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Abstract
The Alternating Direction Method of Multipliers
(ADMM) has been studied for years. Tradition-
al ADMM algorithms need to compute, at each
iteration, an (empirical) expected loss function
on all training examples, resulting in a compu-
tational complexity proportional to the number
of training examples. To reduce the complexi-
ty, stochastic ADMM algorithms were proposed
to replace the expected loss function with a ran-
dom loss function associated with one uniformly
drawn example plus a Bregman divergence ter-
m. The Bregman divergence, however, is derived
from a simple 2nd-order proximal function, i.e.,
the half squared norm, which could be a subopti-
mal choice.

In this paper, we present a new family of stochas-
tic ADMM algorithms with optimal 2nd-order
proximal functions, which produce a new fami-
ly of adaptive stochastic ADMM methods. We
theoretically prove that the regret bounds are as
good as the bounds which could be achieved by
the best proximal function that can be chosen in
hindsight. Encouraging empirical results on a va-
riety of real-world datasets confirm the effective-
ness and efficiency of the proposed algorithms.

1. Introduction
Originally introduced in (Glowinski & Marroco, 1975;
Gabay & Mercier, 1976), the offline/batch Alternating
Direction Method of Multipliers (ADMM) stemmed
from the augmented Lagrangian method, with its
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global convergence property established in (Gabay,
1983; Glowinski & Le Tallec, 1989; Eckstein & Bertsekas,
1992). Recent studies have shown that ADMM achieves
a convergence rate of O(1/T ) (Monteiro & Svaiter, 2013;
He & Yuan, 2012) (where T is number of iterations of
ADMM), when the objective function is generally con-
vex. Furthermore, ADMM enjoys a convergence rate
of O(αT ), for some α ∈ (0, 1), when the objec-
tive function is strongly convex and smooth (Luo, 2012;
Deng & Yin, 2012). ADMM has shown attractive perfor-
mance in a wide range of real-world problems such as
compressed sensing (Yang & Zhang, 2011), image restora-
tion (Goldstein & Osher, 2009), video processing, and ma-
trix completion (Goldfarb et al., 2013), etc.

From the computational perspective, one drawback of AD-
MM is that, at every iteration, the method needs to compute
an (empirical) expected loss function on all the training ex-
amples. The computational complexity is propositional to
the number of training examples, which makes the original
ADMM unsuitable for solving large-scale learning and big
data mining problems. The online ADMM (OADMM) al-
gorithm (Wang & Banerjee, 2012) was proposed to tackle
the computational challenge. For OADMM, the objective
function is replaced with an online function at every step,
which only depends on a single training example. OAD-
MM can achieve an average regret bound of O(1/

√
T ) for

convex objective functions and O(log(T )/T ) for strong-
ly convex objective functions. Interestingly, although the
optimization of the loss function is assumed to be easy in
the analysis of (Wang & Banerjee, 2012), this step is actu-
ally not necessarily easy in practice. To address this issue,
the stochastic ADMM algorithm was proposed, by lineariz-
ing the online loss function (Ouyang et al., 2013; Suzuki,
2013). In stochastic ADMM algorithms, the online loss
function is firstly uniformly drawn from all the loss func-
tions associated with all the training examples. Then the
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loss function is replaced with its first order expansion at the
current solution plus the Bregman divergence from the cur-
rent solution. The Bregman divergence is based on a simple
proximal function, the half squared norm, so that the Breg-
man divergence is the half squared distance. In this way,
the optimization of the loss function enjoys a closed-form
solution. The stochastic ADMM achieves similar conver-
gence rates as OADMM. Using the half square norm as
proximal function, however, may be a suboptimal choice.
Our paper will address this issue. We should mention
that there are other strategies recently adopted to accelerate
stochastic ADMM, including stochastic average gradien-
t (Zhong & Kwok, 2014), dual coordinate ascent (Suzuki,
2014), which are still based on half squared distance.

Our contribution. In the previous work (Ouyang et al.,
2013; Suzuki, 2013) the Bregman divergence is derived
from a simple second order function, i.e., the half squared
norm, which could be a suboptimal choice (Duchi et al.,
2011). In this paper, we present a new family of stochas-
tic ADMM algorithms with adaptive proximal functions,
which can accelerate stochastic ADMM by using adap-
tive regularization. We theoretically prove that the regret
bounds of our methods are as good as those achieved by
stochastic ADMM with the best proximal function that can
be chosen in hindsight. The effectiveness and efficiency
of the proposed algorithms are confirmed by encouraging
empirical evaluations on several real-world datasets.

