Supplementary Material:
 A Hybrid Approach for Probabilistic Inference using Random Projections

Appendix

Proposition. For any graphical model G and choice of parameters $M \geq 1, m \geq 1, f \in\left(0, \frac{1}{2}\right), p \in[0,1]$, $\frac{1}{M} \sum_{k=1}^{M}\left(\frac{2}{p+1}\right)^{m} Z^{(k)}$ is an unbiased estimator of the partition function Z. Furthermore, the variance of this estimator is bounded from above by the following expressions:

$$
\begin{aligned}
\operatorname{Var}\left[\frac{1}{M} \sum_{k=1}^{M}\left(\frac{2}{p+1}\right)^{m} Z^{(k)}\right] & \leq \frac{1}{M}\left(\frac{4\left(p+\frac{1}{2}(1-f)(1-p)^{2}\right)}{(p+1)^{2}}\right)^{m} Z^{2}+\frac{1}{M}\left(\frac{2\left(p^{2}+1\right)}{(p+1)^{2}}\right)^{m} \sum_{x \in \mathcal{X}} w(x)^{2}-\frac{Z^{2}}{M} \\
& \leq \frac{2}{M}\left(\frac{2\left(p^{2}+1\right)}{(p+1)^{2}}\right)^{m} Z^{2}
\end{aligned}
$$

Preliminaries

Before we prove the proposition, let us start off by proving some preliminaries. The key idea here is to relate the expected value of certain quantities involving the smoothed $(p>0)$ XOR factor potentials $\phi_{\left\{A_{i}^{(k)}, b_{i}^{(k)}\right\}}\left(x_{\left\{A_{i}^{(k)}\right\}}\right)$ to the hard $(p=0)$ XOR factor potentials $\psi_{\left\{A_{i}^{(k)}, b_{i}^{(k)}\right\}}\left(x_{\left\{A_{i}^{(k)}\right\}}\right)$.

Define the random variable $y_{k}(x)=\prod_{i=1}^{m} \phi_{\left\{A_{i}^{(k)}, b_{i}^{(k)}\right\}}\left(x_{\left\{A_{i}^{(k)}\right\}}\right)=\prod_{i=1}^{m} \phi_{i}(x)$ to be the product over all of the smoothed $(p>0)$ XOR factor potentials, where we use $\phi_{i}(x)$ as short-hand notation. Let $\psi_{i}(x)$ be the hard XOR factor potential corresponding to $\phi_{i}(x)$ for $p=0$. By construction, we have that $\phi_{i}(x)=p+(1-p) \psi_{i}(x)$.

Recall that we proved $\mathbb{E}\left[y_{k}(x)\right]=\left(\frac{p+1}{2}\right)^{m}$ in Section 3.1 as follows: $\mathbb{E}\left[y_{k}(x)\right]=\mathbb{E}\left[\prod_{i=1}^{m} \phi_{i}(x)\right]=$ $\prod_{i=1}^{m} \mathbb{E}\left[p+(1-p) \psi_{i}(x)\right]=\prod_{i=1}^{m}\left(p+(1-p) \frac{1}{2}\right)=\left(\frac{p+1}{2}\right)^{m}$.

Similarly, we can prove that $\mathbb{E}\left[y_{k}(x)^{2}\right]=\left(\frac{p^{2}+1}{2}\right)^{m}$ as follows: $\mathbb{E}\left[y_{k}(x)^{2}\right]=\mathbb{E}\left[\prod_{i=1}^{m} \phi_{i}(x)^{2}\right]=\prod_{i=1}^{m} \mathbb{E}\left[\phi_{i}(x)^{2}\right]=$ $\prod_{i=1}^{m} \mathbb{E}\left[\left(p+(1-p) \psi_{i}(x)\right)^{2}\right]=\prod_{i=1}^{m}\left(p^{2}+2 p(1-p) \frac{1}{2}+(1-p)^{2} \frac{1}{2}\right)=\left(\frac{p^{2}+1}{2}\right)^{m}$.

