∈ P (Ψ, ξ) to be the optimal
solution, we have ξ = Ψx∗. Left multiply by ξ> and ma-
nipulate the right hand side we have the following:

‖ξ‖22 = ξ>Ψx∗ ≤ ‖Ψ>ξ‖∞‖x∗‖1

= ‖Ψ> ξ

‖ξ‖2
‖∞‖ξ‖2 · p(Ψ, ξ)

≤ µ(Ψ,R(Φ)) · ‖ξ‖2 · p(Ψ, ξ),

(14)

so p(Ψ, ξ) ≥ ‖ξ‖2/µ(Ψ,R(Φ)).

The conclusion thus follows by combining the above two
parts and the condition of PRC.

While PRC requires all points in R(Φ) to be incoherent
with the outliers, the DRC shows that a finite subset of
R(Φ) is in fact sufficient, i.e. we only need D(Φ) to be
incoherent with the outliers. To prove this claim, we need a
statement that is weaker than DRC but is more convenient
to work with, see the rightmost box of Figure 2.

Lemma 1. If DRC: r(K(±Φ)) > µ(Ψ,D(Φ)) holds then
‖Ψ>ω‖∞ < 1,∀ω ∈ D(Φ).

Proof. For any ω ∈ D(Φ), we know that ω ∈ Ko(±Φ), so
by (7), ‖ω‖2 ≤ R(Ko(±Φ)) = 1/r(K(±Φ)), thus

‖Ψ>ω‖∞ = ‖Ψ> ω

‖ω‖2
‖∞‖ω‖2

≤ µ(Ψ,D(Φ))/r(K(±Φ)) < 1.
(15)

Theorem 8. If ‖Ψ>ω‖∞ < 1,∀ω ∈ D(Φ) holds then ∀ξ ∈
R(Φ) \ {0}, p(Φ, ξ) < p(Ψ, ξ).
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Proof. To prove the result, we need some basic results from
linear programming. Consider the linear program:

arg max
w
〈ω, ξ〉 s.t. ‖Φ>ω‖∞ ≤ 1, ω ∈ R(Φ). (16)

Note that the feasible region of (16) is Ko(±Φ), and it is
bounded because it is a convex body. By theories of linear
programming (e.g., Nocedal & Wright (2006)), there must
have a solution to (16) that is an extreme point of Ko(±Φ).
Thus, we can always find a solution of (16) that is in the set
of dual points D(Φ).

Now let us consider the optimization problem D(Φ, ξ),
rewritten below for convenience:

D(Φ, ξ) := arg max
w
〈ω, ξ〉 s.t. ‖Φ>ω‖∞ ≤ 1. (17)

Note that this program differs from (16) only in the con-
straint. The claim is, despite of this change, there is still
at least one optimal solution to (17) that is in D(Φ). This
follows from the fact that both ξ and the columns of Φ are
in R(Φ), thus any solution ω to (17) can be decomposed
into two parts as ω = ω‖ + ω⊥, in which ω‖ is a solution
to (16) and ω⊥ is orthogonal toR(Φ).

Prepared with the above discussion, we now go to the
proof. The proof is trivial if p(Ψ, ξ) = +∞, since p(Φ, ξ)
always has feasible solutions and thus is finite.

Otherwise, take any x∗ ∈ P (Ψ, ξ) to be a primal optimal
solution. It has that ξ = Ψx∗. On the other hand, we
have shown that there exists an optimal dual solution ω∗ ∈
D(Φ, ξ) that is in D(Φ). Thus,

p(Φ, ξ) = d(Φ, ξ) = 〈ω∗, ξ〉 = 〈ω∗,Ψx∗〉
≤ ‖Ψ>ω∗‖∞ · ‖x∗‖1 < p(Ψ, ξ),

(18)

in which ‖Ψ>ω∗‖∞ < 1 by assumption, and ‖x∗‖1 =
p(Ψ, ξ) since x∗ is an optimal solution.

3.3. Subspace-sparse recovery by OMP

The lower half of Figure 2 summarizes the results for sparse
recovery by OMP. The results surprisingly have a symmet-
ric structure as that of BP. First, we show an equivalent
condition for subspace-sparse recovery by OMP. Then we
show that this condition is implied by PRC and DRC.

