
DiSCO: Distributed Optimization for Self-Concordant Empirical Loss

Yuchen Zhang YUCZHANG@EECS.BERKELEY.EDU

University of California Berkeley, Berkeley, CA 94720, USA

Lin Xiao LIN.XIAO@MICROSOFT.COM

Microsoft Research, Redmond, WA 98053, USA

Abstract

We propose a new distributed algorithm for em-
pirical risk minimization in machine learning.
The algorithm is based on an inexact damped
Newton method, where the inexact Newton steps
are computed by a distributed preconditioned
conjugate gradient method. We analyze its iter-
ation complexity and communication efficiency
for minimizing self-concordant empirical loss
functions, and discuss the results for distributed
ridge regression, logistic regression and binary
classification with a smoothed hinge loss. In a
standard setting for supervised learning, where
the n data points are i.i.d. sampled and when
the regularization parameter scales as 1/

√
n, we

show that the proposed algorithm is communica-
tion efficient: the required round of communica-
tion does not increase with the sample size n, and
only grows slowly with the number of machines.

1. Introduction
Many optimization problems in machine learning are for-
mulated with a large amount of data as input. With the
amount of data we collect and process growing at a fast
pace, it happens more often that the dataset involved in an
optimization problem cannot fit into the memory or stor-
age of a single computer (machine). To solve such “big
data” optimization problems, we need to use distributed al-
gorithms that rely on inter-machine communication.

In this paper, we focus on distributed algorithms for reg-
ularized empirical risk minimization (ERM). Suppose that
our distributed computing system consists of m machines,
and each machine has access to n samples zi,1, . . . , zi,n,
for i = 1, . . . ,m. Then each machine can evaluate a local

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

empirical loss function

fi(w)
def
=

1

n

n∑
j=1

φ(w, zi,j) +
λ

2
‖w‖22, (1)

where zi,j are random vectors whose probability distribu-
tion is supported on a set Z ⊂ Rp, and the cost function
φ : Rd × Z → R is convex in w for every z ∈ Z . Here
the quadratic term λ

2 ‖w‖
2
2 is a regularizer, which helps to

prevent overfitting. Our goal is to minimize the overall em-
pirical loss defined with all mn samples:

f(w)
def
=

1

m

m∑
i=1

fi(w). (2)

Since the functions fi(w) can be accessed only locally, we
consider distributed algorithms that alternate between a lo-
cal computation procedure at each machine, and a round of
inter-machine communication. Compared with local com-
putation at each machine, the cost of inter-machine com-
munication is much higher in terms of both speed/delay
and energy consumption (e.g., Bekkerman et al., 2011;
Shalf et al., 2011), thus it is often considered as the bot-
tleneck for distributed computing. Our goal is to develop
communication-efficient distributed algorithms, which try
to use a minimal number of communication rounds to reach
certain precision in minimizing f(w).

1.1. Communication Efficiency of Distributed
Algorithms

We assume that each communication round requires only
simple map-reduce type of operations, such as broadcasting
a vector in Rd to the m machines and computing the sum
or average of m vectors in Rd (Dean & Ghemawat, 2008).
Typically, if a distributed iterative algorithm takes T itera-
tions to converge, then it communicates at least T rounds.
Therefore, we can measure the communication efficiency
of a distributed algorithm by its iteration complexity T (ε),
which is the number of iterations required by the algorithm
to find a solution wT such that f(wT )− f(w?) ≤ ε, where
w? = arg min f(w) is the optimal solution.



DiSCO: Distributed Optimization for Self-Concordant Empirical Loss

For a concrete discussion, we make the following assump-
tion:

Assumption A. The function f : Rd → R is twice contin-
uously differentiable, and there exist constants L ≥ λ > 0
such that

λI � f ′′(w) � LI, ∀w ∈ Rd,

where f ′′(w) denotes the Hessian of f at w, and I is the
d× d identity matrix.

Functions that satisfy Assumption A are often called L-
smooth and λ-strongly convex. The value κ = L/λ ≥ 1 is
called the condition number of f , which is a key quantity
in characterizing the complexity of iterative algorithms. We
focus on ill-conditioned cases where κ� 1.

A straightforward approach for minimizing f(w) is dis-
tributed implementation of the gradient descent method.
More specifically, at each iteration k, each machine com-
putes the local gradient f ′i(wk) ∈ Rd and sends it to a
master node to compute f ′(wk) = (1/m)

∑m
i=1 f

′
i(wk).

The master node takes a gradient step to compute wk+1,
and broadcasts it to each machine for the next iteration.
The iteration complexity of the classical gradient method is
O(κ log(1/ε)), which is linear in the condition number κ.
If we use accelerated gradient methods (Nesterov, 2004,
Section 2.2), then the iteration complexity can be improved
to O(

√
κ log(1/ε)).

Another popular technique for distributed optimization
is to use the alternating direction method of multipliers
(ADMM); see, e.g., Boyd et al. (2010). Under Assump-
tion A, the ADMM approach can achieve linear conver-
gence, and the best known complexity is O(

√
κ log(1/ε))

(Deng & Yin, 2012). This turns out to be the same order as
for accelerated gradient methods.

