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Abstract

Canonical generalized linear models (GLM)
are specified by a finite dimensional vec-
tor and a monotonically increasing function
called the link function. Standard parame-
ter estimation techniques hold the link func-
tion fixed and optimizes over the parame-
ter vector. We propose a parameter-recovery
facilitating, jointly-convex, regularized loss
functional that is optimized globally over the
vector as well as the link function, with
best rates possible under a first order ora-
cle model. This widens the scope of GLMs
to cases where the link function is unknown.

1 Introduction

Generalized linear models are an old workhorse that
enjoy widespread use in regression [15]. Although the
methods to estimate GLM parameters are now stan-
dard, the important problem of learning its link func-
tion does not have a compelling solution. This has
remained so inspite of GLMs being a heavily used and
studied tool. We provide a convex formulation for esti-
mating parameters of a canonical GLM when the link
function is unknown. To the best of our knowledge
this is the first convex formulation to do so.

We begin with a simplistic example whose assump-
tions are relaxed later. Suppose that a generalized
linear relation R ⊃ Y 3 yi = g(〈u,xi〉) holds with an
unknown, continuous and strictly monotonic function
g(·) and an unknown vector u ∈ W ⊂ Rn. Given a
data set D = {(xi, yi)Ni=1} we would like to recover
the parameter u. For simplicity, we assume X, the
N × n sized matrix obtained by stacking vectors xi,
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is full rank. If X is rank-deficient we will recover u
only up to additions with Nullspace(X) and have to
replace our forthcoming claims about strict convexity
with convexity.

Although we motivate our cost function in terms of
a perfect u for pedagogic ease, neither our algorithm
nor our analysis require its existence. In fact, if we do
know that such an u exists, we show how to achieve
exponentially faster convergence.

When g(·) is the identity function, it is sufficient to
minimize ‖y −Xw‖2 with respect to w ∈ W, to esti-
mate u. Let NW(w∗) be the normal cone of W at w∗.
When g(·) is not identity, the iterative technique of
generating w → w∗ that satisfies the KKT condition
∇‖y−g(Xw∗)‖2 ∈ −NW(w∗) loses its sufficiency be-
cause ‖y−g(Xw)‖2 need no longer be convex and may
contain exponentially many (in dimensions of x) local
minima [2]. Without further assumptions, it becomes
impossible to restrict ‖w∗−u‖2U 1 to an arbitrary low
value. An effective alternative is to minimize a match-
ing Bregman divergence [2] (described in detail in Sec-
tion 2) that removes the non-convexity. When g(·) is
identity, 1

2‖y −Xw‖
2 is indeed such a matching loss.

Recovery of u is clearly affected by our ability to use
a matching loss, but we need to know g(·) to do so.
Unless one has explicit control over the generative
process, g(·) is rarely known. Practitioners typically
assume a convenient form or use hypothesis testing
to select from a small subset of all possible choices.
Our method, in contrast, is to learn the recovery-
facilitating loss function when g(·) is unknown.

Few things need to be kept in mind about the proposed
method. First, in the rare circumstance where the link
function is known, methods that exploit this knowl-
edge would enjoy an advantage because they need not
search over link functions. Second, since the space
of functions considered is vast, using small datasets
would overfit. To be useful we quantify how to grow

1U = X(X†X)
−1
X† projects on the range space of X.
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the search space, with the size of the dataset, using
regularization. In our case, recovery of u will auto-
matically imply recovery of g(·) upto a multifunction
(i.e. a point to set map) that, when given a new x,
predicts an interval. Averaging the interval yields a
simple and empirically effective point estimate which
may be improved exploiting analytic properties of g(·).

2 Background
Notation: Vectors are in bold lower case letters, ma-
trices are capitalized. We decorate a symbol with a
star at the bottom (e.g. w∗) to indicate optimality
and at the top (e.g. φ∗) for Legendre conjugation [19].
Bregman divergences and their relation to exponential
family densities [12] play a major role in the paper.

Bregman Divergence: Let φ : Θ 7→ R, Θ =
domφ ⊆ Rd be a strictly convex, closed function,
differentiable on int Θ. The corresponding Bregman
divergence Dφ

(
·
∣∣∣∣·) : dom(φ) × int(dom(φ)) 7→ R+ is

defined as Dφ

(
x
∣∣∣∣y) , φ(x)−φ(y)−〈x− y,∇φ(y)〉 .

From strict convexity it follows that Dφ

(
x
∣∣∣∣y) ≥ 0

and Dφ

(
x
∣∣∣∣y) = 0 iff x = y. Bregman divergences are

(strictly) convex in their first argument, but not nec-
essarily in their second. We only consider separable
functions of the form φ(·) : Rn 3 x 7→

∑
i φ(xi) that

are sums of identical scalar convex functions.

The Legendre conjugate ψ(·) of a function φ(·) is
(φ)
∗

(x) , ψ(x) , supλ(〈λ,x〉 − φ(λ)). If φ(·) is a
closed, strictly convex function [19], as assumed in this

paper,
(
(φ)
∗)∗

(·) = φ(·) and (∇φ)
−1

(·) = ∇ψ(·) is a
one to one mapping, leading to the identity:

D∗φ
(
∇φ(y)

∣∣∣∣∇φ(x)
)

= Dφ

(
x
∣∣∣∣y). (1)

The infimal convolution of φ1(·) and φ2(·) is de-
noted in this paper by φ1 ⊕ φ2 and is defined as:
[φ1 ⊕ φ2](y) = infx φ1(x) + φ2(y − x) [19]. The fol-
lowing identities will be useful (in proving Theorem 1)
[αφ(·)]∗ = αφ∗( ·α ), [φ1 + φ2]∗(·) = [φ∗1 ⊕ φ∗2](·).

