
Stochastic Primal-Dual Coordinate Method for Regularized
Empirical Risk Minimization

Yuchen Zhang YUCZHANG@EECS.BERKELEY.EDU

University of California Berkeley, Berkeley, CA 94720, USA

Lin Xiao LIN.XIAO@MICROSOFT.COM

Microsoft Research, Redmond, WA 98053, USA

Abstract

We consider a generic convex optimization prob-
lem associated with regularized empirical risk
minimization of linear predictors. The prob-
lem structure allows us to reformulate it as a
convex-concave saddle point problem. We pro-
pose a stochastic primal-dual coordinate method,
which alternates between maximizing over one
(or more) randomly chosen dual variable and
minimizing over the primal variable. We also
develop an extension to non-smooth and non-
strongly convex loss functions, and an exten-
sion with better convergence rate on unnormal-
ized data. Both theoretically and empirically, we
show that the SPDC method has comparable or
better performance than several state-of-the-art
optimization methods.

1. Introduction
We consider a generic convex optimization problem in
machine learning: regularized empirical risk minimiza-
tion (ERM) of linear predictors. More specifically, let
a1, . . . , an ∈ Rd be the feature vectors of n data samples,
φi : R → R be a convex loss function associated with the
linear prediction aTi x, for i = 1, . . . , n, and g : Rd → R be
a convex regularization function for the predictor x ∈ Rd.
Our goal is to solve the following optimization problem:

min
x∈Rd

{
P (x)

def
=

1

n

n∑
i=1

φi(a
T
i x) + g(x)

}
. (1)

Examples of the above formulation include many well-
known classification and regression problems. For binary

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

classification, each feature vector ai is associated with a la-
bel bi ∈ {±1}. We obtain the linear SVM (support vector
machine) by setting φi(z) = max{0, 1 − biz} (the hinge
loss) and g(x) = (λ/2)‖x‖22, where λ > 0 is a regulariza-
tion parameter. Regularized logistic regression is obtained
by setting φi(z) = log(1 + exp(−biz)). For linear regres-
sion problems, each feature vector ai is associated with a
dependent variable bi ∈ R, and φi(z) = (1/2)(z − bi)2.
Then we get ridge regression with g(x) = (λ/2)‖x‖22, and
the Lasso with g(x) = λ‖x‖1. Further backgrounds on
regularized ERM in machine learning and statistics can be
found, e.g., in the book by Hastie et al. (2009).

We are especially interested in developing efficient algo-
rithms for solving problem (1) when the number of sam-
ples n is very large. In this case, evaluating the full gra-
dient or subgradient of the function P (x) is expensive,
thus incremental methods that operate on a single com-
ponent function φi at each iteration can be very attrac-
tive. There have been extensive research on incremental
(sub)gradient methods (e.g., Tseng, 1998; Nedić & Bert-
sekas, 2001; Blatt et al., 2007; Bertsekas, 2011) as well
as variants of the stochastic gradient method (e.g., Zhang,
2004; Bottou, 2010; Duchi & Singer, 2009; Langford et al.,
2009; Xiao, 2010). While the computational cost per itera-
tion of these methods is only a small fraction, say 1/n, of
that of the batch gradient methods, their iteration complexi-
ties are much higher (it takes many more iterations for them
to reach the same precision). In order to better quantify the
complexities of various algorithms and position our contri-
butions, we need to make some concrete assumptions and
introduce the notion of condition number and batch com-
plexity.

1.1. Condition number and batch complexity

Let γ and λ be two positive real parameters. We make the
following assumption:

Assumption A. Each φi is convex and differentiable, and
its derivative is (1/γ)-Lipschitz continuous (same as φi be-

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization

ing (1/γ)-smooth), i.e. for i = 1, . . . , n,

|φ′i(α)− φ′i(β)| ≤ (1/γ)|α− β|, ∀α, β ∈ R.

In addition, the regularization function g is λ-strongly con-
vex, i.e. for any x, y ∈ Rn and any g′(y) ∈ ∂g(y), we have

g(y) ≥ g(x) + g′(y)T (x− y) +
λ

2
‖x− y‖22.

For example, the logistic loss φi(z) = log(1 + exp(−biz))
is (1/4)-smooth, the squared error φi(z) = (1/2)(z − bi)2
is 1-smooth, and the squared `2-norm g(x) = (λ/2)‖x‖22 is
λ-strongly convex. The hinge loss and the `1-regularization
do not satisfy Assumption A. Nevertheless, we can treat
them using smoothing and strongly convex perturbations,
respectively, so that our algorithm and theoretical frame-
work still apply (see Section 3.1).

Under Assumption A, the gradient of each component
function, ∇φi(aTi x), is also Lipschitz continuous, with
constant Li = ‖ai‖22/γ ≤ R2/γ, where R = maxi ‖ai‖2.
In other words, each φi(aTi x) is (R2/γ)-smooth. We de-
fine a condition number κ = R2/(λγ), and focus on ill-
conditioned problems where κ� 1. In the statistical learn-
ing context, the regularization parameter λ is usually on the
order of 1/

√
n or 1/n (e.g. Bousquet & Elisseeff, 2002),

thus κ is on the order of
√
n or n. It can be even larger

if the strong convexity in g is added purely for numerical
regularization purposes (see Section 3.1).