2. Adaptive Stochastic Alternating Direction
Method of Multipliers

2.1. Problem Formulation
In this paper, we will study a family of convex optimiza-
tion problems, where our objective functions are compos-
ite. Specially, we are interested in the following equality-
constrained optimization task:

min
w∈W,v∈V

f((w⊤,v⊤)⊤) := Eξℓ(w, ξ) + φ(v), (1)

s.t. Aw +Bv = b,

where w ∈ Rd1 , v ∈ Rd2 , A ∈ Rm×d1 , B ∈ Rm×d2 ,
b ∈ Rm, W and V are convex sets. For simplicity, the no-
tation ℓ is used for both the instance function value ℓ(w, ξ)
and its expectation ℓ(w) = Eξℓ(w, ξ). It is assumed that a
sequence of identical and independent (i.i.d.) observation-
s can be drawn from the random vector ξ, which satisfies
a fixed but unknown distribution. When ξ is determinis-
tic, the above optimization becomes the traditional formu-
lation of ADMM (Boyd et al., 2011). In this paper, we will
assume the functions ℓ and φ are convex but not necessar-
ily continuously differentiable. In addition, we denote the
optimal solution of (1) as (w⊤

∗ ,v
⊤
∗ )

⊤.

Before presenting the proposed algorithm, we first intro-
duce some notations. For a positive definite matrix G ∈

Rd1×d1 , we define the G-norm of a vector w as ∥w∥G :=√
w⊤Gw. When there is no ambiguity, we often use ∥ · ∥

to denote the Euclidean norm ∥ · ∥2. We use ⟨·, ·⟩ to denote
the inner product in a finite dimensional Euclidean space.
Let Ht be a positive definite matrix for t ∈ N. Set the prox-
imal function ϕt(·), as ϕt(w) = 1

2∥w∥2Ht
= 1

2 ⟨w, Htw⟩.
Then the corresponding Bregman divergence for ϕt(w) is
defined as

Bϕt(w,u) = ϕt(w)− ϕt(u)− ⟨∇ϕt(u),w − u⟩

=
1

2
∥w − u∥2Ht

.

2.2. Algorithm
To solve the problem (1), a popular method is Alternating
Direction Method of Multipliers (ADMM). ADMM splits
the optimization with respect to w and v by minimizing the
augmented Lagrangian:

min
w,v

Lβ(w,v, θ) := ℓ(w) + φ(v)− ⟨θ,Aw +Bv − b⟩

+
β

2
∥Aw +Bv − b∥2,

where β > 0 is a pre-defined penalty. Specifically, the
ADMM algorithm minimizes Lβ as follows

wt+1 = argmin
w

Lβ(w,vt, θt),

vt+1 = argmin
v

Lβ(wt+1,v, θt),

θt+1 = θt − β(Awt+1 +Bvt+1 − b).

At each step, however, ADMM requires calculating the ex-
pectation Eξℓ(w, ξ), which may be computationally too ex-
pensive, since we may only have an unbiased estimate of
ℓ(w) or the expectation Eξℓ(w, ξ) is an empirical one for
big data problems. To solve this issue, we propose to mini-
mize the following stochastic approximation:

Lβ,t(w,v, θ) = ⟨gt,w⟩+ φ(v)− ⟨θ,Aw +Bv − b⟩

+
β

2
∥Aw +Bv − b∥2 + 1

η
Bϕt(w,wt),

where gt = ℓ′(wt, ξt) and Ht for ϕt = 1
2∥w∥2Ht

will
be specified later. This objective linearizes ℓ(w, ξt) and
adopts a dynamic Bregman divergence function to keep
the new model near to the previous one. It is easy to see
that this proposed approximation includes the one proposed
by (Ouyang et al., 2013) as a special case when Ht = I . To
minimize the above function, we followed the ADMM al-
gorithm to optimize over w, v, θ sequentially, by fixing the
others. In addition, we also need to update Ht for Bϕt at ev-
ery step, which will be specified later. Finally the proposed
Adaptive Stochastic Alternating Direction Method of Mul-
tipliers (Ada-SADMM) is summarized in Algorithm 1.
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Algorithm 1 Adaptive Stochastic Alternating Direction
Method of Multipliers (Ada-SADMM).