The probability density of a random variable belongs
to the Exponential family 2 if it has the form
P (Y = y | θ) = exp〈θ,y〉−φ

∗(θ) . Then the domain

Θ =
{
θ
∣∣∣∫Y exp〈θ,y〉 <∞

}
is convex and the log par-

tition function φ∗(θ) is a convex function (strictly so
if Y is affinely independent) [12] from which all cu-
mulants may be recovered, e.g.: E [Y ] = ∇θφ∗(θ) =

(∇φ)
−1

(θ). Maximum likelihood estimate θ∗ =
Argmaxθ logP (y | θ) is the maximizer of the sample
log likelihood. For exponential family we obtain:

θ∗ = ArgminθDφ
(
y
∣∣∣∣(∇φ)

−1
(θ)
)

(2)

= ArgminθDφ

(
y
∣∣∣∣E [y|x]

)
.

2w.r.t a base measure omitted for notational simplicity.

3 Formulation
Given a strictly (or strongly) convex regularizer R(w),
a non-negative scalar cN and y ∈ RN

min
w,φ(·)∈C?⊂C

1

N
Dφ
(
y
∣∣∣∣(∇φ)

−1
(Xw)

)
+
cN
N

R(w)

≡ 1

N
min

w,θ,φ(·)∈C?⊂C
θ=Xw

Dφ
(
y
∣∣∣∣(∇φ)

−1
(θ)
)

+
cN
N

R(w) (3)

is our candidate cost functional. C is the infinite di-
mensional space of all separable convex functions and
C? is a subset of it used for regularization. As we
minimize (3) over φ(·), the “match” is always main-
tained. In the absence of simplifying restrictions, that
we loathe to make, such as assuming a finite dimen-
sional parameterization of φ(·), solving (3) is a chal-
lenging problem in calculus of variations. Regular-
ization: w is regularized using R(·) whereas φ(·) is
regularized by restricting it to the subset C? described
next. We shall later quantify how to choose cN and C?
in accordance with the size of the training set.

For regularization, we restrict φ(·) to a specific subset
of C whose ‘size’ may be chosen according to the size
of the training dataset. For µ(α) , αx+(1−α)y, the
set Cs,γ of φ(·) is defined by the following inequality:

s‖y − x‖γ ≤
αφ(x) + (1− α)φ(y)− φ(µ(α))

α(1− α)
∀α ∈ [0, 1]

=
αDφ

(
x
∣∣∣∣µ(α))+ (1− α)Dφ

(
y
∣∣∣∣µ(α))

α(1− α)
≤ 〈∇φ(y)−∇φ(x),y − x〉 . (4)

Inequality (4) generalizes strong convexity which is
obtained at γ = 2. Let CL,ν denote the set of convex
functions with (L, ν) Hölder continuous gradients. If
φ(·) ∈ Cs,γ then φ∗(·) ∈ C 1

s ,
1

γ−1
. In what follows, φ(·)

will be restricted to Cs,γL,ν implying φ∗(·) ∈ C
1
L ,

ν+1
ν

1
s ,

1
γ−1

. For

simplicity we will denote these sets by C? and refer to
them as Hölder convex functions. Finally, if A is the
adjacent difference matrix and [·]p a point-wise expo-
nentiation of a vector, we have the following pointwise
inequality:

1

L
[Aθ]1+1/ν ≤ [A(∇φ)

−1
(θ)] ≤ 1

s
[Aθ]

1
γ−1 ,

L‖x− y‖ν ≥ Dφ

(
x
∣∣∣∣y) ≥ ‖x− y‖γ (5)

We shall show that if cN = o(N)1+1/ν then
limN→∞

1
N ‖u−w∗‖X†X → 0. Non-degeneracy and

Efficiency: Note that Hölder convexity prevents (3)
from being degenerate by keeping φ(·) bounded away
from linearity between any adjacent points 〈xi,w〉 and
〈xj ,w〉 . Furthermore this class of convex functions ad-
mit fast optimization algorithms that meets the opti-

mal convergence rate T−
γ+3
2γ possible for this class [17].

Remarkably the accelerated gradient method (see Sec-
tion 4, Table 1) can be used for this class to achieve
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the optimal convergence rate [8], provided an adjusted,
effective Lipschitz constant is used. Setting ν = 1 we
obtain the optimal rate for convex functions with Lip-
schitz continuous gradient.

Although our algorithm to minimize (3) is very simple,
listing its updates would not shed much light on their
own. Hence we derive the algorithm step by step, re-
moving computational obstacles in our way, the root of
which is the optimization over the space of functions
φ ∈ C?. Note, φ(·) not only parameterizes the loss
function, its gradient also affects the right argument.

The first piece of our solution is to identify functions in
C? with members of a specific finite dimensional set G,
allowing us to pose (3) as a finite dimensional problem.
However, this mapping from C? to G is existential i.e.,
not constructive and many to one, thus leaving us with
a need to optimize a function over G that we cannot
evaluate. Working around this obstacle is the second
piece. Properties of separable Bregman divergences
play a vital role in the solution. In the interest of
space we had to drop the third and final part that
addresses how to exploit the fact that g(·) is analytic.