Let P ? = minx∈Rd P (x) be the optimal value of prob-
lem (1). In order to find an approximate solution x̂ satis-
fying P (x̂) − P ? ≤ ε, the classical full gradient method
and its proximal variants require O((1 + κ) log(1/ε)) it-
erations (e.g., Nesterov, 2004). Accelerated full gradient
(AFG) methods (Nesterov, 2004) enjoy the improved iter-
ation complexity O((1 +

√
κ) log(1/ε)). However, each

iteration of these batch methods requires a full pass over
the dataset, which cost O(nd) operations. In contrast, the
stochastic gradient method and its variants operate on one
single component φi(aTi x) (chosen randomly) at each it-
eration, which only costs O(d). But their iteration com-
plexities are far worse. Under Assumption A, it takes them
O(κ/ε) iterations to find an x̂ such that E[P (x̂)−P ?] ≤ ε,
where the expectation is with respect to the random choices
made at all the iterations (e.g., Polyak & Juditsky, 1992;
Nemirovski et al., 2009).

To make fair comparisons with batch methods, we measure
the complexity of stochastic or incremental gradient meth-
ods in terms of the number of equivalent passes over the
dataset required to reach an expected precision ε. We call
this measure the batch complexity, which are usually ob-
tained by dividing their iteration complexities by n. For
example, the batch complexity of the stochastic gradient
method is O(κ/(nε)). The batch complexities of full gra-

dient methods are the same as their iteration complexities.

1.2. Our Contribution

In this paper, we present a new algorithm with batch com-
plexity

O
(
(1 +

√
κ/n) log(1/ε)

)
, (2)

This complexity has much weaker dependence on n than
the full gradient methods, and also much weaker depen-
dence on ε than the stochastic gradient methods.

Our approach is based on reformulating problem (1) as a
convex-concave saddle point problem, and then devising
a primal-dual algorithm to approximate the saddle point.
More specifically, we replace each component function
φi(a

T
i x) through convex conjugation, i.e.,

φi(a
T
i x) = sup

yi∈R
{yi〈ai, x〉 − φ∗i (yi)} ,

where φ∗i (yi) = supα∈R{αyi−φi(α)}, and 〈ai, x〉 denotes
the inner product of ai and x (which is the same as aTi x, but
is more convenient for later presentation). This leads to a
convex-concave saddle point problem

min
x∈Rd

max
y∈Rn

f(x, y), (3)

where

f(x, y)
def
=

1

n

n∑
i=1

(
yi〈ai, x〉 − φ∗i (yi)

)
+ g(x). (4)

Under Assumption A, each φ∗i is γ-strongly convex (since
φi is (1/γ)-smooth (e.g., Hiriart-Urruty & Lemaréchal,
2001, Theorem 4.2.2)) and g is λ-strongly convex. As a
consequence, the saddle point problem (3) has a unique
solution, which we denote by (x?, y?). The Stochastic
Primal-Dual Coordinate (SPDC) method we propose in this
paper achieves the batch complexity in (2) for solving the
primal-dual problem (3).

1.3. Comparing with Dual Coordinate Ascent Methods

It is worth comparing our method with the family of dual
coordinate ascent methods, which solves the primal prob-
lem (1) via its dual:

max
y∈Rn

{
1

n

n∑
i=1

−φ∗i (yi)− g∗
(
− 1

n

n∑
i=1

yiai

)}
, (9)

where g∗(u) = supx∈Rd{xTu − g(x)} is the conjugate
function of g. Recent work show that dual coordinate as-
cent methods are typically more efficient than primal full
gradient methods (e.g., Hsieh et al., 2008; Shalev-Shwartz
& Zhang, 2013a). In the stochastic dual coordinate ascent
(SDCA) method, a dual coordinate yi is picked at random
during each iteration and updated to increase the dual ob-

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization

Algorithm 1 The Stochastic Primal-Dual Coordinate (SPDC) method

Input: mini-batch size m, parameters τ, σ, θ ∈ R+, number of iterations T , and x(0) and y(0).

Initialize: x(0) = x(0), u(0) = (1/n)
∑n
i=1 y

(0)
i ai. for t = 0, 1, 2, . . . , T − 1 do

Randomly pick a subset of indices K ⊂ {1, 2, . . . , n} of size m, such that the probability of each index being picked
is equal to m/n. Execute the following updates:

y
(t+1)
i =

{
arg maxβ∈R

{
β〈ai, x(t)〉 − φ∗i (β)− 1

2σ (β − y(t)i)2
}

if i ∈ K,
y
(t)
i if i /∈ K,

(5)

x(t+1) = arg min
x∈Rd

{
g(x) +

〈
u(t) +

1

m

∑
k∈K

(y
(t+1)
k − y(t)k)ak, x

〉
+
‖x− x(t)‖22

2τ

}
, (6)

u(t+1) = u(t) +
1

n

∑
k∈K

(y
(t+1)
k − y(t)k)ak, (7)

x(t+1) = x(t+1) + θ(x(t+1) − x(t)). (8)
end
Output: x(T) and y(T)

jective value. Shalev-Shwartz & Zhang (2013a) showed
that the batch complexity of SDCA is Õ(1 + κ/n). The
SPDC method, which has batch complexity Õ(1+

√
κ/n),

can be much better when κ > n, i.e., for ill-conditioned
problems.