Given two elements $a, b \in \mathcal{X}$ with $a \neq b$, we can derive an expression for $\mathbb{E}\left[y_{k}(a) y_{k}(b)\right]$ as follows:

$$
\begin{aligned}
\mathbb{E}\left[y_{k}(a) y_{k}(b)\right] & =\mathbb{E}\left[\prod_{i=1}^{m} \phi_{i}(a) \phi_{i}(b)\right] \\
& =\prod_{i=1}^{m} \mathbb{E}\left[\phi_{i}(a) \phi_{i}(b)\right] \\
& =\prod_{i=1}^{m} \mathbb{E}\left[\left(p+(1-p) \psi_{i}(a)\right)\left(p+(1-p) \psi_{i}(b)\right)\right] \\
& =\prod_{i=1}^{m}\left(p+(1-p)^{2} \mathbb{E}\left[\psi_{i}(a) \psi_{i}(b)\right]\right) \\
& =\sum_{t=0}^{m}\binom{m}{t} p^{m-t}(1-p)^{2 t} \mathbb{E}\left[\prod_{\text {any } t \text { distinct indices }} \psi_{i_{1}}(a) \psi_{i_{1}}(b) \ldots \psi_{i_{t}}(a) \psi_{i_{t}}(b)\right]
\end{aligned}
$$

where we used the fact that the expected value of the product over any t distinct indices $\left\{i_{1}, \ldots, i_{t}\right\}$ is equal by symmetry, which allows us to simplify the last expression.

Proof

Proof. For convenience, define a scaling factor $r=\frac{2}{p+1}$.
The partition function of our randomly projected $G^{(k)}$ is $Z^{(k)}=\sum_{x \in \mathcal{X}} w(x) \prod_{i=1}^{m} \phi_{\left\{A_{i}^{(k)}, b_{i}^{(k)}\right\}}\left(x_{\left\{A_{i}^{(k)}\right\}}\right)=$ $\sum_{x \in \mathcal{X}} w(x) y_{k}(x)$ with $\mathbb{E}\left[Z^{(k)}\right]=\sum_{x \in \mathcal{X}} w(x) \mathbb{E}\left[y_{k}(x)\right]=\left(\frac{p+1}{2}\right)^{m} Z$.

Using variance and expectation formulas, we have the following equalities:

$$
\begin{aligned}
\operatorname{Var}\left[\frac{1}{M} \sum_{k=1}^{M} r^{m} Z^{(k)}\right]= & \frac{r^{2 m}}{M^{2}} \sum_{k=1}^{M} \operatorname{Var}\left[Z^{(k)}\right] \\
= & \frac{r^{2 m}}{M^{2}} \sum_{k=1}^{M} \operatorname{Var}\left[\sum_{x \in \mathcal{X}} w(x) y_{k}(x)\right] \\
= & \frac{r^{2 m}}{M^{2}} \sum_{k=1}^{M}\left(\sum_{x \in \mathcal{X}} w(x)^{2} \operatorname{Var}\left[y_{k}(x)\right]+\sum_{x_{i} \in \mathcal{X}} \sum_{x_{j} \neq x_{i}} w\left(x_{i}\right) w\left(x_{j}\right) \operatorname{Cov}\left[y_{k}\left(x_{i}\right), y_{k}\left(x_{j}\right)\right]\right) \\
= & \frac{r^{2 m}}{M^{2}} \sum_{k=1}^{M}\left(\sum_{x \in \mathcal{X}} w(x)^{2}\left(\mathbb{E}\left[y_{k}(x)^{2}\right]-\mathbb{E}\left[y_{k}(x)\right]^{2}\right)\right. \\
& \left.+\sum_{x_{i} \in \mathcal{X}} \sum_{x_{j} \neq x_{i}} w\left(x_{i}\right) w\left(x_{j}\right)\left(\mathbb{E}\left[y_{k}\left(x_{i}\right) y_{k}\left(x_{j}\right)\right]-\mathbb{E}\left[y_{k}\left(x_{i}\right)\right] \mathbb{E}\left[y_{k}\left(x_{j}\right)\right]\right)\right) \\
= & \frac{r^{2 m}}{M^{2}} \sum_{k=1}^{M}\left(\left(\frac{p^{2}+1}{2}\right)^{m} \sum_{x \in \mathcal{X}} w(x)^{2}+\sum_{x_{i} \in \mathcal{X}} \sum_{x_{j} \neq x_{i}} w\left(x_{i}\right) w\left(x_{j}\right) \mathbb{E}\left[\left(y_{k}\left(x_{i}\right) y_{k}\left(x_{j}\right)\right]\right)-\frac{Z^{2}}{M}\right. \\
= & \frac{r^{2 m}}{M^{2}} \sum_{k=1}^{M} \sum_{x_{i} \in \mathcal{X}} \sum_{x_{j} \neq x_{i}} w\left(x_{i}\right) w\left(x_{j}\right) \mathbb{E}\left[\left(y_{k}\left(x_{i}\right) y_{k}\left(x_{j}\right)\right]+\frac{r^{2 m}}{M}\left(\frac{p^{2}+1}{2}\right)^{m} \sum_{x \in \mathcal{X}} w(x)^{2}-\frac{Z^{2}}{M}\right.
\end{aligned}
$$