3.1 Uniqueness of the Minimum

Now, we present our first result. In (3) bothw and φ(·)
vary, so it is important to know whether the joint op-
tima is unique. We show that Dφ

(
y
∣∣∣∣(∇φ)

−1
(Xw)

)
is

jointly convex in the function φ(·) and vector w. Since
R(w) is strictly convex the optimizer w∗ is unique.

Theorem 1. If φ ∈ C then the functional
Dφ
(
y
∣∣∣∣(∇φ)

−1
(Xw)

)
is jointly convex in φ,w.

Proof. Let θ = 〈x,w〉 and θ̄ = αθ1 +(1−α)θ2. It will

be sufficient to show that Dφ
(
y
∣∣∣∣(∇φ)

−1
(θ)
)

is jointly

convex in φ(·) and θ. Recall Dφ
(
y
∣∣∣∣(∇φ)

−1
(θ)
)

=
φ(y) + ψ(θ) − 〈y,θ〉 is the Fenchel-Young gap:

φ(y) + φ∗(θ) − 〈y,θ〉 denoted here by F
(
φ
θ

)
.

Showing joint convexity is equivalent to showing
A︷ ︸︸ ︷

αF
(
φ1
θ1

)
+ (1− α)F

(
φ2
θ2

)
≥

B︷ ︸︸ ︷
F
(
α
(
φ1
θ1

)
+
(
(1− α) φ2θ2

))
.

A = [αφ1 + (1 − α)φ2]
(
y
)

+ αψ(θ1) + (1 − α)ψ(θ2) −〈
y, θ̄

〉
. B = [αφ1 + (1 − α)φ2]

(
y
)
−
〈
y, θ̄

〉
+ [αφ1 + (1 −

α)φ2]∗
(
θ̄
)
. We have A − B = αφ∗1(θ1) + (1 − α)φ∗2(θ2) −

[αφ1 + (1 − α)φ2]∗(θ̄) = αφ∗1(θ1) + (1 − α)φ∗2(θ2) −
[(αφ1)∗ ⊕ ((1 − α)φ2)∗](θ̄) = αφ∗1(θ1) + (1 − α)φ∗2(θ2) −[
minz(αφ1)∗

(
z
)

+ ((1 − α)φ2)∗
(
αθ1 + (1 − α)θ2 − z

)]
≥

0 obtained by setting z = αθ1

Corollary 1. If φ(·) is convex and R(·) is
strictly(strongly) convex then the cost func-

tion infφ
1
NDφ

(
y
∣∣∣∣(∇φ)

−1
(Xw)

)
+ cN

N R(w) is
strictly(strongly) convex in w.

Gradient Descent (GD) [16] Accelerated GD [16]

Input: ∇m? (·), a, b
Initialize w0, t = 0.
repeat
wt+1 = wt − a

b+
√
t
∇m?

(wt)
until Converged

Input: ∇m? (·), Lipschitz
constant l
Initialize w0, a0 = 1, t = 0.
repeat
xt = wt − 1

l∇m? (wt)

at+1 =
(1+
√

4(at)2+1)
2

wt+1 = xi +
at−1

at+1 (xt −
xt−1)

until Converged

Table 1: Accelerated and (un-accelerated) Gradient Descent

Using equation (1) Dφ
(
y
∣∣∣∣(∇φ)

−1
(Xw)

)
can be rep-

resented as Dφ∗
(
Xw

∣∣∣∣∇φ (y)
)
. It is also jointly convex

in this representation.

Theorem 2. If φ∗ ∈ C then Dφ∗
(
Xw

∣∣∣∣∇φ (y)
)

is
jointly convex over φ∗ and w.

Proof. Follows from essentially same sequence of argu-
ments as used in Theorem 1.

4 Optimization

Recall that formulation (3) requires optimization over
w as well as φ(·). Block coordinate descent is very pop-
ular in machine learning when there are two or more
sets of variables that need to be optimized over[3].
However in our setting, naive block coordinate mini-
mization over w and φ does not readily apply because
it is not clear how one may optimize over C?.

In the forthcoming analysis a prominent role will
be played by the convex marginal functions m?
(w) , infφ∈C?Dφ

(
y
∣∣∣∣(∇φ)

−1
(Xw)

)
obtained by tak-

ing pointwise infimum3. If we can compute the gradi-
ent of m? (w) and minimize 1

Nm? (w) + cN
N R(w) with

it, we would achieve our objective (3). The novelty pri-
marily lies in constructing an efficient computational
scheme to obtain the gradient that will be referred to
as GradMaPr . The gradient will be used in an op-
timization algorithm that is optimal in the black-box
first order oracle sense [16] obtaining the convergence

rate of O(T−
γ+3
2γ ). Since we optimize m? (w) using

gradient methods, it is important whether it inherits
Hölder smoothness of gradients of (3).

Lemma 1. If φ(·) ∈ Cs,γ , then the convex marginal

function m(w) = infφ∈Cs,γ Dφ
(
y
∣∣∣∣(∇φ)

−1
(Xw)

)
has

( 1
s ,

1
γ−1 ) Hölder continuous gradient.