In addition, Shalev-Shwartz & Zhang (2013b) developed
an accelerated proximal SDCA method which achieves
the same batch complexity in (2). Their method is an
inner-outer iteration procedure, where the outer loop is a
full-dimensional accelerated gradient method in the primal
space x ∈ Rd. At each iteration of the outer loop, the
SDCA method (Shalev-Shwartz & Zhang, 2013a) is called
to solve the dual problem (9) with customized regulariza-
tion parameter and precision. In contrast, SPDC is a single-
loop primal-dual coordinate method.

More recently, Lin et al. (2014) developed an accelerated
proximal coordinate gradient (APCG) method for solving a
more general class of composite convex optimization prob-
lems. When applied to the dual problem (9), APCG enjoys
the same batch complexity Õ

(
1 +

√
κ/n

)
as of SPDC.

However, it needs an extra primal proximal-gradient step to
have theoretical guarantees on the convergence of primal-
dual gap (Lin et al., 2014). This in unnecessary for the
SPDC method.

2. The SPDC method
In this section, we describe and analyze the SPDC method.
The basic idea of SPDC is quite simple: to approach the
saddle point of f(x, y) defined in (4), we alternatively max-
imize f with respect to y, and minimize f with respect to x.
Since the dual vector y has n coordinates and each coordi-
nate is associated with a feature vector ai ∈ Rd, maximiz-

ing f with respect to y takes O(nd) computation, which
can be very expensive if n is large. We reduce the compu-
tational cost by randomly picking m coordinates of y at a
time, and maximizing f only with respect to the selected
coordinates. Consequently, the computational cost of each
iteration is O(md). Here m is called the mini-batch size;
in the simplest case, we have m = 1.

We give the details of the SPDC method in Algorithm 1.
The dual coordinate update and primal vector update are
given in equations (5) and (6) respectively. Instead of max-
imizing f over yk and minimizing f over x directly, we add
two quadratic regularization terms to penalize y(t+1)

k and
x(t+1) from deviating from y

(t)
k and x(t). The parameters σ

and τ control their regularization strength, which we will
specify in the convergence analysis (Theorem 1). More-
over, we introduce two auxiliary variables u(t) and x(t).
From the initialization u(0) = (1/n)

∑n
i=1 y

(0)
i ai and the

update rules (5) and (7), we have u(t) = 1
n

∑n
i=1 y

(t)
i ai.

Equation (8) obtains x(t+1) based on extrapolation from
x(t) and x(t+1). This step is similar to Nesterov’s acceler-
ation technique (Nesterov, 2004), and yields faster conver-
gence rate.

With a single processor, each iteration of Algorithm 1 takes
O(md) time to accomplish. Since the updates of each coor-
dinate yk are independent of each other, we can use paral-
lel computing to accelerate the Mini-Batch SPDC method.
Concretely, we can use m processors to update the m co-
ordinates in the subset K in parallel, then aggregate them
to update x(t+1). Such a procedure can be achieved by
a single round of communication, for example, using the
Allreduce operation in MPI or MapReduce. If we ig-
nore the communication delay, then each iteration takes

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization

O(d) time. Not surprisingly, we will show that the SPDC
algorithm converges faster with larger m, because it pro-
cesses multiple dual coordinates in a single iteration.

2.1. Convergence analysis

We present a convergence theorem for the SPDC algorithm.

Theorem 1. Assume that each φi is (1/γ)-smooth and g is
λ-strongly convex (Assumption A). Let R = max{‖ai‖2 :
i = 1, . . . , n}. If the parameters τ, σ and θ in Algorithm 1
are chosen such that

τ =
1

2R

√
mγ

nλ
, σ =

1

2R

√
nλ

mγ
and

θ = 1− 1

(n/m) +R
√

(n/m)/(λγ)
, (10)

then for each t ≥ 1, the Mini-Batch SPDC algorithm
achieves(1

2τ
+ λ

)
E
[
‖x(t) − x?‖22

]
+
(1

4σ
+ γ
)E[‖y(t) − y?‖22]

m

≤ θ t
((1

2τ
+ λ

)
‖x(0) − x?‖22 +

(1

2σ
+ γ
)‖y(0) − y?‖22

m

)
.

The proof of Theorem 1 is given in the long version of this
paper (Zhang & Xiao, 2014). The following corollary es-
tablishes the expected iteration complexity for obtaining an
ε-accurate solution.

