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A. Proofs of Lemma
Lemma A.1. Let M be a matrix with rank K. Let B be

a matrix with kB�MkF  ✏. And p (·) is the projection

onto the top-K spectral spaces of M, then

kp (B)�BkF  ✏.

Proof. Note that

B 2 argmin

X

�

�B� �

UU>�X
�

VV>��
�

2

F,

where M = U⌃V>. So we have
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Lemma A.2. Let M be a matrix with kMkF  C. Let B
be a matrix with kB�MkF  ✏. We have that pm (·) and

pb (·) are the projection onto the top-K spectral spaces of

M and B respectively, then

kpm (B)� pb (B)kF  2✏.

Proof. It follows the Lemma A.1 and the triangular in-
equality of Frobenius norm.

Without the loss of generality, we prove the results for 3-
way tensors.

Lemma A.3. Given a tensor X 2 RI⇥J⇥K
and a target

rank r, then for X0
= TSM(X, r), we have that its mode i

rank is no greater than r for any i.

Proof. Assume that the Tucker form of X is as follows:

X = S1 ⇥1 U1,1 ⇥2 U1,2 ⇥3 U1,3,

where S1 2 RI⇥J⇥K is the core tensor, U1,1 2 RI⇥I ,
U1,2 2 RJ⇥J and U1,3 2 RK⇥K are unitary matrices
containing the singular vector for each mode.

By the connection between tensor Tucker form and the
SVD of its mode (De Lathauwer et al., 2000), we have that
the operation X(1)  p

�

X(1), r
�

is equivalent to

X S0
1 ⇥1 U

0
1,1 ⇥2 U1,2 ⇥3 U1,3,

where S0
1 2 Rr⇥J⇥K is the first r slabs in S and U0

1,1 2
RI⇥r is the first r column of U1,1.

Let the Tucker form of S0
1 be

S0
1 = S2 ⇥1 U2,1 ⇥2 U2,2 ⇥3 U2,3,

where the core tensor S2 2 Rr⇥J⇥K , U1,1 2 Rr⇥r,
U1,2 2 RJ⇥J , U1,3 2 RK⇥K . And after the update, we
have

X = S2 ⇥1

�

U0
1,1U2,1

�⇥2 (U1,2U2,2)⇥3 (U1,3U2,3) ,

as the new Tucker form.

Similarly, after cutting S2 to keep its top r slabs in the sec-
ond mode, updating the Tucker form and doing so for the
third mode, we have

X0
= S0 ⇥1 U

(1) ⇥2 U
(2) ⇥3 U

(3),

where the core tensor S0 2 Rr⇥r⇥r, U(1) 2 RI⇥r,
U(2) 2 RJ⇥r and U(3) 2 RK⇥r. Again, by the connec-
tion between tensor Tucker form and the SVD of its mode,
we reach the conclusion.

Lemma A.4. Given a tensor Y 2 RI⇥J⇥K
where its mode

i rank is no greater than r for all i. If tensor X 2 RI⇥J⇥K

satisfies kY �XkF  ✏ and X0
= TSM(X, r), then

kY �X0kF  8✏.

Proof. For any tensor T and any mode i, we have that
kTkF =

�

�T(i)

�

�

F. Therefore, we can arrive at the
conclusion by applying Lemma A.2 three times, i.e.,
kY �X0kF  2

3✏.

Lemma A.5. Let W be an N ⇥ N matrix with (1)

rank(W) = R, (2)kWkF < Cw, (3)�k (W) > �w, W0

be an N ⇥ N matrix such that kW0 �WkF  ✏, E be

a random matrix with (3) zero mean, (4) �N (E) � �e,

(5)kEkF  ✏e, then we have that

kp (W0
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when
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AND �w � 4 (✏e + ✏) .

Proof. Assume that the full SVD of W0
+ E is

[U1,U2] diag (⌃1,⌃2) [V1,V2]
>, then we have
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By Wedin sin ✓ theorem (Wedin, 1972), when �w �
4 (✏e + ✏), we have that
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Together with k⌃2k2F � (N � 2R)�2
e , we arrive at the

condition (N � 2R) � 8(✏+✏e)
4C2

w
�4
w�2

e
.
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B. Additional Appendix
B.1. Matrix Update

Problem Given (Y1, X1) 2 (Rq⇥n1 ,Rp⇥n1
), we have

estimated bA1 that minimizes kY1 � AX1kF . Now we re-
ceive some more data: (Y2, X2) 2 (Rq⇥n2 ,Rp⇥n2

), where
n2 ⌧ n1. Denote Y = [Y1, Y2] and X = [X1, X2]. The
goal is to find bA such that it minimizes kY �AXkF .

Solution: We have bA1 = (Y1X>
1 )(X1X>

1 )

�1. The goal is
to compute the following quantity efficiently:
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Thus, we have found the required update term and it only
depends on efficient matrix multiplications:

�A = Y2B
> � Y1X

>
1 � Y2X

>
2 E

Thus, we can design an algorithm that whenever receives a
new set of samples, updates its version of (XX>

)

�1 and
bA and becomes ready for the next update.

B.2. Reformulation

Define H as the Cholesky decomposition of IP + µL
HH>

= IP+µL. Since H is full rank and the mapping de-
fined by W 7! ˜W :

˜W:,:,m = HW:,:,m for m = 1, . . . ,M
preserves the tensor rank, i.e., rank(W) = rank(

˜W). We
can rewrite the loss function in Equation 3 and 3 as

M
X

m=1

T
X

t=K+1

kHW:,:,mXt,m � (H�1
)X:,t,mk2F

This suggests that we can solve first solve the quadratic loss
PM

m=1 kW:,:,mY:,:,m � V:,:,mk2F with Y:,:,m = XK+1:T,m

and V:,:,m = X:,:,m and obtain its solution as ˜W; then com-
pute W:,:,m = H�1

˜W:,:,m.

B.3. Multi-model Data

Seven models are selected from http://www-pcmdi.

llnl.gov/ipcc/model_documentation/ipcc_

model_documentation.php

1. BCCR-BCM2.0: Norway Bjerknes Centre for Cli-
mate Research

2. CGCM3.1(T47): Canadian Centre for Climate Mod-
elling

3. INM-CM3.0: Russia Institute for Numerical Mathe-
matics

4. MRI-CGCM2.3.2: Japan Meteorological Research
Institute

5. MIROC3.2(hires): Japan Center for Climate System
Research

6. MIROC3.2(medres): Japan Center for Climate Sys-
tem Research

7. FGOALS-g1.0: China ASG / Institute of Atmospheric
Physics China

The variables are then downsampled into a 5’ by 5’
latitude-longitude grid. For flux-like variables, first order
conservative mapping is used. For pressures and tempera-
tures, bilinear interpolation is used. The 19 variables we
use are ’lhtfl.sfc’, ’shtfl.sfc’, ’shum.2m’, ’soilw.0-10cm’,
’prate.sfc’, ’cprat.sfc’,’pres.sfc’, ’mslp’, ’dlwrf.sfc’, ’ul-
wrf.sfc’,’ulwrf.ntat’,’dswrf.sfc’,’dswrf.ntat’ , ’uswrf.sfc’,
’uswrf.ntat’,’air.2m’, ’skt.sfc’, ’vwnd.10m’, ’runof.sfc’.
The meaning of the variables is available at http://
esg.llnl.gov:8080/about/ipccTables.do