3While pointwise supremum preserves convexity, joint
convexity (established in Theorem 1) ensures that even the
marginal is convex
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4.1 GradMaPr : Gradients by Marginalization
and Projection

If one can compute a (sub)gradient of

infφ∈C?Dφ
(
y
∣∣∣∣(∇φ)

−1
(Xw)

)
, one can optimize

functional (3). In spite of the infinite dimensionality,
the time complexity of computing the gradient is at
most a log factor worse than computing the gradient
of a GLM with a known link function which is the
linear in N whereas for GradMaPr it is O(N logN).
Using standard subdifferential calculus [19] we obtain:

∂θmin
φ∈C?

Dφ
(
y
∣∣∣∣(∇φ)

−1
(θ)
)
∈

ConvHull
φ∗∈Argmin

φ∈C?
Dφ

(
y
∣∣∣∣(∇φ)−1(θ)

){(∇φ∗)−1(θ)− y}. (6)

To translate equation (6) word for word into an al-
gorithm would rquire computing the set {φ∗} =

Argminφ∈C?Dφ
(
y
∣∣∣∣(∇φ)

−1
(θ)
)

first and then select-

ing a subgradient from ConvHull{(∇φ∗)−1(θ) − y}.
The first step is a problem because it is an optimiza-
tion over the space of functions. The remaining of this
section is about how to circumvent this.

4.2 Circumventing the Computation of φ∗

In the forthcoming analysis, an important role will
be played by the range set S ? (θ) , {s|s =

(∇φ)
−1

(θ), φ ∈ C?}. Every vector s ∈ S ? (θ) cor-
responds to potentially many φ ∈ C? that satis-
fies s = (∇φ)

−1
(θ) each incurring a different loss

Dφ
(
y
∣∣∣∣(∇φ)

−1
(θ)
)
. We define the function M? : S ×

θ 7→ {R ∪+∞} using their minimum as

M?(s,θ) , min
φ∈C?|s=(∇φ)−1(θ)

Dφ

(
y
∣∣∣∣s = (∇φ)

−1
(θ)
)

=

min
φ∗∈C?|s=∇φ∗(θ)

Dφ∗
(
θ
∣∣∣∣∇φ (y)

)
using (1) (7)

Note, if s /∈ (∇φ)
−1

(θ) then M? (s,θ) = +∞. Now,
note that objective (3) is equivalent to:

min
w,s∈S?(θ),θ,Xw=θ

1

N
M? (s,θ) +

cN
N

R(w). (8)

Although function φ(·) does not appear in the cost (8),
we still have not circumvented the computation of φ∗
because it is needed to evaluate the function M?(s,θ).
Let us establish some properties of M? (s,θ) that will
help us remove this obstacle.

Theorem 3. Function M? (s,θ) is convex in s ∈ S?
Proof. For a fixed θ, consider two points s1, s2 that
correspond to functions φ∗1 and φ∗2 that achieves
the minimum as indicated in (7), incurring the cost
Dφ∗

(
θ
∣∣∣∣∇φ (y)

)
with the respective functions. Now

consider the point αs1 + (1− α)s2 = α∇φ∗1(θ) + (1−
α)∇φ∗1(θ) where α ∈ [0, 1]. It is clear that it corre-
sponds to the function αφ∗1 +(1−α)φ∗2. The cost func-
tion Dφ∗

(
θ
∣∣∣∣∇φ (y)

)
has already been proved to be

jointly convex in Theorem 2.

Optimizing M? (s,θ): The (sub)gradient ∂sM? (s,θ)
of M? (s,θ) is obtained by differentiating (7) as:

= ConvHull
φ∗∗∈ Argmin

φ∗∈C?|s=∇φ∗(θ)
Dφ∗

(
θ

∣∣∣∣∇φ(y))([∇2φ∗∗])
−1

(∇φ∗∗(θ)− y)

= ConvHull
φ∗∈ Argmin

φ∈C?|s=(∇φ)−1(θ)

Dφ

(
y

∣∣∣∣s)[∇2φ∗](θ=∇φ(s))(s− y) (9)

∂wM? (s,θ) = X†(s− y). (10)

The Hessian [∇2φ∗] is a positive diagonal matrix since
φ∗ is separable and convex. In (8) we have recast (3) as
a optimization featuringM?(s,θ), seemingly amenable
to (sub)gradient descent in the joint space (s,w) using
(9) and (10). However, we still do not have a compu-
tational scheme to identify φ(·)∗∗ that is required to
compute ∂sM? (s,θ) numerically.

Descending along Marginalized M? (s,θ):

An alternative is to use a descent method w.r.t. w on
the marginal function minsM?(s,θ) using its gradient
by minimizing M? (s,θ) fully for a given w. Recall,
M? (s,θ) involves a conceptual optimization over φ ∈
C?, now we have to minimize it further over s to obtain
s∗(θ) = ArgminsM? (s,θ) and then differentiate with
respect to θ. The subgradient of the marginal is:

∂w inf
s∈S?(θ)

M? (s,θ) = ConvHulls∗(θ)X
†(s∗(θ)− y). (11)

Perhaps surprisingly, as we shall show soon (Theorem
4), not only is s∗(θ) unique, it is independent of φ∗ but
also can be computed very efficiently in O(N logN) as

s∗(θ) = Argmins∈S?(θ) ‖y − s‖2. (12)

The key steps of GradMaPr remain the same, it con-
sists of marginalization and projection. Different in-
stances of S? only change the set to project on.