Corollary 1. Suppose Assumption A holds and the param-
eters τ , σ and θ are set as in (10). In order for Algorithm 1
to obtain

E[‖x(T) − x?‖22] ≤ ε, E[‖y(T) − y?‖22] ≤ ε, (11)

it suffices to have the number of iterations T satisfy

T ≥
(
n

m
+R

√
n

mλγ

)
log

(
C

ε

)
,

where

C =

(
1
2τ

+ λ
)
‖x(0) − x?‖22 +

(
1
2σ

+ γ
)
‖y(0) − y?‖22/m

min
{

1
2τ

+ λ, 1
4σ

+ γ)/m
} .

Proof. By Theorem 1, we have E[‖x(T) − x?‖22] ≤ θTC
and E[‖y(T) − y?‖22] ≤ θTC. To obtain (11), it suffices to
ensure that θTC ≤ ε, which is equivalent to

T ≥ log(C/ε)

− log(θ)
=

log(C/ε)

− log
(

1−
(
n
m +R

√
n

mλγ

)−1) .
Applying the inequality − log(1 − x) ≥ x to the denomi-
nator above completes the proof.

Recall the definition of the condition number κ = R2/(λγ)
in Section 1.1. Corollary 1 establishes that the iteration

complexity of the SPDC method for achieving (11) is

O
((

(n/m) +
√
κ(n/m)

)
log(1/ε)

)
.

So a larger batch size m leads to less number of itera-
tions. In the extreme case of n = m, we obtain a full
batch algorithm, which has iteration or batch complex-
ity O((1 +

√
κ) log(1/ε)). This complexity is shared by

the AFG methods (Nesterov, 2004), as well as the batch
primal-dual algorithm of Chambolle & Pock (2011).

Since an equivalent pass over the dataset corresponds to
n/m iterations, the batch complexity of SPDC is

O
((

1 +
√
κ(m/n)

)
log(1/ε)

)
.

This expression implies that a smaller batch size m leads
to less number of passes through the data. In this sense, the
basic SPDC method with m = 1 is the most efficient one.
However, if we prefer the least amount of wall-clock time,
then the best choice is to choose a mini-batch size m that
matches the number of parallel processors available.

3. Extensions of SPDC
In this section, we derive two extensions of the SPDC
method. The first one handles problems for which Assump-
tion A does not hold. The second one employs a non-
uniform sampling scheme to improve the iteration com-
plexity when the feature vectors ai are unnormalized.

3.1. Non-smooth or non-strongly convex functions

The complexity bounds established in Section 2 require
each φ∗i to be γ-strongly convex, which corresponds to the
condition that the first derivative of φi is (1/γ)-Lipschitz
continuous. In addition, the function g needs to be λ-
strongly convex. For general loss functions where either
or both of these conditions fail (e.g., the hinge loss and
`1-regularization), we can slightly perturb the saddle-point
function f(x, y) so that SPDC can still be applied.

For simplicity, here we consider the case where neither φi
is smooth nor g is strongly convex. Formally, we assume
that each φi and g are convex and Lipschitz continuous,
and f(x, y) has a saddle point (x?, y?). We choose a scalar
δ > 0 and consider the modified saddle-point function:

fδ(x, y)
def
=

1

n

n∑
i=1

(
yi〈ai, x〉 −

(
φ∗i (yi) +

δy2i
2

))
+ g(x) +

δ

2
‖x‖22.

Denote by (x?δ , y
?
δ) the saddle-point of fδ . We employ

the SPDC method (Algorithm 1) to approximate (x?δ , y
?
δ),

treating φ∗i + δ
2 (·)2 as φ∗i and g+ δ

2‖·‖
2
2 as g, which now are

all δ-strongly convex. We note that adding strongly convex

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization

Algorithm 2 SPDC method with weighted sampling

Input: parameters τ, σ, θ ∈ R+, number of iterations T , and initial points x(0) and y(0).

Initialize: x(0) = x(0), u(0) = (1/n)
∑n
i=1 y

(0)
i ai. for t = 0, 1, 2, . . . , T − 1 do

Randomly pick k ∈ {1, 2, . . . , n}, with probability pk = 1
2n + ‖ak‖2

2
∑n

i=1 ‖ai‖2
. Execute the following updates:

y
(t+1)
i =

{
arg maxβ∈R

{
β〈ai, x(t)〉 − φ∗i (β)− pin

2σ (β − y(t)i)2
}

i = k,

y
(t)
i i 6= k,

(12)

x(t+1) = arg min
x∈Rd

{
g(x) +

〈
u(t) +

1

pkn
(y

(t+1)
k − y(t)k)ak, x

〉
+
‖x− x(t)‖22

2τ

}
, (13)

u(t+1) = u(t) +
1

n
(y

(t+1)
k − y(t)k)ak,

x(t+1) = x(t+1) + θ(x(t+1) − x(t)).
end
Output: x(T) and y(T)

perturbation on φ∗i is equivalent to smoothing φi, which be-
comes (1/δ)-smooth. Letting γ = λ = δ, the parameters
τ , σ and θ in (10) become

τ =
1

2R

√
m

n
, σ =

1

2R

√
n

m
, and θ = 1−

(
n

m
+
R

δ

√
n

m

)−1

.