Initialize: w1 = 0, u1 = 0, θ1 = 0, H1 = aI , and
a > 0.
for t = 1, 2, . . . , T do

Compute gt = ℓ′(wt, ξt);
Update Ht and compute Bϕt ;
wt+1 = argminw∈W Lβ,t(w,vt, θt);
vt+1 = argminv∈V Lβ,t(wt+1,v, θt);
θt+1 = θt − β(Awt+1 +Bvt+1 − b);

end for

2.3. Analysis
This subsection is devoted to analyzing the expected con-
vergence rate of the iterative solutions of the proposed algo-
rithm for general Ht, t = 1, . . . , T , where the proof tech-
niques in (Ouyang et al., 2013) and (Duchi et al., 2011) are
adopted. To accomplish this, we begin with a technical
lemma, which will facilitate the later analysis.
Lemma 1. Let ℓ(w, ξt) and φ(w) be convex functions and
Ht be positive definite, for t ≥ 1. For Algorithm 1, we have
the following inequality
ℓ(wt) + φ(vt+1)− ℓ(w)− φ(v) + (zt+1 − z)⊤F (zt+1)

≤
η∥gt∥2H∗

t

2
+

1

η
[Bϕt(wt,w)− Bϕt(wt+1,w)]

+
β

2
(∥Aw +Bvt − b∥2 − ∥Aw +Bvt+1 − b∥2)

+⟨δt,w −wt⟩+
1

2β
(∥θ − θt∥2 − ∥θ − θt+1∥2),

where zt = (w⊤
t ,v

⊤
t , θ

⊤
t )

⊤, z = (w⊤,v⊤, θ⊤)⊤, δt =
gt − ℓ′(wt), and F (z) = ((−A⊤θ)⊤, (−B⊤θ)⊤, (Aw +
Bv − b)⊤)⊤.

The proof is in the appendix. We now analyze the conver-
gence behavior of Algorithm 1 and provide an upper bound
on the objective value and the feasibility violation.
Theorem 1. Let ℓ(w, ξt) and φ(w) be convex functions
and Ht be positive definite, for t ≥ 1. For Algorithm 1, we
have the following inequality for any T ≥ 1 and ρ > 0:

E[f(ūT )− f(u∗) + ρ∥Aw̄T +Bv̄T − b∥] ≤

1

2T

{
E

T∑
t=1

[2
η
(Bϕt(wt,w∗)− Bϕt(wt+1,w∗))

+η∥gt∥2H∗
t

]
+ βD2

v∗,B +
ρ2

β

}
, (2)

where ūT =
(

1
T

∑T
t=1 w

⊤
t ,

1
T

∑T+1
t=2 v⊤

t

)⊤
, u∗ =

(w⊤
∗ ,v

⊤
∗ )

⊤, and (w̄T , v̄T ) = ( 1
T

∑T+1
t=2 wt,

1
T

∑T+1
t=2 vt),

and Dv∗,B = ∥Bv∗∥.

Proof. For convenience, we denote u = (w⊤,v⊤)⊤, θ̄T =
1
T

∑T+1
t=2 θt, and z̄T = (w̄⊤

T , v̄
⊤
T , θ̄

⊤
T )

⊤. With these nota-

tions, using convexity of ℓ(w) and φ(v) and the mono-
tonicity of operator F (·), we have for any z:

f(ūT )− f(u) + (z̄T − z)⊤F (z̄T )

≤ 1

T

T∑
t=1

[f((w⊤
t ,v⊤

t+1)
⊤)− f(u) + (zt+1 − z)⊤F (zt+1)]

=
1

T

T∑
t=1

[ℓ(wt)+φ(vt+1)− ℓ(w)−φ(v)+(zt+1− z)⊤F (zt+1)].

Combining this inequality with Lemma 1 at the optimal so-
lution (w,v) = (w∗,v∗), we can derive

f(ūT )− f(u∗) + (z̄T − z∗)
⊤F (z̄T )

≤ 1

T

T∑
t=1

{1

η
[Bϕt(wt,w∗)− Bϕt(wt+1,w∗)] +

η∥gt∥2H∗
t

2

+⟨δt,w∗ −wt⟩+
β

2
(∥Aw∗ +Bvt − b∥2

−∥Aw∗ +Bvt+1 − b∥2) + 1

2β
(∥θ − θt∥2 − ∥θ − θt+1∥2)

}
≤ 1

T

{ T∑
t=1

[1
η
[Bϕt(wt,w∗)− Bϕt(wt+1,w∗)] +

η∥gt∥2H∗
t

2

+⟨δt,w∗−wt⟩
]
+

β

2
∥Aw∗ +Bv1− b∥2 + 1

2β
∥θ− θ1∥2

}
≤ 1

T

{ T−1∑
t=0

[1
η
(Bϕt(wt,w∗)− Bϕt(wt+1,w∗)) +

η∥gt∥2H∗
t

2

+⟨δt,w∗ −wt⟩
]
+

β

2
D2

v∗,B +
1

2β
∥θ − θ1∥2

}
.