The polynomial dependence of the iteration complexity
on κ is unsatifactory. For machine learning applications,
both the precision ε and the regularization parameter λ
should decrease while the overall sample size mn in-
creases, typically on the order of Θ(1/

√
mn) (Bousquet &

Elisseeff, 2002; Shalev-Shwartz et al., 2009). This trans-
lates into the condition number κ being Θ(

√
mn). Con-

sequently, the number of communication rounds scales
as (mn)1/4 for both accelerated gradient methods and
ADMM. This suggests that the number of communication
rounds grows with the total sample size.

Despite the rich literature on distributed optimization (e.g.
Bertsekas & Tsitsiklis, 1989; Boyd et al., 2010; Agarwal &
Duchi, 2011; Recht et al., 2011; Duchi et al., 2012; Dekel
et al., 2012; Jaggi et al., 2014), most algorithms involve
high communication cost. In particular, their iteration com-
plexity have similar or worse dependency on the condition
number as the methods discussed above. This suggests

researchers to look into further structures of the problem.
Zhang et al. (2012) make use of the fact that the data zi,j are
i.i.d. sampled. Under this assumption, they studied a one-
shot averaging scheme that approximates the minimizer of
function f by simply averaging the minimizers of fi. For a
fixed condition number, the one-shot approach achieves the
optimal statistical accuracy. But their conclusion doesn’t
allow the regularization parameter λ to decrease to zero
as n goes to infinity.

Recently, Shamir et al. (2014) proposed a distributed ap-
proximate Newton-type (DANE) method, which also uses
the stochastic assumption. For quadratic loss functions, if
λ ∼ 1/

√
mn as in machine learning applications, DANE is

shown to converge in Õ(m log(1/ε)) iterations, where the
notation Õ(·) hides additional logarithmic factors involv-
ing m and d. This iteration complexity scales independent
of the local sample size n. However, DANE does not guar-
antee the same convergence rate on non-quadratic problem,
e.g. logistic regression and suppert vector machines.

1.2. Outline of Our Approach

In this paper, we propose a communication-efficient
method for minimizing the overall empirical loss f(w)
defined in (2). It contains an outer-loop and an inner
loop. The outer-loop employs an inexact damped Newton
method to minimize f(w). It is well-known that Newton-
type methods have asymptotic superlinear convergence.
However, in classical analysis of Newton’s method (e.g.,
Boyd & Vandenberghe, 2004, Section 9.5.3), the number
of steps needed to reach the superlinear convergence zone
still depends on the condition number (scales quadratically
in κ). To solve this problem, we resort to the machinery of
self-concordant functions (Nesterov & Nemirovski, 1994;
Nesterov, 2004). For self-concordant empirical losses, we
show that the iteration complexity of the inexact damped
Newton method has a much weaker dependence on the con-
dition number.

In order to compute the Newton step, a straightforward yet
naive approach would require all the machines to send their
gradients f ′i(wk) and Hessians f ′′i (wk) to a master node
to form the global gradient and global Hessian, and then
a damped Newton step is taken to compute the next iter-
ate wk+1. However, in the distributed setting, the task of
transmitting the Hessians (which are d × d matrices) can
be prohibitive for large dimensions d. Instead, we propose
to use iterative algorithms which requires an inner-loop.
In particular, we use a preconditioned conjugate gradient
(PCG) method to compute an inexact Newton step. The
PCG method only communicates first-order information of
size O(d). We show that by carefully choosing the precon-
ditioning matrix, the inner-loop’s iteration complexity will
also have weak dependence on the condition number.



DiSCO: Distributed Optimization for Self-Concordant Empirical Loss

Table 1. Communication efficiency of several distributed algorithms for ERM of linear predictors when λ ∼ 1/
√
mn.

Number of Communication Rounds Õ(·)
Algorithm Ridge Regression Binary Classification

(quadratic loss) (logistic loss, smoothed hinge loss)
Accelerated Gradient (mn)1/4 log(1/ε) (mn)1/4 log(1/ε)

ADMM (mn)1/4 log(1/ε) (mn)1/4 log(1/ε)

DANE (Shamir et al., 2014) m log(1/ε) (mn)1/2 log(1/ε)

DiSCO (this paper) m1/4 log(1/ε) m3/4d1/4 +m1/4d1/4 log(1/ε)

We call our approach with inner-outer loops Distributed
Self-Concordant Optimization (DiSCO). Table 1 lists the
number of communication rounds required by DiSCO and
several other algorithms to find an ε-optimal solution for
linear regression and binary classifiaciton problems. These
results are obtained when the regularization parameter λ is
set to be on the order of 1/

√
mn. All results are determin-

istic or high probability upper bounds, except that the last
one, DiSCO for binary classification, is a bound in expecta-
tion (with respect to the randomness in generating the i.i.d.
samples).