Theorem 9. ∀ξ ∈ R(Φ),OMP(Π, ξ) is subspace-sparse if
and only if ∀ξ ∈ R(Φ) \ {0}, ‖Φ>ξ‖∞ > ‖Ψ>ξ‖∞.

Proof. The “only if” part is straight forward because if
‖Φ>ξ‖∞ ≤ ‖Ψ>ξ‖∞, then this specific ξ will pick an out-
lier in the first step of the OMP(Π, ξ).

The other direction is also easily seen in an inductive way if
we consider the procedure of the OMP algorithm. Specifi-
cally, for any given ξ ∈ R(Φ), the first step of OMP(Π, ξ)

chooses an entry from columns of Φ, and this gives a resid-
ual that is again in R(Φ), which then guarantees that the
next step of OMP(Π, ξ) also chooses an entry from the
columns of Φ.

Thus, the equivalent condition requires that for any point
ξ ∈ R(Φ) \ {0}, the closest point to it in the entire dictio-
nary Π should be an inlier point.

We now show that this equivalent condition is further im-
plied by the PRC. Similar to the discussion for BP, the term
‖Φ>ξ‖∞ in the equivalent condition depends on inliers and
can be lower bounded by means of an inradius characteri-
zation, and the term ‖Ψ>ξ‖∞ depends on inlier-outlier re-
lation and can be upper bounded by the coherence.

Theorem 10. If PRC: r(K(±Φ)) > µ(Ψ,R(Φ)) holds
then ∀ξ ∈ R(Φ) \ {0}, ‖Φ>ξ‖∞ > ‖Ψ>ξ‖∞.

Proof. We prove this by bounding each side of the objec-
tive inequality.

For the right hand side, we have that

‖Ψ>ξ‖∞ = ‖Ψ> ξ

‖ξ‖2
‖∞ · ‖ξ‖2 ≤ µ(Ψ,R(Φ)) · ‖ξ‖2.

For the left hand side, we will prove that ‖Φ>ξ‖∞ ≥
r(K(±Φ))‖ξ‖2. Notice that

r(K(±Φ))‖ξ‖2 = ‖ξ‖2/R(Ko(±Φ))

=
‖ξ‖2

maxη ‖η‖2 s.t. ‖Φ>η‖∞ ≤ 1
.

The optimization program in the denominator could be
lower bounded by taking η = ξ/‖Φ>ξ‖∞, thus

r(K(±Φ))‖ξ‖2 ≤
‖ξ‖2

‖ξ‖2/‖Φ>ξ‖∞
= ‖Φ>ξ‖∞. (19)

The conclusion thus follows by concatenating the bounds
for both sides above with the PRC.

Finally, we prove the result for DRC, by showing that the
statement in the rightmost box of Figure 2 guarantees the
equivalent condition for OMP.

Theorem 11. If ‖Ψ>ω‖∞ < 1,∀ω ∈ D(Φ) holds then
∀ξ ∈ R(Φ) \ {0}, ‖Φ>ξ‖∞ > ‖Ψ>ξ‖∞.

To prove this theorem, we use the result that the polar set
Ko(±Φ) induces a norm on the space R(Φ), by means of
the so-called Minkowski functional.

Definition 8. The Minkowski functional of a set K is de-
fined on span(K) as

‖η‖K = inf{t > 0 :
η

t
∈ K}. (20)
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Theorem 12. (Vershynin, 2009) IfK is a symmetric convex
body, then ‖ · ‖K is a norm on span(K) with K being the
unit ball.

Proof of Theorem 11. It suffices to prove the result for ev-
ery ξ ∈ R(Φ) \ {0} that has a unit norm, by using any
norm defined onR(Φ). Here we take the norm ‖ ·‖Ko(±Φ),
then we need to prove that ‖Φ>ξ‖∞ > ‖Ψ>ξ‖∞ for all
ξ ∈ R(Φ) such that ‖ξ‖Ko(±Φ) = 1.

Since ‖ξ‖Ko(±Φ) = 1, it has ξ ∈ Ko(±Φ), thus ξ could be
written as a convex combination of the dual points, i.e. one
can write ξ =

∑
i ωixi in which ωi ∈ D(Φ), xi ∈ [0, 1] for

all i and
∑
i xi = 1. Thus,

‖Ψ>ξ‖∞ = ‖Ψ>
∑
i

ωi · xi‖∞ ≤
∑
i

‖Ψ>ωi · xi‖∞

<
∑
i

xi = 1 = ‖Φ>ξ‖∞.