As the above inequality is valid for any θ, it also holds in
the ball Bρ = {θ : ∥θ∥ ≤ ρ}. Combining with the fact that
the optimal solution must also be feasible, it follows that

max
θ∈Bρ

{f(ūT )− f(u∗) + (z̄T − z∗)
⊤F (z̄T )}

= max
θ∈Bρ

{f(ūT )− f(u∗) + θ̄⊤T (Aw∗ +Bv∗ − b)

−θ⊤(Aw̄T +Bv̄T − b)}
= max

θ∈Bρ

{f(ūT )− f(u∗)− θ⊤(Aw̄T +Bv̄T − b)}

= f(ūT )− f(u∗) + ρ∥Aw̄T +Bv̄T − b∥.

Utilizing the above two inequalities, we obtain

E[f(ūT )− f(u∗) + ρ∥Aw̄T +Bv̄T − b∥]

≤ 1

T
E
{ T∑

t=1

(1
η
[Bϕt(wt,w∗)− Bϕt(wt+1,w∗)]

+
η∥gt∥2H∗

t

2
) + ⟨δt,w∗ −wt⟩

)
+

β

2
D2

v∗,B +
1

2β
∥θ − θ1∥2

}
≤ 1

2T

{
E

T∑
t=1

[
2

η
[Bϕt(wt,w∗)− Bϕt(wt+1,w∗)]

+η∥gt∥2H∗
t
] + βD2

v∗,B +
ρ2

β

}
,

Note Eδt = 0 in the last step. This completes the proof.
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The above theorem allows us to derive regret bounds for
a family of algorithms that iteratively modify the proximal
functions ϕt in attempt to lower the regret bounds. Since
the rate of convergence is still dependent on Ht and η, next
we are going to choose appropriate positive definite matrix
Ht and the constant η to optimize the rate of convergence.

2.4. Diagonal Matrix Proximal Functions
In this subsection, we restrict Ht to be a diagonal matrix,
for two important reasons: (i) the diagonal matrix will pro-
vide results easier to understand than that for the general
matrix; (ii) for high dimension problem the general matrix
may result in prohibitively expensive computational cost,
which is not desirable.

Firstly, we notice that the upper bound in the Theorem 1
relies on

∑T
t=1 ∥gt∥2H∗

t
. If we assume all the gt’s are

known in advance, we could minimize this term by setting
Ht = diag(s), ∀t. We shall use the following proposition.

Proposition 1. For any g1,g2, . . . ,gT ∈ Rd1 , we have

min
diag(s)≽0, 1⊤s≤c

T∑
t=1

∥gt∥2diag(s) =
1

c

( d1∑
i=1

∥g1:T,i∥
)2
,

where g1:T,i = (g1,i, . . . , gT,i)
⊤ and the minimum is at-

tained at si = c∥g1:T,i∥/
∑d1

j=1 ∥g1:T,j∥.

We omit proof of this proposition, since it is easy to derive.
Since we do not have all the gt’s in advance, we receives
the stochastic (sub)gradients gt sequentially instead. As a
result, we propose to update the Ht incrementally as Ht =
aI + diag(st), where st,i = ∥g1:t,i∥ and a ≥ 0. For these
Hts, we have the following inequality

T∑
t=1

∥gt∥2H∗
t
=

T∑
t=1

⟨gt, (aI + diag(st))−1gt⟩

≤
T∑

t=1

⟨gt, diag(st)−1gt⟩ ≤ 2

d1∑
i=1

∥g1:T,i∥, (3)

where the last inequality used Lemma 4 in (Duchi et al.,
2011), which implies this update is a nearly optimal up-
date method for the diagonal matrix case. Finally, the adap-
tive stochastic ADMM with diagonal matrix update (Ada-
SADMMdiag) is summarized into the Algorithm 2.

For the convergence rate of the proposed Algorithm 2, we
have the following specific theorem.

Theorem 2. Let ℓ(w, ξt) and φ(w) be convex functions
for any t > 0. Then for Algorithm 2, we have the following

Algorithm 2 Adaptive Stochastic ADMM with Diagonal
Matrix Update (Ada-SADMMdiag).