As shown in Table 1, the communication cost of DiSCO
weakly depends on the number of machines m and on the
feature dimension d, and is independent of the local sam-
ple size n (excluding logarithmic factors). Comparing to
DANE (Shamir et al., 2014), DiSCO not only improves the
communication efficiency on quadratic loss, but also han-
dles non-quadratic classification tasks.

2. Self-concordant Empirical Loss
The theory of self-concordant functions were developed by
Nesterov & Nemirovski (1994) for the analysis of interior-
point methods. Roughly speaking, a function is called self-
concordant if its third derivative can be controlled, in a spe-
cific way, by its second derivative. Suppose the function
f : Rd → R has continuous third derivatives. We use
f ′′(w) ∈ Rd×d to denote its Hessian at w ∈ Rd, and use
f ′′′(w)[u] ∈ Rd×d to denote the limit

f ′′′(w)[u]
def
= lim

t→0

1

t

(
f ′′(w + tu)− f ′′(w)

)
.

Definition 1. A convex function f : Rd → R is self-
concordant with parameter Mf if the inequality∣∣uT (f ′′′(w)[u])u

∣∣ ≤Mf

(
uT f ′′(w)u

)3/2
holds for any w ∈ dom(f) and u ∈ Rd. In particular, a
self-concordant function with parameter 2 is called stan-
dard self-concordant.

Detailed account of self-concordance can be found in the

books by Nesterov & Nemirovski (1994) and Nesterov
(2004). In this section, we show that several popular reg-
ularized empirical loss functions for linear regression and
binary classification are self-concordant.

First we consider regularized linear regression (ridge re-
gression) with

f(w) =
1

N

N∑
i=1

(yi − wTxi)2 +
λ

2
‖w‖22, (3)

In the setting of distributed optimization, we haveN = mn
where m is the number of machines and n is the number of
samples on each machine. In terms of the definition in (1)
and (2), we have zi = (xi, yi) where xi ∈ Rd and yi ∈ R.
Since f(w) is a quadratic function, its third derivatives are
all zero. Therefore, it is self-concordant with parameter 0,
and by definition it is also standard self-concordant.

For binary classification, we consider the following regu-
larized empirical loss function

`(w)
def
=

1

N

N∑
i=1

ϕ(yiw
Txi) +

γ

2
‖w‖22, (4)

where xi ∈ X ⊂ Rd, yi ∈ {−1, 1}, and ϕ : R → R is
a convex surrogate function for the binary 0/1 loss. We
further assume that the elements of X are bounded, that is,
we have supx∈X ‖x‖2 ≤ B for some finite B.

Logistic regression For logistic regression, we minimize
the objective function (4) where ϕ is the logistic loss:
ϕ(t) = log(1 + e−t). The following lemma shows that
the regularized loss is self-concordant. See Zhang & Xiao
(2015) for the proof.

Lemma 1. For logistic regression, the empirical loss `(w)
is self-concordant with parameter B/

√
γ, and the scaled

loss f(w) = (B2/(4γ))`(w) is standard self-concordant.

Smoothed hinge loss In classification tasks, it is some-
times more favorable to use the hinge loss ϕ(t) =
max{0, 1 − t} than using the logistic loss. We consider
a family of smoothed hinge loss functions ϕp parametrized



DiSCO: Distributed Optimization for Self-Concordant Empirical Loss

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Argument Value

F
un

ct
io

n 
V

al
ue

 

 

p=3
p=5
p=10
p=20

Figure 1. Smoothed hinge loss ϕp with p = 3, 5, 10, 20.

by a positive number p ≥ 3. The function is defined by

ϕp(t) =

3
2
− p−2

p−1
− t for t ∈ (−∞,− p−3

p−1
],

3
2
− p−2

p−1
− t+ (t+(p−3)/(p−1))p

p(p−1)
for t ∈ (− p−3

p−1
, 1− p−3

p−1
],

p+1
p(p−1)

− t
p−1

+ 1
2
(1− t)2 for t ∈ (1− p−3

p−1
, 1],

(2−t)p

p(p−1)
for t ∈ (1, 2],

0 for t ∈ (2,+∞).
(5)

We plot the functions ϕp for p = 3, 5, 10, 20 on Figure 1.
As the plot shows, ϕp(t) is zero for t > 2, and it is a linear
function with unit slope for t < −p−3p−1 . These two linear
zones are connected by three smooth non-linear segments
on the interval [−p−3p−1 , 2].

The following lemma shows that the regularized loss is
self-concordant. See Zhang & Xiao (2015) for the proof.

Lemma 2. For the smoothed hinge loss defined in (5), the
empirical loss `(w) is self-concordant with parameter

Mp =
(p− 2)B1+ 2

p−2

γ
1
2+

1
p−2

, (6)

and the scaled loss function f(w) = (M2
p/4)`(w) is stan-

dard self-concordant.

3. Inexact Damped Newton Method
In this section, we propose and analyze an inexact damped
Newton method for minimizing self-concordant functions.
Without loss of generality, we assume the objective func-
tion f : Rd → R is standard self-concordant. In addition,
we assume that Assumption A holds. Our method is de-
scribed in Algorithm 1. If we let εk = 0 for all k ≥ 0,
then Algorithm 1 reduces to the exact damped Newton
method (e.g., Nesterov, 2004, Section 4.1.5). The explicit
account of approximation errors is essential for distributed
optimization, because with limited communication budget,
we can only perform Newton updates approximately.