We will need the following Lemma proved in [1].

Lemma 2. [1] If the Bregman divergence Dφ

(
·
∣∣∣∣·) is

separable, and R↓ the set of vectors y in Rn that are
in sorted order, that is, vi < vj if i < j then the
minimizer Argminy∈R↓Dφ

(
x
∣∣∣∣y) is independent of φ

for all x ∈ domφ(·).
Corollary 2. Let M be a positive diagonal matrix that
defines the squared Mahalonobis distance, the mini-
mizer Argminy∈R↓ ‖x − y‖2M , is independent of the
choice of M .

Theorem 4. Argmins∈S?(θ)M? (s,θ) is unique, in-
dependent of the minimizing φ∗s defined in (7) and
obtained as the Euclidean projection of y on S? (θ).
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Proof. The KKT conditions of mins∈S?(θ)M?(s,θ) can

be obtained from (9) as s − y ∈ ([∇2φ∗])
−1NS?(θ)(s)

and s ∈ S? (θ). The matrix ([∇2φ∗])
−1

is positive def-
inite and diagonal. Now observe that the KKT condi-
tions are exactly the definition of the projection of y on
S? (θ) according to the squared Mahalonobis distance

defined by the matrix ([∇2φ∗])
−1
, which according to

Corollary 2 is independent of ([∇2φ∗])
−1

if S? (θ) has
the conic structure of sorted vectors.(This can be ob-
tained from forthcoming Lemma 3 using simple affine

change of variables At = 1
s [Aθ]

1
γ−1). Observe that the

matrix ([∇2φ∗])
−1

was the only term that depended on
a particular φ∗. This concludes the proof.

Corollary 3. The subgradient defined in (6) is

∂wm(w) = ∂w inf
φ∈C?

Dφ
(
y
∣∣∣∣(∇φ)−1 (Xw)

)
= X†∂θ inf

φ∈C?
Dφ
(
y
∣∣∣∣(∇φ)−1 (Xw)

)
= ConvHull
φ∗∈Argmin

φ∈C?
Dφ

(
y

∣∣∣∣(∇φ)−1(θ)
)X†{(∇φ∗)−1(θ)− y}

= X†(s∗(θ)− y).

4.3 Representing S? (θ) by Linear Inequalities

Central to our efficient computation of s∗(θ) via (12)
are two algorithmic devices (i) Bregman’s algorithm
for solving linearly constrained convex optimization
problems [5] and (ii) The pool adjacent violators
(PAV) algorithm [4]. Both require the representa-
tion of the constraints as a set of linear inequalities,
whereas the representation of S ? (θ) described so far
does not have that form. In this section we give an
alternative characterizations of the sets S ? (θ) that
will enable the use of PAV and Bregman’s algorithm.
Let A be the adjacent-difference matrix. We define

Gs,γL,ν(θ) = {s| 1L [Aθ]1+1/ν ≤ As, As ≤ 1
s [Aθ]

1
γ−1 }.

We use the shorthand G? (θ) when appropriate.

Lemma 3. The set S? (θ) is convex (polyhedral) and
given by πθGs,γL,ν(θ). where πθ is the inverse of the per-
mutation operator that stable sorts θ = Xw in as-
cending order.4

Corollary 4. s∗(θ) = πθ

(
Argminv∈G∗(θ) ‖v − (πθ)

−1(y)‖2
)

4.4 Convergence of GradMaPr in O(N logN)

The O(N logN) convergence of GradMaPr is obtained
as long as ‖y‖ = O(N) and follows as a result of a
sequence of isotonic regressions that need to called at
most O(logN) times. Isotonic regression is solved in

4When the components of θ are not all unique we form
G ? (θ) by considering the unique components of θ only
and then add equality constraint for every replicated value
occurring in θ.

time at most O(N) using the pool adjacent violators
(PAV) algorithm. PAV by itself is not sufficient for
O(N logN) of GradMaPr , it depends on Lemma 2.

We proceed by splitting the variable s (and the cor-

responding inequalities) to obtain As+ ≤ 1
s [Aθ]

1
γ−1 =

At, As− ≤ 1
l [Aθ]1+1/ν = Av, and 0 = s+ + s−.

We write the constraints in a more suggestive form by
concatenating the variables as follows: (

s+
s− ).(

A 0
0 A

)(
s+
s−

)
≤
(
A 0
0 A

)(
t
v

)
,
(
I I

)(s+
s−

)
= 0

(13)
This induces an equivalent/conformal split on y as y−,
y+ and in the cost function as:

min
(
s+
s− )

∣∣∣∣∣∣∣∣(s+s−
)
− (πθ)

−1
(
−y+
y−

)∣∣∣∣∣∣∣∣2 . (14)

Now we apply augmented method of multipliers al-
gorithm to the cost function (14) subject to the con-
straints (13). Note that the variables s+ and s− are
decoupled in the constraints (13)(a), as well as in the
cost function, hence the ADMM updates can be com-
puted in parallel using PAV in linear time. Next we
project on the constraint (13)(b) leading to the update(

s+
s−

)t+1

= Avg

(
s+
s−

)t
. (15)

Violation of this constraint can be upper bound by
O(‖y‖) = O(N) at the start of the iteration. Time
complexity of O(N logN) follows from geometric rate
of convergence of ADMM [14].