Initialize: w1 = 0, u1 = 0 , θ1 = 0, and a > 0.
for t = 1, 2, . . . , T do

Compute gt = ℓ′(wt, ξt);
Update Ht = aI + diag(st), where st,i = ∥g1:t,i∥;
wt+1 = argminw Lβ,t(w,vt, θt);
vt+1 = argminv∈V Lβ,t(wt+1,v, θt);
θt+1 = θt − β(Awt+1 +Bvt+1 − b);

end for

inequality for any T ≥ 1 and ρ > 0

E[f(ūT )− f(u∗) + ρ∥Aw̄T +Bv̄T − b∥]

≤ 1

2T

(
E[2η

d1∑
i=1

∥g1:T,i∥

+
2

η
max
t≤T

∥wt −w∗∥2∞
d1∑
i=1

∥g1:T,i∥] + βD2
v∗,B +

ρ2

β

)
.

If we further set η = Dw,∞/
√
2 where Dw,∞ =

maxw,w′ ∥w −w′∥∞, then we have

E[f(ūT )− f(u∗) + ρ∥Aw̄T +Bv̄T − b∥]

≤ 1

T

(√
2E[Dw,∞

d1∑
i=1

∥g1:T,i∥] +
β

2
D2

v∗,B +
ρ2

2β

)
.

The proof is in the appendix.

2.5. Full Matrix Proximal Functions
In this subsection, we derive and analyze new updates when
we estimate a full matrix Ht for the proximal function in-
stead of a diagonal one. Although full matrix computation
may not be attractive for high dimension problems, it may
be helpful for tasks with low dimension. Furthermore, it
will provide us with a more complete insight. Similar with
the analysis for the diagonal case, we first introduce the
following proposition (Lemma 15 in (Duchi et al., 2011)).

Proposition 2. For any g1,g2, . . . ,gT ∈ Rd1 , we have the
following equality

min
S≽0, tr(S)≤c

T∑
t=1

∥gt∥2S−1 =
1

c
tr(GT ),

where GT =
∑T

t=1 gtg
⊤
t . and the minimizer is attained at

S = cG
1/2
T /tr(G

1/2
T ). If GT is not of full rank, then we use

its pseudo-inverse to replace its inverse in the minimization
problem.

Because the (sub)gradients are received sequentially, we
propose to update the Ht incrementally as Ht = aI +G

1
2
t ,

Gt =
∑t

i=1 gig
⊤
i , t = 1, . . . , T . For these Hts, we have

the following inequalities
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T∑
t=1

∥gt∥2H∗
t
≤

T∑
t=1

∥gt∥2S−1
t

≤ 2
T∑

t=1

∥gt∥2S−1
T

=2tr(G
1
2
T ), (4)

where the last inequality used Lemma 10 in (Duchi et al.,
2011), which implies this update is a nearly optimal up-
date method for the full matrix case. Finally, the adaptive
stochastic ADMM with full matrix update is summarized
in Algorithm 3.

Algorithm 3 Adaptive Stochastic ADMM with Full Matrix
Update (Ada-SADMMfull).

Initialize: w1 = 0, u1 = 0, θ1 = 0, G0 = 0, and a > 0
for t = 1, 2, . . . , T do

Compute gt = ℓ′(wt, ξt);
Update Gt = Gt−1 + gtg

⊤
t ;

Update Ht = aI + St, where St = G
1
2
t ;

wt+1 = argminw Lβ,t(w,vt, θt);
vt+1 = argminv∈V Lβ,t(wt+1,v, θt);
θt+1 = θt − β(Awt+1 +Bvt+1 − b);

end for

For the convergence rate of the above proposed Algorithm
3, we have the following specific theorem.
Theorem 3. Let ℓ(w, ξt) and φ(w) be convex functions
for any t > 0. Then for Algorithm 3, we have the following
inequality for any T ≥ 1, ρ > 0,

E[f(ūT )− f(u∗) + ρ ∥ Aw̄T +Bv̄T − b ∥] ≤
1

2T

{
E[2ηtr (G

1
2
T ) +

1

η
maxt≤T ∥w∗ −wt∥2tr (G

1
2
T )]

+βD2
v∗,B +

ρ2

β

}
.

Furthermore, if we set η = Dw,2/2, where Dw,2 =
maxw1,w2 ∥w1 −w2∥, then we have

E[f(ūT )− f(u∗) + ρ∥Aw̄T +Bv̄T − b∥]

≤ 1

T

(√
2E[Dw,2tr (G

1/2
T )] +

β

2
D2

v∗,B +
ρ2

2β

)
.

The proof is in the appendix.