The last equality follows from ‖ξ‖Ko(±Φ) = 1.

4. Application to Sparse Recovery
The results of subspace-sparse recovery in the previous sec-
tion can also be applied to the study of sparse recovery. In
sparse recovery, the task is to reconstruct an M -sparse sig-
nal x (i.e. x has at mostM nonzero entries) from the obser-
vation ξ = Πx for some dictionary Π. By taking the inliers
Φ to be the M columns corresponding to the nonzero en-
tries of x, if s := rank(Φ) is equal toM , then the subspace-
sparse solution is unique and is exactly x. In this case, if
the dictionary Π = [Φ,Ψ] satisfies PRC or DRC, then an
M -sparse recovery of x can be achieved. Formally,

Theorem 13. Given a dictionary Π, any M -sparse vector
x can be recovered from the observation ξ := Πx by BP
and OMP if for any partition of Π into Φ and Ψ where Φ
has M columns, it has s := rank(Φ) is equal to M and
that PRC (respectively, DRC) holds for such partition.

This result serves as a new condition for guaranteeing re-
construction of sparse signals. Its geometric interpretation
is the same as that of PRC and DRC for the subspace-
sparse recovery, i.e., for any M atoms of the dictionary,
they should be well distributed in their span, while all other
atoms should be sufficiently away from this span (by PRC)
or from a subset of the span (by DRC).

For the purpose of checking the conditions of the the-
orem, if for a partition of Π into [Φ,Ψ] it is true that
rank(Φ) = M , then subsequent checking of the PRC and
DRC is easy, as explained below. First, the dual points
D(Φ) can be written out explicitly:

Lemma 2. If the inlier dictionary Φ ∈ Rn×M has full
column rank, then the set of dual points, D(Φ), contains

exactly 2M points specified by {Φ(Φ>Φ)−1 · u,u ∈ UM},
where UM := {[u1, · · · , uM ], ui = ±1, i = 1, · · · ,M}.

The proof is in the appendix. With the dual points, one can
then compute the coherence on the RHS of DRC. More-
over, R(Ko(±Φ)) can be computed as the maximum `2
norm of the dual points, and the inradius r(K(±Φ)) can be
acquired as the reciprocal of R(Ko(±Φ)) (see (7)). Thus,
all terms in PRC and DRC can be computed.

At the end of this section, we point out that the result of
Theorem 13 can be compared with traditional sparse re-
covery results. Specifically, we compare it with the result
that uses mutual coherence, µ(Π), which is defined as the
largest absolute inner product between columns of Π. It
is known that µ(Π) < 1

2M−1 is a sufficient condition for
OMP and BP (Donoho & Elad, 2003; Tropp, 2004) to re-
cover M -sparse signals. We show that this is a stronger
requirement than that of Theorem 13.

Theorem 14. Given a dictionary Π. If µ(Π) < 1
2M−1 ,

then for any partition of Π into Φ and Ψ where Φ has M
columns, it has rank(Φ) = M and that PRC and DRC hold.

The proof is in the appendix. This result shows that the
PRC/DRC conditions in Theorem 13 are implied by the
condition of mutual coherence. While the mutual coher-
ence condition requires all columns of Π to be incoherent
from each other, the PRC and DRC provide more detailed
requirements, in terms of the inlier distribution as well as
inlier-outlier relations.

5. Application to Subspace Clustering
Let {ξj}Nj=1 be a set of points drawn from a union of un-
known subspaces {Si}ni=1. Subspace clustering addresses
the problem of clustering these points into their respective
subspaces, without knowing their membership a priori.

Sparse Subspace Clustering (SSC) is one of the state-of-
the-art approaches for this task. In this approach, subspace-
sparse recovery is performed for each ξj by using BP (El-
hamifar & Vidal, 2009) or OMP (Dyer et al., 2013). More
specifically, for each ξj that is in one of the subspaces Si,
let the inlier matrix Φj associated with ξj contain in its
columns all sample points in Si except ξj itself, and let the
outlier matrix Ψj contain in its columns all sample points
in all subspaces except Si. If the recovery of xj using BP or
OMP is subspace-sparse by the dictionary Πj := [Φj ,Ψj ],
then the nonzero entries of the solution identify some points
that are also in subspace Si. One can do this for all points
{ξj}Nj=1, and if all of them give subspace-sparse solutions,
then connections are built only between points that are from
the same subspace. Consequently, one can find clusters
by extracting the connected components from the graph of
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connections.