The following theorem upper bounds the iteration com-

Algorithm 1 Inexact damped Newton method

input: initial point w0 and specification of a nonnegative
sequence {εk}.
repeat for k = 0, 1, 2, . . . :

1. Find vk ∈ Rd such that ‖f ′′(wk)vk − f ′(wk)‖2 ≤ εk.

2. Compute δk =
√
vTk f

′′(wk)vk and update

wk+1 = wk − 1
1+δk

vk.
until a stopping criterion is satisfied.

plexity of Algorithm 1 for obtaining an arbitrary accu-
racy. The theorem is proved in the long version of this
paper (Zhang & Xiao, 2015).

Theorem 1. Suppose f : Rd → R is a standard self-
concordant function and Assumption A holds. If we choose
the sequence {εk} in Algorithm 1 as

εk = β(λ/L)1/2‖f ′(wk)‖2 with β = 1/20, (7)

then for any ε > 0, we have f(wk)− f(w?) ≤ ε whenever
k ≥ K where w? = arg min f(w) and

K =

⌈
f(w0)− f(w?)

1
2ω(1/6)

⌉
+

⌈
log2

(2ω(1/6)

ε

)⌉
. (8)

Here, ω(t) = t − log(1 + t) (which appears often in the
literature on interior-point methods) and dte denotes the
smallest nonnegative integer that is larger or equal to t.

Theorem 1 shows that after a constant number of steps (pro-
portional to the initial gap f(w0) − f(w?)), Algorithm 1
has a linear rate of convergence characterized by the term
log(1/ε). This is slower than the quadratic convergence
rate of the exact damped Newton method, due to the al-
lowed approximation errors in computing the Newton step.
Actually, if we set the tolerances εk to be sufficiently small,
then superlinear convergence can be established, i.e., the
second term in (8) can be replaced by log(log(1/ε)) (Zhang
& Xiao, 2015). The choice in equation (7) is a reasonable
trade-off in practice. We note that the self-concordance
property is essential in the proof of Theorem 1. The inexact
damped Newton method won’t have convergence rate (8)
unless the objective function is self-concordance.

Theorem 1 states that the iteration complexity of the
damped Newton method is proportional to

f(w0)− f(w?) + log(1/ε).

In many applications, the function f(w) is obtained via
scaling to be standard self-concordant (see examples of lo-
gistic regression and smoothed hinge loss in Section 2).
When the scaling factor is large, we need to choose the
initial point w0 judiciously to guarantee that the initial gap
f(w0)− f(w?) is small.



DiSCO: Distributed Optimization for Self-Concordant Empirical Loss

Algorithm 2 Distributed PCG algorithm
input: wk ∈ Rd and µ ≥ 0.
Let H = f ′′(wk) and P = f ′′1 (wk) + µI .

communication: The master machine broadcasts wk to
other machines to compute f ′i(wk), for i = 1, . . . ,m; then
it aggregates f ′i(wk) to form f ′(wk).

initialization: Compute εk given in (7) and set
v(0) = 0, s(0) = P−1r(0),
r(0) = f ′(wk), u(0) = s(0).

repeat for t = 0, 1, 2 . . . ,

1. communication: The master machine broadcasts u(t)

to other machines to compute f ′′i (wk)u(t); then aggre-
gates them to form the vector Hu(t).

2. Compute αt = 〈r(t),s(t)〉
〈u(t),Hu(t)〉 and update:

v(t+1) = v(t) +αtu
(t), Hv(t+1) = Hv(t) +αtHu

(t)

and r(t+1) = r(t) − αtHu(t).

3. Compute βt = 〈r(t+1),s(t+1)〉
〈r(t),s(t)〉 and update:

s(t+1) = P−1r(t+1),

u(t+1) = s(t+1) + βtu
(t).

until ‖r(t+1)‖2 ≤ εk
return: vk = v(t+1), rk = r(t+1), and

δk =
√
vTkHv

(t) + α(t)vTkHu
(t).

4. The DiSCO Algorithm
In this section, we adapt the inexact damped Newton
method (Algorithm 1) to a distributed system, in order to
minimize f(w) = 1

m

∑m
i=1 fi(w), where each function fi

can only be evaluated locally at machine i (see background
in Section 1). This involves two questions: (1) how to set
the initial point w0 and (2) how to compute the inexact
Newton step vk in a distributed manner.

4.1. Initialization

In accordance with the averaging structure in the objective
function, we choose the initial point based on averaging:

w0 =
1

m

m∑
i=1

ŵi, (9)

where each ŵi is computed locally at machine i as

ŵi = arg min
w∈Rd

{
fi(w) +

ρ

2
‖w‖22

}
. (10)

Here ρ ≥ 0 is a regularization parameter, which we will
discuss in Section 5. Roughly speaking, we can choose ρ ∼
1/
√
n to make E[f(w0)−f(w?)] decreasing asO(1/

√
n).