3. Experiment
In this section, we evaluate the empirical performance of
the proposed adaptive stochastic ADMM algorithms for
solving Graph-Guided SVM (GGSVM) tasks, which is for-
mulated as the following problem (Ouyang et al., 2013):

min
w,v

1

n

n∑
i=1

[1− yix
⊤
i w]+ +

γ

2
∥w∥2 + ν∥v∥1,

s.t. Fw − v = 0,

where [z]+ = max(0, z) and the matrix F is construct-
ed based on a graph G = {V, E}. For this graph, V =
{w1, . . . , wd1} is a set of variables and E = {e1, . . . , e|E|},
where ek = {i, j} is assigned with a weight αij . And the
corresponding F is in the form: Fki = αij and Fkj =
−αij . To construct a graph for a given dataset, we adop-
t the sparse inverse covariance estimation (Friedman et al.,
2008) and determine the sparsity pattern of the inverse co-
variance matrix Σ−1. Based on the inverse covariance ma-
trix, we connect all index pairs (i, j) with Σ−1

ij ̸= 0 and
assign αij = 1.

3.1. Experimental Testbed and Setup
To examine the performance, we test all the al-
gorithms on six real-world datasets from web ma-
chine learning repositories, which are listed in the Ta-
ble 1. The “news20” dataset was downloaded from
www.cs.nyu.edu/˜roweis/data.html. All other
datasets were downloaded from the LIBSVM website. For
each dataset, we randomly divide it into two folds: training
set with 80% of examples and test set with the rest.

Table 1. Several real-world datasets in our experiments.
Dataset # examples # features
a9a 48,842 123
mushrooms 8,124 112
news20 16,242 100
splice 3,175 60
svmguide3 1,284 21
w8a 64,700 300

To make a fair comparison, all algorithms adopt the same
experimental setup. In particular, we set the penalty pa-
rameter γ = ν = 1/n, where n is the number of training
examples, and the trade-off parameter β = 1. In addition,
we set the step size parameter ηt = 1/(γt) for SADMM
according to the theorem 2 in (Ouyang et al., 2013). Final-
ly, the smooth parameter a is set as 1, and the step size for
adaptive stochastic ADMM algorithms are searched from
2[−5:5] using cross validation.

All the experiments were conducted with 5 different ran-
dom seeds and 2 epochs (2n iterations) for each dataset.
All the result were reported by averaging over these 5 run-
s. We evaluated the learning performance by measuring
objective values, i.e., f(u), and test error rates on the test
datasets. In addition, we also evaluate computational ef-
ficiency of all the algorithms by their running time. All
experiments were run in Matlab over a machine of 3.4GHz
CPU.

3.2. Performance Evaluation
The figure 1 shows the performance of all the algorithms
in comparison over trials, from which we can draw several
observations. Firstly, the left column shows the objective
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Table 2. Evaluation of stochastic ADMM algorithms on the real-world data sets.
Algorithm a9a mushrooms

Objective value Test error rate Time (s) Objective value Test error rate Time (s)

SADMM 2.6002 ± 0.4271 0.1646 ± 0.0075 56.0914 0.7353 ± 0.2104 0.0350 ± 0.0136 7.6619

Ada-SADMMdiag 0.3550 ± 0.0001 0.1501 ± 0.0012 94.7619 0.0096 ± 0.0005 0.0006 ± 0.0000 13.0355

Ada-SADMMfull 0.3545 ± 0.0001 0.1498 ± 0.0013 622.4459 0.0091 ± 0.0002 0.0002 ± 0.0003 67.8198

Algorithm news20 splice

Objective value Test error rate Time (s) Objective value Test error rate Time (s)

SADMM 0.5652 ± 0.0151 0.1333 ± 0.0034 13.2948 108.6823 ± 20.9655 0.2454 ± 0.0322 0.9821

Ada-SADMMdiag 0.3139 ± 0.0003 0.1280 ± 0.0015 22.4788 0.3793 ± 0.0054 0.1578 ± 0.0059 1.3674

Ada-SADMMfull 0.3204 ± 0.0007 0.1284 ± 0.0016 148.5242 0.3710 ± 0.0014 0.1550 ± 0.0079 7.0392

Algorithm svmguide3 w8a

Objective value Test error rate Time (s) Objective value Test error rate Time (s)

SADMM 1.6143 ± 0.3123 0.2161 ± 0.0052 0.1288 0.3357 ± 0.0916 0.0957 ± 0.0012 191.7544

Ada-SADMMdiag 0.5163 ± 0.0046 0.2056 ± 0.0060 0.2014 0.1526 ± 0.0010 0.0931 ± 0.0005 326.1392