Depending on whether BP or OMP is used for subspace-
sparse recovery, there can be two different versions of SSC,
which will be referred to as SSC-BP and SSC-OMP. In this
section, we discuss the conditions under which SSC-BP
and SSC-OMP can achieve subspace-sparse recovery for
all of the sample points. In the following, we first show
that the result of DRC can be applied for such a purpose,
and we then compare our results to prior work.

5.1. Subspace-sparse recovery for SSC

We assume that all the points {ξj}Nj=1 are normalized to
have unit `2 norm. If a dictionary Πj = [Φj ,Ψj ] satisfies
the DRC, then Theorem 5 guarantees the subspace-sparse
recovery of all points in Si, including ξj , by BP and OMP.
Thus, if the DRC holds for all dictionaries {Πj}Nj=1, then
the correctness of SSC-BP and SSC-OMP is guaranteed.

We can rephrase this result in terms of properties of the
subspaces and make it more interpretable. For Si, we de-
note the minimum leave-one-out inradius of sample points
in Si as

ri := min
j:ξj∈Si

r(K(±Φj)), (21)

where each inradius on the RHS is taken for sample points
in Si with ξj excluded. Note that ri will be relatively large
if sample points from Si are well distributed. Define the
dual points

Di = ∪j:ξj∈SiD(Φj), (22)

which is the union of the leave-one-out duals of sample
points in Si. Finally, notice that for all j such that ξj ∈ Si,
the outlier dictionary Ψj is the same, and is composed of
all sample points not in Si. With a slight abuse of notation,
we denote the common dictionary by Ψi.

Theorem 15. Given {ξj}Nj=1 that lie in a union of
subspaces {Si}ni=1, SSC-BP and SSC-OMP both give
subspace-sparse solutions if

∀i = 1, · · · , n, ri > µ(Ψi,Di). (23)

This theorem states that for each subspace, in order for
SSC-BP and SSC-OMP to succeed, the sample points
should be well distributed so that ri is large enough, and
the set of dual points Di, which all lie in Si, should be in-
coherent with points from all other subspaces Ψi.

5.2. Comparison with prior work

While our result in Theorem 15 analyzes SSC-BP and SSC-
OMP jointly, prior work has addressed the two problems
separately. In particular, a closely related result to our work
is given by (Soltanolkotabi & Candès, 2013), which gives

the following sufficient condition for guaranteeing the cor-
rectness of SSC-BP:

∀i = 1, · · · , n, ri > µ(Ψi,Vi), (24)

Here, for each i, Vi contains a set of points in Si that are
referred to as the dual directions. By comparing (24) with
(23), we can see that the only difference is that Di is re-
placed by Vi in the RHS. Since Vi is a subset of Di, we
have that µ(Ψi,Vi) ≤ µ(Ψi,Di). Consequently, condition
(24) is easier to be satisfied, and thus is a better result for
the analysis of SSC-BP.

However, we also point out that the conditions (23) and
(24) are not entirely comparable, because the former has
broader implications. First, note that (23) is also a sufficient
condition for SSC-OMP to give subspace-sparse solutions,
while (24) is valid for SSC-BP only. Second, if (23) holds,
then for any vector ξ (not necessarily one of the ξj’s) that is
in the union of subspaces {Si}ni=1, OMP and BP can give
subspace-sparse solution with the dictionary composed of
sample points {ξj}Nj=1. As a result, the condition (23) can
also be used for the analysis of other related algorithms
such as subspace classification (Wright et al., 2009) and
large scale SSC (Peng et al., 2013). Such topics are beyond
the subject of this paper and are deferred for future work.

6. Conclusion
In this work, we have studied the properties of OMP and
BP algorithms for the task of subspace-sparse recovery and
have identified the PRC and DRC as two sufficient con-
ditions for guaranteeing subspace-sparse recovery. This
result provides new understanding of the performance of
sparse recovery based classification and clustering tech-
niques. Moreover, we also have established that the PRC
and DRC are sufficient conditions for traditional sparse re-
covery. We believe that these results serve as new perspec-
tives into the traditional sparse recovery problem.
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