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Appendix
Proposition. For any graphical model G and choice of parameters M ≥ 1, m ≥ 1, f ∈ (0, 12 ), p ∈ [0, 1],
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Z(k) is an unbiased estimator of the partition function Z. Furthermore, the variance of this estima-

tor is bounded from above by the following expressions:
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Preliminaries

Before we prove the proposition, let us start off by proving some preliminaries. The key idea here is to relate the expected
value of certain quantities involving the smoothed (p > 0) XOR factor potentials φ{A(k)
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(k)
i }

(x{A(k)
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) to the hard (p = 0)
XOR factor potentials ψ{A(k)
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Define the random variable yk(x) =
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i ,b
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i=1 φi(x) to be the product over all of the smoothed
(p > 0) XOR factor potentials, where we use φi(x) as short-hand notation. Let ψi(x) be the hard XOR factor potential
corresponding to φi(x) for p = 0. By construction, we have that φi(x) = p+ (1− p)ψi(x).
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Given two elements a, b ∈ X with a 6= b, we can derive an expression for E[yk(a)yk(b)] as follows:
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where we used the fact that the expected value of the product over any t distinct indices {i1, ..., it} is equal by symmetry,
which allows us to simplify the last expression.

Proof

Proof. For convenience, define a scaling factor r = 2
p+1 .

The partition function of our randomly projected G(k) is Z(k) =
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Z.

Using variance and expectation formulas, we have the following equalities:
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Let us focus on bounding the first term in the variance expression above, V1. Using the lemma proved earlier
with a = xi, b = xj , and xj 6= xi, we have that
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Hashing with Low-Density (Sparse) Parity Constraints

Recall that in the construction of our hash functions in Section 3.1, we let Ai,j = 1 if node j is included in the ith XOR
constraint and Ai,j = 0 otherwise, and we let bi be the parity bit generated for the ith XOR constraint. The process for

randomly generating A, b (A(k)
i,j

iid∼ Bernoulli(f)and b(k)i
iid∼ Bernoulli( 12 )) is designed to give us sparse parity constraints.

Given the set of m XOR constraints, a configuration x ∈ X satisfies the set of XOR constraints if and only if Ax ≡ b
(mod 2).
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Adapting the proof of Theorem 3 in Low-density Parity Constraints for Hashing-Based Discrete Integration (Ermon et al.,
2014) and letting A{i1,...,it} and b{i1,...,it} be the t rows of A and b, respectively, corresponding to the t parity constraints
inside the expectation, the expression we have can be written as:∑
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where Wxi
(s) is the sum of w(xj) for all xj at Hamming distance s from xi and we used the fact that r(s,f)(0, 0) ≤

r(1,f)(0, 0).

Proof (continued)

The bound for our first term is
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The final bound for our variance becomes
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