Ada-SADMMfull 0.5230 ± 0.0044 0.2000 ± 0.0044 0.4602 0.1469 ± 0.0006 0.0929 ± 0.0003 4027.1963

values of the three algorithms. We can observe that the t-
wo adaptive stochastic ADMM algorithms converge much
faster than SADMM, which shows the effectiveness of ex-
ploration of adaptive regularization (Bregman Divergence)
to accelerate stochastic ADMM. Secondly, compared with
Ada-SADMMdiag , Ada-SADMMfull achieves slightly s-
maller objective values on most of the datasets, which in-
dicates full matrix is slightly more informative than the di-
agonal one. This should be due to the lower dimensions of
these datasets. Thirdly, the central column provides test er-
ror rates of three algorithms, where we observe that the two
adaptive algorithms achieve significantly smaller or com-
parable test error rates at 0.25-th epoch than SADMM at
2-th epoch. This observation indicates that we can termi-
nate the two adaptive algorithms earlier to save time and
at the same time achieve similar performance compared
with SADMM. Finally, the right column shows the run-
ning time of three algorithms, which shows that during the
learning process, the Ada-SADMMfull is significantly s-
lower while the Ada-SADMMdiag is overall efficient com-
pared with SADMM. In summary, the Ada-SADMMdiag

algorithm achieves a good trade-off between efficiency and
effectiveness.

Table 2 summarizes the performance of all the compared
algorithms over the six datasets, from which we can make
similar observations. This again verifies the effectiveness
of the proposed algorithms.

4. Conclusion
ADMM is a popular technique in machine learning. This
paper studied a method to accelerate stochastic ADMM
with adaptive regularization, by replacing the fixed prox-
imal function with adaptive proximal function. Com-

pared with traditional stochastic ADMM, we show that the
proposed adaptive algorithms converge significantly faster
through the proposed adaptive strategies. Promising exper-
imental results on a variety of real-world datasets further
validate the effectiveness of our techniques.
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Appendix: Some Proofs
Proof for Lemma 1
Proof. Firstly, using the convexity of ℓ and the definition
of δt, we can obtain

ℓ(wt)− ℓ(w) ≤ ⟨ℓ′(wt),wt −w⟩
= ⟨gt,wt+1 −w⟩+ ⟨δt,w −wt⟩+ ⟨gt,wt −wt+1⟩.

Combining the above inequality with the relation between
θt and θt+1 will derive

ℓ(wt)− ℓ(w) + ⟨wt+1 −w,−A⊤θt+1⟩
≤ ⟨gt,wt+1 −w⟩+ ⟨δt,w −wt⟩+ ⟨gt,wt −wt+1⟩

+⟨wt+1 −w, A⊤[β(Awt+1 +Bvt+1 − b)− θt]⟩
= ⟨gt +A⊤[β(Awt+1 +Bvt − b)− θt],wt+1 −w⟩︸ ︷︷ ︸

Lt

+ ⟨w −wt+1, βA
⊤B(vt − vt+1)⟩︸ ︷︷ ︸

Mt

+⟨δt,w −wt⟩

+ ⟨gt,wt −wt+1⟩︸ ︷︷ ︸
Nt

.
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Figure 1. Comparison between SADMM with Ada-SADMMdiag (“Ada-diag”) and Ada-SADMMfull (“Ada-full”) on 6 real-world
datasets. Epoch for the horizontal axis is the number of iterations divided by dataset size. Left Panels: Average objective values.
Middle Panels: Average test error rates. Right Panels: Average time costs (in seconds).
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To provide an upper bound for the first term Lt, taking
D(u,v) = Bϕt(u,v) =

1
2∥u − v∥2Ht

and applying Lem-
ma 1 in (Ouyang et al., 2013) to the step of getting wt+1 in
Algorithm 1, we will have

⟨gt +A⊤[β(Awt+1 +Bvt − b)− θt],wt+1 −w⟩

≤ 1

η
[Bϕt(wt,w)− Bϕt(wt+1,w)− Bϕt(wt+1,wt)].

To provide an upper bound for the second term Mt, we can
derive as follows

⟨w −wt+1, βA
⊤B(vt − vt+1)⟩

= β⟨Aw −Awt+1, Bvt −Bvt+1⟩

=
β

2
[(∥Aw +Bvt − b∥2 − ∥Aw +Bvt+1 − b∥2)

+(∥Awt+1 +Bvt+1 − b∥2 − ∥Awt+1 +Bvt − b∥2)]

≤ β

2
(∥Aw +Bvt − b∥2 − ∥Aw +Bvt+1 − b∥2)

+
1

2β
∥θt+1 − θt∥2.