Note that this algorithm can handle all Hölder conti-
nuity constrained isotonic regression. Setting ν = 1
we obtain the Lipschitz continuity case.

Vector s∗ obtained by GradMaPr is used in the optimal

gradient algorithm (Table 1) achieving O(T
3+γ
2γ ) con-

vergence rate, with each iteration being O(N logN).

5 Prediction

In this section we describe how our method may be
used for prediction. We restrict our description to the
case where g(·) is Lipschitz continuous and strongly
monotone. The cases for Holder continuity and Holder
convexity are similar. The key idea is to find the
smallest interval of training data points θl and θu
that encloses θt = 〈w,x〉 . Any Lipschitz continuous,
strongly monotone curve that lies in the bounding box
of (θl, yl), (θu, yu) denotes the set permissible predic-
tion for θl ≤ θ ≤ θu. Lipschitz continuity and strong
monotonicity can be seen to induce the linear inequali-
ties (nonlinear for the general Holder case) that further
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restricts the permissible values within the bounding
box. Thus given a θt = 〈w,x〉 we can identify an in-
terval that satisfy the condition of being permissible
predictions. We return the average of that interval.

Recall that the prediction is given by (∇)
−1
φ(〈x,w〉).

Let w∗ be the optimal w returned by the algorithm,
let θt = 〈w∗,x〉, θl = max〈X(i),w〉≤θt 〈X(i),w〉, θu =
min〈X(i),w〉≥θt 〈X(i),w〉 and the corresponding y’s be
yl, yu. Then the prediction y corresponding to x is:

y ∈


[yl, yu]

[max(yl, yu − L(θu − θ)),min(yu, yl + s(θ − θl))]
[max(yl, yu − l(θu − θ),min(yu, yl + l(θ − θl))]

when equation (3) is optimized over corresponding C?.

Continuity: Note that the prediction function is a
continuous point-to-set mapping, where continuity of a
point-to-set-map is defined in the usual way [19] as: A
point-to-set-map y(x) is continuous if for all sequences
xt → x there exists a yt → y such that yt ∈ y(xt).

Recovering φ(·): Although we cannot recover a
unique φ(·) an instance of it can be recovered up to
agreement with the training data. To obtain such an
estimate, select a continuous function from the point-
to-set mapping x 7→ ȳ(x), where we use ȳ to indicate
a selection. Taking the Legendre dual of the integral
of the curve x 7→ ȳ(x) obtains a desired φ(·).

Restricted Output Space: If we have incorpo-
rated the restriction on the outputs space in the def-
inition of G ? (θ) there is little that needs to be
done at prediction time. If test x is such that
〈w∗,x〉 ∈ [mini 〈w∗,xi〉 ,maxi 〈w∗,xi〉] nothing needs
to be done as the prediction function y(x) will au-
tomatically guarantee the output space interval con-
straints. On the other hand if 〈w∗,x〉 lies outside of
the range, thresholding will be necessary.

6 Realizable Case

As a pedagogic shortcut we have motivated the cost
function (3) using the notion of a vector u that

achieves y = g(Xw) = (∇φ)
−1

(Xw) exactly. The
optimization algorithms presented, however, do not
require the existence of such a u. If, however, such
a perfect u exists, exponentially more efficient tech-
niques may be applied to recover it.

Observe that the perfect u assumption implies the
following {∃φ ∈ C ? s.t. Xu ∈ ∇φ(y)} ≡ {Xu ∈
(πy)

−1G? (πy(y))}. When the regularization on w is
specified using a set W the vector u can be obtained
as the following convex feasibility problem

θ ∈ {(πy)
−1G? (πy(y)} ∩ {XW}. (16)

Any such convex feasibility problem may be solved
by both the sequential as well as the parallel Breg-
man’s algorithm [6]. For our framework, two cases
are particularly convenient: (i) W is an `2 ball and
(ii) W = {z| ‖z‖2X†X ≤ L}. Choosing the Bregman
divergence to be squared Euclidean, we obtain the pro-
jection on {(πy)

−1G?(πy(y)} in linear time by the PAV
algorithm and the projection on the setW reduces to a
regularized least squares in case of (i) and is obtained
in closed form for case (ii). Both the solutions can
be obtained in time linear in the dimension. In this
case we obtain an overall geometric convergence rate
O(e−cT ) [7], as is the case if we apply ADMM to the
same problem [14].

7 Performance Guarantees

We have motivated our cost function (3) assuming
y equals g(Xu) exactly . From the GLM view point
g(·) is the expectation function. In practice we
would only have samples drawn from the condi-
tional distribution. Now we answer how well does
our algorithm perform in this setting. Let w∗ =
Argminφ∈C?,w

1
NDφ

(
y = g(Xu)

∣∣∣∣(∇φ)
−1

(Xw)
)

+
cN
N R(w) and let w̃∗ =

Argmin
φ∈C?,w

1
NDφ

(
ỹ
∣∣∣∣(∇φ)

−1
(Xw)

)
+ cN

N R(w) where

ỹ is a perturbation ofy. First we analyze the
deterministic case.

Lemma 4. Let Rn 3 y = g(Xu) with g ∈ {(∇φ)−1|φ ∈ Cs,γL,ν}.
If expression (7) is minimized over φ in the class Cs,γL,ν
then 1

N ‖u−w∗‖X†X ≤
1
N (LcNR(u))

γ
1+γ .