Although (x?δ , y
?
δ) is not exactly the saddle point of f , the

following corollary shows that applying the SPDC method
to the perturbed function fδ effectively minimizes the orig-
inal loss function P . See the long version of this pa-
per (Zhang & Xiao, 2014) for the proof.

Corollary 2. Assume that each φi is convex and Gφ-
Lipschitz continuous, and g is convex and Gg-Lipschitz
continuous. Define two constants:

C1 = (‖x?‖22 +G2
φ), and

C2 = (GφR+Gg)
2

(
‖x(0) − x?δ‖22 +

1
2σ

+ δ
1
2τ

+ δ

‖y(0) − y?δ‖22
m

)
.

If we choose δ = ε/C1, and run the SPDC algorithm for T
iterations where

T ≥
(
n

m
+
C1R

ε

√
n

m

)
log

(
4C2

ε2

)
,

then E[P (x(T))− P (x?)] ≤ ε.

Whenm = 1, the corresponding batch complexity is Õ(1+
(ε2n)−1/2). Under the same condition, the batch complex-
ity of full accelerated gradient method and that of stochastic
gradient descent are O(1 + ε−1) and Õ(1 + (ε2n)−1) re-
spectively (Nesterov, 2005; Shamir & Zhang, 2012), both
slower than the SPDC method.

There are two other cases that can be considered: when
φi is not smooth but g is strongly convex, and when φi is
smooth but g is not strongly convex. They can be handled
with the same technique described above, and we omit the

details here. In Table 1, we list the batch complexities of
the SPDC method for finding an ε-optimal solution of prob-
lem (1) under various assumptions.

3.2. SPDC with non-uniform sampling

One potential drawback of the SPDC algorithm is that,
its convergence rate depends on a problem-specific con-
stant R, which is the largest `2-norm of the feature vec-
tors ai. As a consequence, the algorithm may perform
badly on unnormalized data, especially if the `2-norms of
some feature vectors are substantially larger than others. In
this section, we propose an extension of the SPDC method
to mitigate this problem, which is given in Algorithm 2.
For simplicity of presentation, we described in Algorithm 2
with single dual coordinate update, i.e., the case of m = 1.

The basic idea is to use non-uniform sampling in picking
the dual coordinate to update at each iteration. In particu-
lar, instances with large feature norms should be sampled
more frequently. Simultaneously, we adopt an adaptive reg-
ularization in step (12), imposing stronger regularization
on such instances. In addition, we adjust the weight of ak
in (13) for updating the primal variable. As a consequence,
the convergence rate of Algorithm 2 depends on the aver-

φi g batch complexity

(1/γ)-smooth λ-strongly convex 1 +
√

m
λγn

log(1/ε)

(1/γ)-smooth non-strongly convex 1 +
√

m
εγn

non-smooth λ-strongly convex 1 +
√

m
ελn

non-smooth non-strongly convex 1 +
√

m
ε2n

Table 1. Batch complexities of the SPDC method under different
assumptions on the functions φi and g. For the last three cases,
we solve the perturbed saddle-point problem with δ = ε/C1.

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization

age norm of feature vectors.
Theorem 2. Suppose Assumption A holds. Let R̄ =
1
n

∑n
i=1 ‖ai‖2. If the parameters τ, σ, θ in Algorithm 2 are

chosen such that

τ =
1

4R̄

√
γ

nλ
, σ =

1

4R̄

√
nλ

γ
, θ = 1−

(
2n+ 2R̄

√
n

λγ

)−1

,

then for each t ≥ 1, we have(1

2τ
+ λ

)
E
[
‖x(t) − x?‖22

]
+
(7

16σ
+

2γ

n

)
E
[
‖y(t) − y?‖22

]
≤ θ t

((1

2τ
+ λ

)
‖x(0) − x?‖22 +

(1

2σ
+ 2γ

)
‖y(0) − y?‖22

)
.

Comparing the constant θ in Theorem 2 to that of Theo-
rem 1, the constant R̄ here is determined by the average
norm of features, instead of the largest one. It makes the al-
gorithm more robust to unnormalized feature vectors. For
example, if the ai’s are sampled i.i.d. from a multivariate
normal distribution, then maxi{‖ai‖2} almost surely goes
to infinity as n→∞, but the average norm 1

n

∑n
i=1 ‖ai‖2

converges to E[‖ai‖2].

4. Efficient Implementation with Sparse Data
During each iteration of the SPDC method, the updates
of primal variables (i.e., computing x(t+1)) require full d-
dimensional vector operations; see the step (6) of Algo-
rithm 1 and the step (13) of Algorithm 2. So the com-
putational cost per iteration is O(d), and this can be too
expensive if the dimension d is very high. In this section,
we show how to exploit problem structure to avoid high-
dimensional vector operations when the feature vectors ai
are sparse. We illustrate the efficient implementation for
two popular cases: when g is an squared-`2 penalty and
when g is an `1 + `2 penalty. For both cases, we show
that the computation cost per iteration only depends on the
number of non-zero components of the feature vector.