4.2. Distributed Computing of the Inexact Newton Step

In each iteration of Algorithm 1, we need to compute an in-
exact Newton step vk such that ‖f ′′(wk)vk − f ′(wk)‖2 ≤
εk. This boils down to solving the Newton system
f ′′(wk)vk = f ′(wk) approximately. We propose to
use a distributed preconditioned conjugate gradient (PCG)
method to solve the Newton system.

To simplify notation, we useH to represent f ′′(wk) andHi

to represent f ′′i (wk). We define a preconditioning matrix
using the local Hessian at the first machine (the master):

P
def
= H1 + µI,

where µ > 0 is a small regularization parameter. Algo-
rithm 2 describes our distributed PCG method for solving
the preconditioned linear system

P−1Hvk = P−1f ′(wk).

In Algorithm 2, the master machine carries out the the clas-
sical PCG algorithm (e.g., Golub & Van Loan, 1996, Sec-
tion 10.3), and other machines compute the local gradi-
ents and Hessians and perform matrix-vector multiplica-
tions. Communication between the master and other ma-
chines are used to form the overall gradient f ′(wk) and the
matrix-vector products Hu(t) = 1

m

∑m
i=1 f

′′
i (wk)u(t). We

note that the overall Hessian H = f ′′(wk) is never formed
and the master only stores and updates the vector Hu(t).

When H1 is sufficiently close to H and µ is chosen to be
sufficiently small, then the condition number of P−1H will
be close to 1. This makes the PCG method converging
much faster than the standard conjugate gradient method.
See Zhang & Xiao (2015) for the proof of the following
lemma.

Lemma 3. Suppose Assumption A holds and assume that
‖H1 −H‖2 ≤ µ. Let β be the constant in (7) and define

Tµ =

⌈√
1 +

2µ

λ
log

(
2L

βλ

)⌉
. (11)

Then Algorithm 2 terminates in Tµ iterations and the output
vk satisfies ‖Hvk−f ′(wk)‖2 ≤ εk.

Under Assumption A, we always have ‖H1 −H‖2 ≤ L. If
we let µ = L, then Lemma 3 implies that Algorithm 2 ter-
minates in Õ(

√
L/λ) iterations. In practice, however, the

matrix norm ‖H1 −H‖2 is usually much smaller than L
due to the stochastic nature of fi. Thus, we can choose µ
to be a tight upper bound on ‖H1 −H‖2, and expect the
algorithm to terminate in Õ(

√
1 + µ/λ) iterations.

A similar approach was proposed by Zhuang et al. (2014)
and Lin et al. (2014) for ERM of linear predictors, where
they use a distributed truncated Newton method and conju-
gate gradient (CG) method for solving the Newton system.
However, they did not employ preconditioning in the CG



DiSCO: Distributed Optimization for Self-Concordant Empirical Loss

Algorithm 3 DiSCO
input: parameters ρ, µ ≥ 0 and number of iterations K.
initialize: compute w0 according to (9) and (10).
repeat for k = 0, 1, 2, . . . ,K:

1. Run Algorithm 2: given wk, compute vk and δk.

2. Update wk+1 = wk − 1
1+δk

vk.

output: ŵ = wK+1.

method; consequently, the total number of the CG itera-
tions may still be high for ill-conditioned problems.

4.3. DiSCO and its communication efficiency

Putting all pieces together, we summarize the DiSCO
method in Algorithm 3. DiSCO combines the inexact
damped Newton method (Algorithm 1) and the distributed
PCG method (Algorithm 2). For each execution of the PCG
method, if Algorithm 2 runs for T iterations, then there will
be T + 1 rounds of communication.

The following theorem provides an upper bound on the
number of communication rounds required by the DiSCO
algorithm to find an ε-optimal solution. It combines the
theoretical results given in Theorem 1 and Lemma 3.

Theorem 2. Assume that f(w) = (1/m)
∑m
i=1 fi(w) is

standard self-concordant and it satisfies Assumptions A.
Suppose the input parameter µ is chosen such that
‖f ′′1 (wk)− f ′′(wk)‖2 ≤ µ for all k ≥ 0. Then for any
ε > 0, the total number of communication rounds T re-
quired by DiSCO to reach f(ŵ) − f(w?) ≤ ε is bounded
by

T = Õ
((
f(w0)− f(w?) + log(1/ε)

)√
1 + µ/λ

)
.

where Õ(·) hides logarithmic terms involving L and λ.

We wrap up this section by studying the computation com-
plexity of DiSCO. For the initialization step, each machine
needs to compute (10). For Algorithm 2, the bulk of com-
putation is at computing the vector s(t) = P−1r(t) in
Step 3, which is equivalent to minimize the quadratic func-
tion (1/2)sTPs − sT r(t). Both are convex optimization
problems whose objective functions are the average of a
finite number of local component functions. They can be
solved to high accuracy by the stochastic average gradient
(SAG) method (Le Roux et al., 2012) or SAGA (Defazio
et al., 2014) in Õ(dn) computation time. This is roughly
the same time complexity for loading the dataset.