Proof. Optimality and non-negativity of the regular-
izer yields Dφ

(
y
∣∣∣∣(∇φ)−1 (Xw∗)

)
− Dφ

(
y
∣∣∣∣(∇φ)−1 (Xu)

)
≤

cN (R(u)−R(w∗)) ≤ cNR(u). Therefore,

Dφ
(
(∇φ)−1(Xu)

∣∣∣∣(∇φ)−1 (Xw∗)
)
−
〈
y − (∇φ)−1(Xu), X(w∗ − u)

〉
≤ cNR(u) or,D∗φ

(
Xw∗

∣∣∣∣Xu) ≤ cNR(u) and from

Hölder convexity 1
L‖Xw∗−Xu‖

1+1/ν ≤ cNR(u).

The result implies that if cN = o(N)1+1/ν then
limN→∞

1
N ‖u−w∗‖X†X → 0.

Theorem 5. Let RN 3 y = g(Xu)

with g ∈ {(∇φ)
−1|φ ∈ C?} and w̃∗ =

Argminφ∈C?,w
1
NDφ

(
ỹ
∣∣∣∣(∇φ)

−1
(Xw)

)
+ cN

N R(w).
Let R(·) be sR(K)-strongly convex where K is any
positive diagonal matrix, then 1

N ‖w̃∗ − w∗‖K ≤
2||ỹ−y||

XK−1X†
NcNsR(K) .

Proof. w∗ is the stationary point of
mins∈S?

1
NM(s,w) + cN

N R(w) = 1
Nm(w) + cN

N R(w).
We have ∇wm(w) = X† ProjS? (y) − y. When y

15



Sreangsu Acharyya, Joydeep Ghosh

is corrupted into ỹ we obtain the corrupted gradi-
ent ∇wm̃(w) as X† ProjS? (ỹ) − ỹ. Let w̃∗ be the
stationary point of m̃(w) + R(w).

‖X†y −X†ỹ‖ ≥ ‖X† ProjS? (y)−X† ProjS? (ỹ) ‖
= ‖∇wm(w∗)−∇wm̃(w∗) +X†(y − ỹ)‖

= ‖ − ∇wm̃(w∗) +X†(y − ỹ)‖.

Squaring and applying Cauchy-Schwarz inequality
we obtain 2||ỹ − y||XK−1X† ≥ ||∇θm̃(w∗)||K−1 ≥
cNsR(K)||w̃∗ −w∗||K .

K Invariance: One can tighten the bound by choos-
ing K. We emphasize that the algorithm is oblivious
to the choice of K, the bound that holds uniformly
over positive diagonal because the projection on S? is
invariant to such choices.

Equipped with this deterministic bounds one may eas-
ily obtain performance guarantees for probabilistic set-
tings using standard large deviation results. For ex-
ample if g(·) is the expectation function of a canonical
GLM [15], equivalently: P (y|x) = e〈x,u〉y−φ

∗(〈x,u〉).

Theorem 6. If y has probability density P (y|x) =
e〈θ,y〉−φ

∗(θ) with an unknown φ∗ with a negative en-
tropy function uniformly convex with the modulus
function δ(·) with norm || · ||K−1 . Then P ( 1

N ‖w̃∗ −
w∗‖K ≤ t) ≥ 1− exp (−Nδ(ts(K))).

8 Discussion and Related Work

The GradMaPr part of our algorithm shares remark-
able similarity with Isotron [11] and its descen-
dant SlIsotron [10]. Having developed GradMaPr

unaware of this family of algorithms, the similarity
is pleasantly surprising. Our derivation, which follows
an entirely different approach, sheds light on many in-
triguing and open issues about Isotron , SlIsotron
and allows strengthening the original claims. Objec-
tive: the objective of the Isotron family, and there-
fore their guarantees are quite different. Whereas our
objective is parameter recovery, arguably a more de-
manding task than prediction, the Isotron family is
motivated by minimizing expected square loss on pre-
diction: a non-convex problem, making their guar-
antees surprising and impressive. The technicality,
length, tediousness of their analysis points to the dif-
ficulty of their undertaking. The respective guaran-
tees speak to the different objectives, Isotron do not
make any claims about recovery (understandable in
light of non-convexity)Method: The Isotron family
of updates are not derived from their motivating cost
function (expected square loss) but obtained ad-hoc
and analyzed in the stochastic setting. Quite strik-
ingly the updates do not even minimize the empirical

square loss and its iterates lack convergence guaran-
tees. This forces the authors to evaluate every inter-
mediate iterate w.r.t a held out test set, incurring ei-
ther runtime cost or a space cost of keeping the entire
history of intermediate values. Although the objec-
tive of the SlIsotron family is to minimize expected
square loss, the updates applied can now be recog-
nized as constant learning rate gradient updates of a
different cost function: marginalized M? (s,θ) which
we have shown to be convex. Although suboptimal
in its use of first order information (lacks adaptation
of learning rate and acceleration whereas our update
does the latter), our analysis shows that those updates
are convergent. Not only are the updates of Isotron
, SlIsotron special cases of updates derived here, our
loss function is a convex upper bound when g(·) is Lip-
schitz continuous as assumed in [11], this follows from

Dφ
(
y
∣∣∣∣(∇φ)

−1
(Xw)