4.1. Squared `2-norm penalty

Suppose that g(x) = λ
2 ‖x‖

2
2. For this case, the updates

for each coordinate of x are independent of each other.
More specifically, x(t+1) can be computed coordinate-wise
in closed form:

x
(t+1)
j =

1

1 + λτ
(x

(t)
j − τu

(t)
j − τ∆uj), (14)

where ∆u denotes 1
m

∑
k∈K(y

(t+1)
k − y

(t)
k)ak in Algo-

rithm 1, or (y
(t+1)
k − y

(t)
k)ak/(pkn) in Algorithm 2, and

∆uj represents the j-th coordinate of ∆u.

Although the dimension d can be very large, we assume
that each feature vector ak is sparse. We denote by J (t)

the set of non-zero coordinates at iteration t, that is, if for
some index k ∈ K picked at iteration t we have akj 6=

0, then j ∈ J (t). If j /∈ J (t), then the SPDC algorithm
(and its variants) updates y(t+1) without using the value
of x(t)j or x(t)j . This can be seen from the updates in (5)
and (12), where the value of the inner product 〈ak, x(t)〉
does not depend on the value of x(t)j . As a consequence,
we can delay the updates on xj and xj whenever j /∈ J (t)

without affecting the updates on y(t), and process all the
missing updates at the next time when j ∈ J (t).

Such a delayed update can be carried out very efficiently.
We assume that t0 is the last time when j ∈ J (t), and t1
is the current iteration where we want to update xj and xj .
Since j /∈ J (t) implies ∆uj = 0, for t = t0 + 1, t0 +
2, . . . , t1 − 1 we have

xt+1
j =

1

1 + λτ
(x

(t)
j − τu

(t)
j). (15)

Notice that u(t)j is updated only at iterations where j ∈
J (t). The value of u(t)j doesn’t change during iterations

[t0 + 1, t1], so we have u(t)j ≡ u
(t0+1)
j for t ∈ [t0 + 1, t1].

Substituting this equation into the formula (15), we obtain

x
(t1)
j =

1

(1 + λτ)t1−t0−1

(
x
(t0+1)
j +

u
(t0+1)
j

λ

)
−
u
(t0+1)
j

λ
.

This update takes O(1) time to compute. Using the same
formula, we can compute x(t1−1)j and subsequently com-

pute x(t1)j = x
(t1)
j + θ(x

(t1)
j − x(t1−1)j). Thus, the compu-

tational complexity of a single iteration in SPDC is propor-
tional to |J (t)|, independent of the dimension d.

4.2. (`1 + `2)-norm penalty

Suppose that g(x) = λ1‖x‖1 + λ2

2 ‖x‖
2
2. Since both the `1-

norm and the squared `2-norm are decomposable, the up-
dates for each coordinate of x(t+1) are independent. More
specifically,

x
(t+1)
j = arg min

α∈R

{
λ1|α|+

λ2α
2

2

+ (u
(t)
j + ∆uj)α+

(α− x(t)j)2

2τ

}
, (16)

where ∆uj follows the definition in Section 4.1. If j /∈
J (t), then ∆uj = 0 and equation (16) can be simplified as

x
(t+1)
j =

1
1+λ2τ

(x
(t)
j − τu

(t)
j − τλ1) if x(t)j − τu

(t)
j > τλ1,

1
1+λ2τ

(x
(t)
j − τu

(t)
j + τλ1) if x(t)j − τu

(t)
j < −τλ1,

0 otherwise.

Similar to the approach of Section 4.1, we delay the update
of xj until j ∈ J (t). We assume t0 to be the last itera-
tion when j ∈ J (t), and let t1 be the current iteration when

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization

λ RCV1 Covtype News20

10−4

5 10 15 20 25
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

5 10 15 20 25
−20

−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

5 10 15 20 25
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

10−6

20 40 60 80 100
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

20 40 60 80 100
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

20 40 60 80 100
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

10−8

100 200 300 400 500 600
−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

100 200 300 400 500 600
−12

−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

100 200 300 400 500 600
−8

−6

−4

−2

0

Number of Passes
Lo

g
Lo

ss

AFG
L−BFGS
SPDC

Figure 1. Comparing SPDC with AFG and L-BFGS on three real datasets. The horizontal axis is the number of passes through the entire
dataset, and the vertical axis is the logarithmic optimality gap log(P (x(t))− P (x?)).

we want to update xj . During iterations [t0 + 1, t1], the
value of u(t)j doesn’t change, so we have u(t)j ≡ u

(t0+1)
j

for t ∈ [t0 + 1, t1]. Using the above equation and the in-
variance of u(t)j for t ∈ [t0 + 1, t1], we have an O(1) time

algorithm to calculate x(t1)j . See Zhang & Xiao (2014, Ap-

pendix C) for the algorithm details. The vector x(t1)j can be
updated by the same algorithm since it is a linear combina-
tion of x(t1)j and x(t1−1)j . As a consequence, the computa-
tional complexity of each iteration in SPDC is proportional
to |J (t)|, independent of the dimension d.