5. Stochastic Analysis
From Theorem 2 we see that the communication efficiency
of DiSCO mainly depends on two quantities: the initial

objective gap f(w0) − f(w?) and the upper bound µ on
the spectral norms ‖f ′′1 (wk) − f ′′(wk)‖2. The initial gap
f(w0)− f(w?) may grow with the number of samples due
to the scaling used to make the objective function standard
self-concordant. On the other hand, the upper bound µmay
decrease as the number of samples increases based on the
intuition that the local Hessians and the global Hessian be-
come similar to each other.

In this section, we show how the choice ofw0 in Section 4.1
can mitigate the effect of objective scaling by reducing the
initial gap, and also quantify the similarity between local
and global Hessians. Both relies on the assumption that
the random vectors zi,j in the definition of the empirical
loss in (1) are i.i.d. samples from a common distribution.
Throughout this section, we take expectation with respect
to the randomness in generating the i.i.d. data. All theoret-
ical results of this section are proved in the long version of
this paper (Zhang & Xiao, 2015).

To formalize the argument, we need additional assumptions
on the smoothness of the loss function φ in equation (1).

Assumption B. There are finite constants (V0, G, L,M),
such that for any z ∈ Z:

(i) φ(w, z) ≥ 0 for all w ∈ Rd, and φ(0, z) ≤ V0;

(ii) ‖φ′(w, z)‖2 ≤ G for any ‖w‖2 ≤
√

2V0/λ;

(iii) ‖φ′′(w, z)‖2 ≤ L− λ for any w ∈ Rd;

(iv) ‖φ′′(u, z)− φ′′(w, z)‖2≤M‖u− w‖2, ∀u,w∈ Rd.

For the regularized empirical loss defined in (1) and (2),
condition (iii) in the above assumption implies λI �
f ′′i (w) � LI for i = 1, . . . ,m, which in turn implies
Assumption A. These assumptions are satisfied by popular
loss functions, including linear regression, logistic regres-
sion and the smoothed hinge loss defined in Section 2.

The following lemma shows that the expected value of the
initial gap f(w0) − f(w?) decreases with order 1/

√
n as

the local sample size n increases.

Lemma 4. Suppose that Assumption B holds and
E[‖w?‖22] ≤ D2 for some constant D > 0. If we choose
ρ =

√
6G√
nD

in equation (10) to compute ŵi, then the initial
point w0 = 1

m

∑m
i=1 ŵi satisfies

E[f(w0)− f(w?)] ≤
√

6GD√
n

.

The next lemma quantifies the similarity between the local
and global Hessians.

Lemma 5. Suppose Assumption B holds and the sequence
{wk}k≥0 is generated by Algorithm 1. Let

r =
(2V0
λ

+
2G

λ

√
2V0
λ

)1/2
.



DiSCO: Distributed Optimization for Self-Concordant Empirical Loss

Then with probability at least 1− δ, we have for all k ≥ 0,

‖f ′′1 (wk)− f ′′(wk)‖2

≤
√

32L2d

n
·

√
log
(

1 +
rM
√

2n

L

)
+

log(md/δ)

d
.

Here the high probability bound is also with respect to the
randomness in generating the i.i.d. data.

If φ(w, zi,j) are quadratic functions in w, then we have
M = 0 in Assumption B. In this case, Lemma 5 implies

‖f ′′i (wk)− f ′′(wk)‖2 ≤ Õ(
√
L2/n).

For general non-quadratic loss, Lemma 5 implies

‖f ′′i (wk)− f ′′(wk)‖2 ≤ Õ(
√
L2d/n).

Combining Lemma 4 and Lemma 5 with Theorem 2, we
obtain the following main result.
Theorem 3. Assume that Assumptions B holds and the
function f(w) defined by (1) and (2) is standard self-
concordant. Let ρ be chosen as in Lemma 4, and let µ be
the upper bound in Lemma 5. Let κ = L/λ be the condition
number of the problem. Then for any ε > 0, the expected
number of communication rounds T required by DiSCO to
reach f(ŵ)− f(w?) ≤ ε is bounded as

E[T ] = Õ
((GD√

n
+ log(1/ε)

)(
1 +

κ2

n

)1/4)
for the quadratic loss, and

E[T ] = Õ
((GD√

n
+ log(1/ε)

)(
1 +

κ2d

n

)1/4)
for other convex loss functions.

To apply the above results to specific loss functions, we as-
sume the standard setting for supervised learning where the
regularization parameter is on the order of 1/

√
mn, thus

the condition number κ = Θ(
√
mn).

Linear Regression For linear regression, the loss func-
tion f(w) takes the form (3). Since f is a quadratic func-
tion, it is standard self-concordant without scaling. This
means that G and D are bounded constants, and we have
GD/

√
n = o(1). Then Theorem 3 implies

E[T ] = Õ(m1/4 log(1/ε)).