)
≥ s

2‖y − g(Xw)‖2. In light of
their guarantees one can see not only is M? (s,θ) an
upper bound it is also Fisher consistent, i.e. sequences
that minimize it also achieves Baye’s error rate. Our
paper places Isotron variants firmly on the setting of
minimizing convex surrogate losses with gradient de-
scent. Assumptions: Our analysis assumes g(·) is
Hölder continuous which is strictly more general than
Lipschitz continuity assumed in Isotron , SlIsotron
. We make very weak assumptions on the distribu-
tion generating the samples (we do not admit to any
parametric form just membership in the exponential
family with Hölder convex negative entropy functions),
whereas Isotron , SlIsotron guarantees are distri-
bution free. Model Selection: The SlIsotron fam-
ily lacks the traditional notion of a regularizing func-
tion or a regularizing set. It achieves model selection
by evaluating all intermediate iterates against a held
out test set and returns the function with the best test
error. The only hyper-parameter is that of how many
iterations to perform. In contrast our setup is more
traditional with a regularizing function, the coefficient
of which is determined by cross validation. Guaran-
tees: The performance guarantees are not compara-
ble across the two approaches as their scopes are dif-
ferent. On the statistical side Isotron family comes
with distribution free guarantees on expected square
loss, whereas our method come with recovery guar-
antees under very mild statistical assumptions. On
the optimization side, for the non-agnostic setting our
convergence guarantees are exponentially faster than
Isotron , SlIsotron . For the non-realizable case
our update match the best black-box bound possible
for a first-order method.

9 Empirical Performance

In this section we compare preliminary empirical per-
formance of our proposed technique with that of
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SlIsotron on identical prediction tasks. SlIsotron

is the most advanced algorithm that has comparable
capabilities.

First, we discuss some implementation detail. Both
our algorithm and SlIsotron have O(N logN) com-
plexity per iteration to solve the Lipschitz isotonic re-
gression. SlIsotron , requires an intricate tree data
structure. We use our ADMM variant in Lipschitz iso-
tonic regression in both the methods for simplicity of
implementation. This can only affect the running time
not the quality of the results. This, however, rules out
comparing the runtime of the algorithms and is dis-
advantageous to our proposed algorithm because we
expect it to be faster as it uses accelerated gradient
descent whereas SlIsotron implicitly uses gradient
descent with constant learning rate.

For prediction problems the sources of difference be-
tween SlIsotron and our algorithm are: (i) different
methods for estimating the hyperparameters and (ii)
different interpolation strategy used to generate pre-
diction between two training samples. Our algorithm
uses the average of the predicted interval as described
in Section 5. SlIsotron uses linear interpolation. For
SlIsotron we set the max number of iterations to 100
and set our hyperparameter cN using 10 fold cross-
validation and grid search.

Following [10] we compared RMSE
achieved on the UCI datasets:
communities, concrete, housing, parkinsons,
winequality. Note RMSE is not fair to our method
because unlike SlIsotron it is not designed to
minimize RMSE. Although our method performed
better on average compared to SlIsotron and lo-
gistic regression, the difference was not statistically
significant at 95% confidence level. One reason that
the algorithms are statistically indistinguishable may
be because RMSE is a poor choice or this. Lack of
dynamic range in RMSE has also been observed in
matrix factorization tasks. The empirical result sug-
gests that model selection process used by SlIsotron

and our method are comparable as are the different
interpolation strategies. The different interpolation
strategy could yield significantly different predictions
only on low density regions of the domain where
the nearest neighbor is far enough that our methods
returns a large interval. Although no statistical
superiority over SlIsotron was observed, the fact
that our algorithm could match logistic regression in
performance should be taken as a positive result.

The next real world prediction task that we pick is
learning to rank with pointwise methods. These meth-
ods predict the relevance score of an item given its
feature vector representation xi and then orders the
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Figure 1: NDCG at different truncations K achieved
by (i) linear, (ii) logistic, (iii) SlIsotron and (iv) our
method on MQ2007

items according to the predicted score. Ravikumar et.
al. [18] showed that canonical GLM losses with an ap-
propriately scaled relevance scores are the only statisti-
cally consistent losses for NDCG [9] a de facto popular
metric used to measure rank quality. The predicted
score is obtained as g(〈xi,w〉 where g is the inverse
link function, hence monotonic. The order among the
items, however, is entirely defined by 〈xi,w〉, so pre-
dicting the relevance score is un-necessary. However
for different datasets different GLMS might be better
suited. This makes it a appropriate real world test
bed for parameter recovery. We evaluated the qual-
ity of ranking achieved by (i) linear regression, (ii) lo-
gistic regression, SlIsotron and our method on the
LETOR 4.0 datasets [13], see Figure 1 .

10 Conclusion

This paper proposes a novel method of learning finite
dimensional parameters of a generalized linear model
whose link function is unknown. We commit neither to
a parametric form of conditional expectation function
nor to any parametric form of the distribution gen-
erating the samples. The parameters are learned by
minimizing a matching Bregman divergence simulta-
neously over all Hölder convex functions as well as the
parameters. Remarkably, not only can the global min-
imum be found, the computational cost per iteration
is only a log factor worse in the number of observa-
tions as compared to the case where the link function
is known. The convergence rates are the best possi-
ble for the first order black-box model whose use is
justified because we do not know the convex function.
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