5. Experiments
In this section, we compare the SPDC method (Algorithm 1
with m = 1) with several state-of-the-art optimization al-
gorithms for solving problem (1). They include two batch-
update algorithms: the accelerated full gradient (FAG)
method (Nesterov, 2004), and the limited-memory quasi-
Newton method L-BFGS (e.g., Nocedal & Wright, 2006).
For the AFG method, we adopt an adaptive line search
scheme (Nesterov, 2013) to improve its efficiency. For the

L-BFGS method, we use the memory size 30 as suggested
by Nocedal & Wright (2006). We also compare SPDC with
three stochastic algorithms: the stochastic average gradi-
ent (SAG) method (Roux et al., 2012), the stochastic dual
coordinate descent (SDCA) method (Shalev-Shwartz &
Zhang, 2013a) and the accelerated stochastic dual coordi-
nate descent (ASDCA) method (Shalev-Shwartz & Zhang,
2013b).

The datasets are obtained from LIBSVM data (Fan & Lin,
2011) and summarized in Table 2. The three datasets are
selected to reflect different relations between the sample
size n and the feature dimensionality d, which cover n� d
(Covtype), n ≈ d (RCV1) and n � d (News20). For
all tasks, the data points take the form of (ai, bi), where

Dataset name # samples n # features d
Covtype 581,012 54
RCV1 20,242 47,236

News20 19,996 1,355,191

Table 2. Characteristics of three real datasets.

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization

λ RCV1 Covtype News20

10−4

5 10 15 20 25
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

5 10 15 20 25
−20

−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

5 10 15 20 25
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

10−6

Number of Passes

20 40 60 80 100

L
o
g
 L

o
ss

-10

-5

0

SAG

SDCA

ASDCA

SPDC

Number of Passes

20 40 60 80 100

L
o
g
 L

o
ss

-20

-15

-10

-5

0

SAG

SDCA

ASDCA

SPDC

Number of Passes

20 40 60 80 100

L
o
g
 L

o
ss

-10

-5

0

SAG

SDCA

ASDCA

SPDC

10−8

Number of Passes

200 400 600

L
o

g
 L

o
ss

-8

-6

-4

-2

0

SAG

SDCA

ASDCA

SPDC

Number of Passes

200 400 600

L
o

g
 L

o
ss

-10

-5

0

SAG

SDCA

ASDCA

SPDC

Number of Passes

200 400 600

L
o

g
 L

o
ss

-8

-6

-4

-2

0

SAG

SDCA

ASDCA

SPDC

Figure 2. Comparing SPDC with SAG, SDCA and ASDCA on three real datasets. The horizontal axis is the number of passes through
the entire dataset, and the vertical axis is the logarithmic optimality gap log(P (x(T))− P (x?)).

ai ∈ Rd is the feature vector, and bi ∈ {−1, 1} is the
binary class label. Our goal is to minimize the regularized
empirical risk:

P (x) =
1

n

n∑
i=1

φi(a
T
i x) +

λ

2
‖x‖22.

Here, φi is the smoothed hinge loss (see e.g., Shalev-
Shwartz & Zhang, 2013a):

φi(z) =

0 if biz ≥ 1
1
2 − biz if biz ≤ 0
1
2 (1− biz)2 otherwise.

It is easy to verify that the conjugate function of φi is
φ∗i (β) = biβ + 1

2β
2 for biβ ∈ [−1, 0] and +∞ otherwise.

The performance of the five algorithms are plotted in Fig-
ure 1 and Figure 2. In Figure 1, we compare SPDC with the
two batch methods: AFG and L-BFGS. The results show
that SPDC is substantially faster than AFG and L-BFGS
for relatively large λ, illustrating the advantage of stochas-
tic methods over batch methods on well-conditioned prob-
lems. As λ dropping to 10−8, the batch methods (especially

L-BFGS) become comparable to SPDC.

In Figure 2, we compare SPDC with the three stochastic
methods: SAG, SDCA and ASDCA. The ASDCA specifi-
cation (Shalev-Shwartz & Zhang, 2013b) requires the reg-
ularization coefficient λ satisfies λ ≤ R2

10n where R is the
maximum `2-norm of feature vectors. To satisfy this con-
straint, we run ASDCA with λ ∈ {10−6, 10−8}. Here,
the observations are just the opposite to that of Figure 1.
All stochastic algorithms have comparable performance
on relatively large λ, but the two accelerated algorithms
SPDC and ASDCA becomes substantially faster when λ
gets closer to zero.