To drive an upper bound for the final term Nt, we can use
Young’s inequality to get

⟨gt,wt −wt+1⟩ ≤
η∥gt∥2H∗

t

2
+

∥wt −wt+1∥2Ht

2η

=
η∥gt∥2H∗

t

2
+

Bϕt(wt,wt+1)

η
.

Replacing the terms Lt, Mt and Nt with their upper
bounds, we will get

ℓ(wt)− ℓ(w) + ⟨wt+1 −w,−A⊤θt+1⟩ ≤

1

η
[Bϕt(wt,w)− Bϕtwt+1,w)] +

η∥gt∥2H∗
t

2
+ ⟨δt,w −wt⟩

+
β

2
(∥Aw +Bvt − b∥2 − ∥Aw +Bvt+1 − b∥2)

+
1

2β
∥θt+1 − θt∥2.

Due to the optimality condition of the step of updating v
in Algorithm 1, i.e., ∂vLβ,t(wt+1,vt+1, θt) and the con-
vexity of φ, we have

φ(vt+1)− φ(v) + ⟨vt+1 − v,−B⊤θt+1⟩ ≤ 0.

Using the fact Awt+1 +Bvt+1 − b = (θt − θt+1)/β, we
have

⟨θt+1 − θ,Awt+1 +Bvt+1 − b⟩

=
1

2β
(∥θ − θt∥2− ∥θ − θt+1∥2− ∥θt+1 − θt∥2).

Combining the above three inequalities and re-arranging
the terms will conclude the proof.

Proof of Theorem 2
Proof. We have the following inequality

2
T∑

t=1

[Bϕt(wt,w∗)− Bϕt(wt+1,w∗)]

=

T∑
t=1

(∥wt −w∗∥2Ht
− ∥wt+1 −w∗∥2Ht

)

≤ ∥w1 −w∗∥2H1
+

T−1∑
t=1

(∥wt+1−w∗∥2Ht+1
− ∥wt+1 −w∗∥2Ht

)

= ∥w1 −w∗∥2H1
+

T−1∑
t=1

∥wt+1 −w∗∥2(Ht+1−Ht)

≤ ∥w1 −w∗∥2H1
+

T−1∑
t=1

max
i

(wt+1,i −w∗,i)
2∥st+1 − st∥1

= ∥w1 −w∗∥2H1
+

T−1∑
t=1

∥wt+1 −w∗∥2∞(st+1 − st)
⊤1

≤ ∥w1 −w∗∥2H1
+max

t≤T
∥wt −w∗∥2∞s⊤T 1− ∥w1−w∗∥2∞s⊤1 1

≤ max
t≤T

∥wt −w∗∥2∞
d1∑
i=1

∥g1:T,i∥,

where the last inequality used ⟨sT ,1⟩ =
∑d1

i=1 ∥g1:T,i∥
and ∥w1−w∗∥2H1

≤ ∥w1−w∗∥2∞s⊤1 1. Plugging the above
inequality and the inequality (4) into the inequality (2), will
conclude the first part of the theorem. Then the second part
is trivial to be derived.

Proof of Theorem 3
Proof. We consider the sum of the difference

2

T∑
t=1

[Bϕt(wt,w∗)− Bϕt(wt+1,w∗)]

=

T∑
t=1

(∥wt −w∗∥2Ht
− ∥wt+1 −w∗∥2Ht

)

≤ ∥w1 −w∗∥2H1
+

T−1∑
t=1

(∥wt+1 −w∗∥2Ht+1
− ∥wt+1 −w∗∥2Ht

)

= ∥w1 −w∗∥2H1
+

T−1∑
t=1

∥wt+1 −w∗∥2
(G

1
2
t+1−G

1
2
t )

≤ ∥w1 −w∗∥2H1
+

T−1∑
t=1

∥wt+1 −w∗∥2λmax(G
1
2
t+1 −G

1
2
t )

= ∥w1 −w∗∥2H1
+

T−1∑
t=1

∥wt+1 −w∗∥2tr(G
1
2
t+1 −G

1
2
t )

≤ ∥w1 −w∗∥2H1
+ max

t≤T−1
∥wt −w∗∥2tr(G

1
2
T )

−∥w1 −w∗∥2tr(G
1
2
1 ) ≤ max

t≤T
∥wt −w∗∥2tr(G

1
2
T ).

Plugging the above inequality and the inequality (4) into
the inequality (2), will conclude the first part of the theo-
rem. Then the second part is trivial to be derived.
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