Let us focus on bounding the first term in the variance expression above, V_{1}. Using the lemma proved earlier with $a=x_{i}, b=x_{j}$, and $x_{j} \neq x_{i}$, we have that

$$
\begin{aligned}
V_{1} & =\frac{r^{2 m}}{M^{2}} \sum_{k=1}^{M} \sum_{x_{i} \in \mathcal{X}} \sum_{x_{j} \neq x_{i}} w\left(x_{i}\right) w\left(x_{j}\right) \mathbb{E}\left[\left(y_{k}\left(x_{i}\right) y_{k}\left(x_{j}\right)\right]\right. \\
& =\frac{r^{2 m}}{M} \sum_{x_{i} \in \mathcal{X}} \sum_{x_{j} \neq x_{i}} w\left(x_{i}\right) w\left(x_{j}\right)\left(\sum_{t=0}^{m}\binom{m}{t} p^{m-t}(1-p)^{2 t} \mathbb{E}\left[\prod_{\text {any } t \text { distinct indices }} \psi_{i_{1}}\left(x_{i}\right) \psi_{i_{1}}\left(x_{j}\right) \ldots \psi_{i_{t}}\left(x_{i}\right) \psi_{i_{t}}\left(x_{j}\right)\right]\right) \\
& =\frac{r^{2 m}}{M} \sum_{t=0}^{m}\binom{m}{t} p^{m-t}(1-p)^{2 t}\left(\sum_{x_{i} \in \mathcal{X}} \sum_{x_{j} \neq x_{i}} w\left(x_{i}\right) w\left(x_{j}\right) \mathbb{E}\left[\prod_{\text {any } t \text { distinct indices }} \psi_{i_{1}}\left(x_{i}\right) \psi_{i_{1}}\left(x_{j}\right) \ldots \psi_{i_{t}}\left(x_{i}\right) \psi_{i_{t}}\left(x_{j}\right)\right]\right)
\end{aligned}
$$

Hashing with Low-Density (Sparse) Parity Constraints

Recall that in the construction of our hash functions in Section 3.1, we let $A_{i, j}=1$ if node j is included in the $i^{\text {th }}$ XOR constraint and $A_{i, j}=0$ otherwise, and we let b_{i} be the parity bit generated for the $i^{t h}$ XOR constraint. The process for randomly generating $A, b\left(A_{i, j}^{(k)} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(f)\right.$ and $\left.b_{i}^{(k)} \stackrel{i i d}{\sim} \operatorname{Bernoulli}\left(\frac{1}{2}\right)\right)$ is designed to give us sparse parity constraints. Given the set of m XOR constraints, a configuration $x \in \mathcal{X}$ satisfies the set of XOR constraints if and only if $A x \equiv b$ $(\bmod 2)$.

Adapting the proof of Theorem 3 in Low-density Parity Constraints for Hashing-Based Discrete Integration (Ermon et al., 2014) and letting $A_{\left\{i_{1}, \ldots, i_{t}\right\}}$ and $b_{\left\{i_{1}, \ldots, i_{t}\right\}}$ be the t rows of A and b, respectively, corresponding to the t parity constraints inside the expectation, the expression we have can be written as:

$$
\begin{aligned}
& \sum_{x_{i} \in \mathcal{X}} \sum_{x_{j} \neq x_{i}} w\left(x_{i}\right) w\left(x_{j}\right) \mathbb{E}\left[\prod_{\text {any } t \text { distinct indices }} \psi_{i_{1}}\left(x_{i}\right) \psi_{i_{1}}\left(x_{j}\right) \ldots \psi_{i_{t}}\left(x_{i}\right) \psi_{i_{t}}\left(x_{j}\right)\right] \\
= & \sum_{x_{i} \in \mathcal{X}} w\left(x_{i}\right) \sum_{x_{j} \neq x_{i}} w\left(x_{j}\right) \mathbb{P}\left[A_{\left\{i_{1}, \ldots, i_{t}\right\}} x_{i}+b_{\left\{i_{1}, \ldots, i_{t}\right\}}=\overrightarrow{0}_{t}, A_{\left\{i_{1}, \ldots, i_{t}\right\}} x_{j}+b_{\left\{i_{1}, \ldots, i_{t}\right\}}=\overrightarrow{0}_{t}\right] \\
= & 2^{-t} \sum_{x_{i} \in \mathcal{X}} w\left(x_{i}\right) \sum_{s=1}^{n} W_{x_{i}}(s) r^{(s, f)}(0,0) \\
= & 2^{-2 t} \sum_{x_{i} \in \mathcal{X}} w\left(x_{i}\right) \sum_{s=1}^{n} W_{x_{i}}(s)\left(1+(1-2 f)^{s}\right)^{t} \\
\leq & 2^{-2 t}(2-2 f)^{t} \sum_{x_{i} \in \mathcal{X}} w\left(x_{i}\right) \sum_{s=1}^{n} W_{x_{i}}(s) \\
\leq & 2^{-t}(1-f)^{t} Z^{2}
\end{aligned}
$$

where $W_{x_{i}}(s)$ is the sum of $w\left(x_{j}\right)$ for all x_{j} at Hamming distance s from x_{i} and we used the fact that $r^{(s, f)}(0,0) \leq$ $r^{(1, f)}(0,0)$.

Proof (continued)

The bound for our first term is

$$
\begin{aligned}
V_{1} & =\frac{r^{2 m}}{M} \sum_{t=0}^{m}\binom{m}{t} p^{m-t}(1-p)^{2 t}\left(\sum_{x_{i} \in \mathcal{X}} \sum_{x_{j} \neq x_{i}} w\left(x_{i}\right) w\left(x_{j}\right) \mathbb{E}\left[\prod_{\text {any } t \text { distinct indices }} \psi_{i_{1}}\left(x_{i}\right) \psi_{i_{1}}\left(x_{j}\right) \ldots \psi_{i_{t}}\left(x_{i}\right) \psi_{i_{t}}\left(x_{j}\right)\right]\right) \\
& \leq \frac{r^{2 m}}{M} \sum_{t=0}^{m}\binom{m}{t} p^{m-t}(1-p)^{2 t}\left(2^{-t}(1-f)^{t} Z^{2}\right) \\
& =Z^{2} \frac{r^{2 m}}{M} \sum_{t=0}^{m}\binom{m}{t} p^{m-t}\left(\frac{1}{2}(1-f)(1-p)^{2}\right)^{t} \\
& =Z^{2} \frac{r^{2 m}}{M}\left(p+\frac{1}{2}(1-f)(1-p)^{2}\right)^{m} \\
& \leq Z^{2} \frac{r^{2 m}}{M}\left(p+\frac{1}{2}(1-p)^{2}\right)^{m} \\
& =Z^{2} \frac{r^{2 m}}{M}\left(\frac{p^{2}+1}{2}\right)^{m}
\end{aligned}
$$

The final bound for our variance becomes

$$
\begin{aligned}
\operatorname{Var}\left[\frac{1}{M} \sum_{k=1}^{M} r^{m} Z^{(k)}\right] & \leq Z^{2} \frac{r^{2 m}}{M}\left(\frac{p^{2}+1}{2}\right)^{m}+\frac{r^{2 m}}{M}\left(\frac{p^{2}+1}{2}\right)^{m} \sum_{x \in \mathcal{X}} w(x)^{2}-\frac{Z^{2}}{M} \\
& \leq Z^{2} \frac{2}{M} r^{2 m}\left(\frac{p^{2}+1}{2}\right)^{m} \\
& =Z^{2} \frac{2}{M}\left(\frac{2\left(p^{2}+1\right)}{(p+1)^{2}}\right)^{m}
\end{aligned}
$$

References

Ermon, Stefano, Gomes, Carla P., Sabharwal, Ashish, and Selman, Bart. Low-density parity constraints for hashing-based discrete integration. In Proc. of the 31st International Conference on Machine Learning (ICML), pp. 271-279, 2014.