Among these the two accelerated algorithms, ASDCA con-
verges faster than SPDC on the Covtype dataset (which has
a very small feature dimension) and slower on the remain-
ing two datasets. In addition, due to the outer-inner loop
structure of the ASDCA algorithm, its objective gap my
increase at the beginning of each outer iteration. This os-
cillation can be undesirable, especially at early iterations.
In contrast, the convergence of SPDC is almost linear and
more stable than ASDCA.

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization

References
Bertsekas, D. P. Incremental proximal methods for large

scale convex optimization. Mathematical Programming,
Ser. B, 129:163–195, 2011.

Blatt, D., Hero, A. O., and Gauchman, H. A convergent
incremental gradient method with a constant step size.
SIAM Journal on Optimization, 18(1):29–51, 2007.

Bottou, L. Large-scale machine learning with stochastic
gradient descent. In Lechevallier, Y. and Saporta, G.
(eds.), Proceedings of the 19th International Conference
on Computational Statistics, pp. 177–187, Paris, France,
August 2010. Springer.

Bousquet, O. and Elisseeff, A. Stability and generaliza-
tion. Journal of Machine Learning Research, 2:499–526,
2002.

Chambolle, A. and Pock, T. A first-order primal-dual al-
gorithm for convex problems with applications to imag-
ing. Journal of Mathematical Imaging and Vision, 40(1):
120–145, 2011.

Duchi, J. and Singer, Y. Efficient online and batch learning
using forward backward splitting. Journal of Machine
Learning Research, 10:2873–2898, 2009.

Fan, R.-E. and Lin, C.-J. LIBSVM data: Clas-
sification, regression and multi-label. URL:
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets,
2011.

Hastie, T., Tibshirani, R., and Friedman, J. The Elements of
Statistical Learning: Data Mining, Inference, and Pre-
diction. Springer, New York, 2nd edition, 2009.

Hiriart-Urruty, J.-B. and Lemaréchal, C. Fundamentals of
Convex Analysis. Springer, 2001.

Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S., and
Sundararajan, S. A dual coordinate descent method for
large-scale linear svm. In Proceedings of the 25th Inter-
national Conference on Machine Learning (ICML), pp.
408–415, 2008.

Langford, J., Li, L., and Zhang, T. Sparse online learn-
ing via truncated gradient. Journal of Machine Learning
Research, 10:777–801, 2009.

Lin, Q., Lu, Z., and Xiao, L. An accelerated proximal
coordinate gradient method and its application to regu-
larized empirical risk minimization. Technical Report
MSR-TR-2014-94, Microsoft Research, 2014.

Nedić, A. and Bertsekas, D. P. Incremental subgradient
methods for nondifferentiable optimization. SIAM Jour-
nal on Optimization, 12(1):109–138, 2001.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A.
Robust stochastic approximation approach to stochastic
programming. SIAM Journal on Optimization, 19(4):
1574–1609, 2009.

Nesterov, Y. Introductory Lectures on Convex Optimiza-
tion: A Basic Course. Kluwer, Boston, 2004.

Nesterov, Y. Smooth minimization of nonsmooth func-
tions. Mathematical Programming, 103:127–152, 2005.

Nesterov, Y. Gradient methods for minimizing composite
functions. Mathematical Programming, Ser. B, 140:125–
161, 2013.

Nocedal, J. and Wright, S. J. Numerical Optimization.
Springer, New York, 2nd edition, 2006.

Polyak, B. T. and Juditsky, A. Acceleration of stochastic
approximation by averaging. SIAM Journal on Control
and Optimization, 30:838–855, 1992.

Roux, N. L., Schmidt, M., and Bach, F. A stochastic gra-
dient method with an exponential convergence rate for
finite training sets. In Advances in Neural Information
Processing Systems 25, pp. 2672–2680. 2012.

Shalev-Shwartz, S. and Zhang, T. Stochastic dual co-
ordinate ascent methods for regularized loss minimiza-
tion. Journal of Machine Learning Research, 14:567–
599, 2013a.

Shalev-Shwartz, S. and Zhang, T. Accelerated proximal
stochastic dual coordinate ascent for regularized loss
minimization. arXiv:1309.2375, 2013b.

Shamir, O. and Zhang, T. Stochastic gradient descent for
non-smooth optimization: Convergence results and opti-
mal averaging schemes. arXiv:1212.1824, 2012.

Tseng, P. An incremental gradient(-projection) method
with momentum term and adaptive stepsiz rule. SIAM
Journal on Optimization, 8(2):506–531, 1998.

Xiao, L. Dual averaging methods for regularized stochastic
learning and online optimization. Journal of Machine
Learning Research, 11:2534–2596, 2010.

Zhang, T. Solving large scale linear prediction problems
using stochastic gradient descent algorithms. In Pro-
ceedings of the 21st International Conference on Ma-
chine Learning (ICML), pp. 116–123, Banff, Alberta,
Canada, 2004.

Zhang, Y. and Xiao, L. Stochastic primal-dual coordi-
nate method for regularized empirical risk minimization.
arXiv preprint arXiv:1409.3257, 2014.