In fact, since we do not need to rescale the objective func-
tion, we can regard the initial gap f(w0)− f(w?) as a con-
stant. As a consequence, we can directly apply Theorem 2
and Lemma 5 to show that T = Õ(m1/4 log(1/ε)) holds
with high probability.

Logistic Regression For logistic regression, consider the
loss function `(w) defined in (4) with γ = Θ(1/

√
mn). By

Lemma 1, the scaled function f(w) = B2

4γ `(w) is standard

Table 2. Summary of three binary classification datasets.

Dataset # samples N # features d
Covtype 581,012 54
RCV1 20,242 47,236

News20 19,996 1,355,191

self-concordant. As a result, the constants (V0, G, L,M) in
Assumption B also need to be scaled by B2

4γ = Θ(
√
mn).

So we have GD/
√
n = Θ(

√
m). Then Theorem 3 implies

E[T ] = Õ
(
m3/4d1/4 +m1/4d1/4 log(1/ε)

)
. (12)

Smoothed Hinge Loss We consider the function `(w)
defined in (3) with the smoothed hinge loss ϕp defined

in (5). By Lemma 2, the function f(w) =
M2

p

4 `(w) is
standard self-concordant, where Mp is defined in (6). By
choosing p = 2+log(1/γ), we obtainM2

p/4 = Õ(1/γ) =

Õ(
√
mn). This scaling factor is on the same order as for

logistic regression. Thus, the smoothed hinge loss enjoys
the same communication efficiency in (12).

6. Numerical Experiments
In this section, we conduct numerical experiments to
compare the DiSCO algorithm with several state-of-the-
art distributed optimization algorithms: the ADMM al-
gorithm (Boyd et al., 2010), the accelerated full gradi-
ent method (AFG) (Nesterov, 2004), the L-BFGS quasi-
Newton method (Nocedal & Wright, 2006, Section 7.2),
and the DANE algorithm (Shamir et al., 2014).

For comparison, we solve three binary classification tasks
using logistic regression. The datasets are obtained from
the LIBSVM datasets (Chang & Lin, 2011) and summa-
rized in Table 2. These datasets are selected to cover dif-
ferent relations between the sample size N = mn and the
feature dimensionality d. For each dataset, our goal is to
minimize the regularized logistic loss (4). The regulariza-
tion parameter is set to be γ = 10−5.

We describe some implementation details. Altough the the-
oretical analysis suggests that we scale the function `(w)
by a factor η = B2/(4γ). In practice, we find that DiSCO
converges faster without rescaling. Thus, we use η = 1
for all experiments. For Algorithm 3, we choose the in-
put parameters µ = m1/2µ0, where µ0 is manually chosen
to be µ0 = 0 for Covtype, µ0 = 4 × 10−4 for RCV1,
and µ0 = 2 × 10−4 for News20. To monitor the progress
of DiSCO, after every iteration of the inner loop (Algo-
rithm 2), we take v(t) to compute an intermediate solution

ŵtk = wk −
v(t)

1 +
√

(v(t))T `′′(wk)v(t)
,



DiSCO: Distributed Optimization for Self-Concordant Empirical Loss

m Covtype RCV1 News20

4

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

16

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

64

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication
Lo

g 
Lo

ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

Figure 2. Comparing DiSCO with other distributed optimization algorithms. We splits each dataset evenly to m machines, with m ∈
{4, 16, 64}. Each plot above shows the reduction of the logarithmic gap log10(`(ŵ) − `(w?)) (the vertical axis) versus the number of
communication rounds (the horizontal axis) taken by each algorithm.

and evaluate the associated objective function `(ŵtk).

For fair comparison, we manually tune the penalty pa-
rameter of ADMM and the regularization parameter µ for
DANE to optimize their performance. For AFG, we used
an adaptive line search scheme (Nesterov, 2013) to speed
up its convergence. For L-BFGS, we adopted the memory
size 30, as suggested in Nocedal & Wright (2006).

It is important to note that different algorithms take dif-
ferent number of communication rounds per iteration.
ADMM requires one round of communication per itera-
tion. For AFG and L-BFGS, each iteration consists of at
least two rounds of communications: one for finding the
descent direction, and another one or more for searching
the stepsize. For DANE, there are also two rounds of com-
munications per iteration, for computing the gradient and
for aggregating the local solutions. For DiSCO, each iter-
ation in the inner loop takes one round of communication,
and there is an additional round of communication at the
beginning of each inner loop. Since we are interested in
the communication efficiency of the algorithms, we plot in
Figure 2 their progress in reducing the objective value ver-

sus the number of communication rounds taken.

According to the plots in Figure 2, DiSCO converges sub-
stantially faster than ADMM and AFG. It is also notably
faster than L-BFGS and DANE. In particular, the conver-
gence speed (and the communication efficiency) of DiSCO
is more robust to the number of machines in the distributed
system. For m = 4, the performance of DiSCO is some-
what comparable to that of DANE. As m grows to 16
and 64, the convergence of DANE becomes significantly
slower, while the performance of DiSCO only degrades
slightly. This coincides with the theoretical analysis: the
iteration complexity of DANE is proportional to m, but the
iteration complexity of DiSCO is proportional to m1/4.

Thus, our experiments on real datasets confirmed the su-
perior communication efficiency of the DiSCO algorithm.
We note that when comparing to ADMM, AFG, L-BFGS
and DANE (in the case of large m), the DiSCO algorithm
is not only communication efficient but also faster in the
sense of computation, because DiSCO requires much fewer
iterations to converge to a high-accuracy solution.



DiSCO: Distributed Optimization for Self-Concordant Empirical Loss

References
Agarwal, A. and Duchi, J. C. Distributed delayed stochastic

optimization. In Advances in NIPS, pp. 873–881, 2011.

Bekkerman, R., Bilenko, M., and Langford, J. Scaling
up Machine Learning: Parallel and Distributed Ap-
proaches. Cambridge University Press, 2011.

Bertsekas, D. P. and Tsitsiklis, J. N. Parallel and Dis-
tributed Computation: Numerical Methods. Prentice-
Hall, 1989.

Bousquet, O. and Elisseeff, A. Stability and generaliza-
tion. Journal of Machine Learning Research, 2:499–526,
2002.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2010.

Chang, C.-C. and Lin, C.-J. Libsvm: a library for support
vector machines. ACM Transactions on Intelligent Sys-
tems and Technology (TIST), 2(3):27, 2011.

Dean, J. and Ghemawat, S. MapReduce: Simplfied data
processing on large clusters. Communications of the
ACM, 51(1):107–113, 2008.

Defazio, A., Bach, F., and Lacoste-Julien, S. SAGA: A
fast incremental gradient method with support for non-
strongly convex composite objectives. In Advances in
NIPS 27, pp. 1646–1654. 2014.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao,
L. Optimal distributed online prediction using mini-
batches. The Journal of Machine Learning Research, 13
(1):165–202, 2012.

Deng, W. and Yin, W. On the global and linear convergence
of the generalized alternating direction method of multi-
pliers. CAAM Technical Report 12-14, Rice University,
2012.

Duchi, J. C., Agarwal, A., and Wainwright, M. J. Dual av-
eraging for distributed optimization: convergence anal-
ysis and network scaling. IEEE Transactions on Auto-
matic Control, 57(3):592–606, 2012.

Golub, G. H. and Van Loan, C. F. Matrix Computations.
The John Hopkins University Press, Baltimore, MD,
third edition, 1996.

Jaggi, M., Smith, V., Takac, M., Terhorst, J., Krishnan, S.,
Hofmann, T., and Jordan, M. I. Communication-efficient
distributed dual coordinate ascent. In Advances in NIPS
27, pp. 3068–3076. 2014.

Le Roux, N., Schmidt, M., and Bach, F. A stochastic gra-
dient method with an exponential convergence rate for
finite training sets. In Advances in NIPS 25, pp. 2672–
2680. 2012.

Lin, C.-Y., Tsai, C.-H., Lee, C.-P., and Lin, C.-J. Large-
scale logistic regression and linear support vector ma-
chines using Spark. In Proceedings of the IEEE Confer-
ence on Big Data, Washington DC, USA, 2014.

Nesterov, Y. Introductory Lectures on Convex Optimiza-
tion: A Basic Course. Kluwer, Boston, 2004.

Nesterov, Y. Gradient methods for minimizing composite
functions. Mathematical Programming, Ser. B, 140:125–
161, 2013.

Nesterov, Y. and Nemirovski, A. Interior Point Polynomial
Time Methods in Convex Programming. SIAM, Philadel-
phia, 1994.

Nocedal, J. and Wright, S. J. Numerical Optimization.
Springer, New York, 2nd edition, 2006.

Recht, B., Re, C., Wright, S. J., and Niu, F. Hogwild:
A lock-free approach to parallelizing stochastic gradient
descent. In Advances in NIPS, pp. 693–701, 2011.

Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan,
K. Stochastic convex optimization. In Proceedings of
the 22nd Annual Conference on Learning Theory, 2009.

Shalf, J., Dosanjh, S., and Morrison, J. Exascale comput-
ing technology challenges. In Proceedings of the 9th In-
ternational Conference on High Performance Comput-
ing for Computational Science, VECPAR’10, pp. 1–25.
Springer-Verlag, 2011.

Shamir, O., Srebro, N., and Zhang, T. Communication
efficient distributed optimization using an approximate
Newton-type method. In Proceedings of ICML. JMLR:
W&CP volume 32, 2014.

Zhang, Y., Wainwright, M. J., and Duchi, J. C.
Communication-efficient algorithms for statistical opti-
mization. In Advances in NIPS, pp. 1502–1510, 2012.

Zhang, Y. and Xiao, L. Communication-efficient dis-
tributed optimization of self-concordant empirical loss.
arXiv preprint arXiv:1501.00263, 2015.

Zhuang, Y., Chin, W.-S., Juan, Y.-C., and Lin, C.-J. Dis-
tributed newton method for regularized logistic regres-
sion. Technical report, Department of Computer Sci-
ence, National Taiwan University, 2014.


