
Implementable confidence sets in high dimensional regression

Alexandra Carpentier
Statistical Laboratory, Center for Mathematical Sciences - University of Cambridge

Abstract

We consider the setting of linear regression in
high dimension. We focus on the problem of con-
structing adaptive and honest confidence sets for
the sparse parameter θ, i.e. we want to construct
a confidence set for θ that contains θ with high
probability, and that is as small as possible. The
l2 diameter of a such confidence set should de-
pend on the sparsity S of θ - the larger S, the
wider the confidence set. However, in practice, S
is unknown. This paper focuses on constructing
a confidence set for θ which contains θ with high
probability, whose diameter is adaptive to the un-
known sparsity S, and which is implementable in
practice.

1 Introduction

We consider the regression model in dimension p, with n
observations,

Y = Xθ + �, (1.1)

where Y is the n-dimensional observation vector, θ is the p
dimensional unknown parameter, X is the n×p design ma-
trix, and � is the n dimensional white noise (see Section 3
for a complete presentation of the setting). We focus on the
high dimensional setting where n � p.

Models such as the one described in Equation (1.1) have
received very much attention recently. In particular,
finding good estimates of θ when p is very large has
many important applications (see [Starck et. al.(2010),
Moriaka and Satoh(2010), Kavukcuoglu et. al.(2009)]).
Solving this problem in a satisfying way is nevertheless
impossible in general, since it is ill-posed. For this
reason, and also because it is an assumption that holds
in many concrete cases, it is usual in this setting to
focus on the case where θ is a sparse parameter. Let
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l0(S) be the l0 “ball” of radius S, i.e. the set of vec-
tors that have less than S non-zero coordinates (that
are S-sparse). It has been proved that in some spe-
cific cases, namely when the design matrix X satisfies
some desirable conditions for p̄ sparse vectors (e.g. null
space property, R.I.P., restricted eigenvalue condition,
etc, see e.g. [Candès et. al.(2006), Koltchinskii(2009),
Donoho and Stark(1989), Candès(2008),
Foucart and Lai(2009), Bickel et. al.(2009)]), it is possible
to construct an estimate θ̂(X,Y ) of the parameter θ such
that

sup
S:S≤p̄

sup
θ∈l0(S)

Pθ

�
�θ̂ − θ�22 ≥ E

S log(p/δ)

n

�
< δ, (1.2)

where E > 0 is a constant, where for any vector
u, �u�22 =

�
j u

2
j is the usual l2 norm, and where

Pθ is the probability according to the noise � when
the true parameter is θ. This result is minimax-
optimal over S−sparse vectors for any S ≤ p̄, see
e.g. [Raskutti et al(2011)]. Moreover, this bound on
the accuracy of θ̂ scales with the true sparsity S of θ
that is not available to the learner : the estimate θ̂ is
adaptive. Some key references for the existence of such an
adaptive estimate are [Zou(2006), Candès and Tao(2007),
Bickel et. al.(2009), Bühlmann and van de Geer(2011)].
Although this problem is a difficult combinatorial
problem, there exist some computationally feasible
techniques, under stronger assumptions on the de-
sign X , for instance the thresholding procedures, the
orthogonal matching pursuit, the Lasso, the Dantzig
Selector etc. For more references on the techniques
and the associated bounds and design assumptions,
see e.g. [Donoho and Stark(1989), Tibshirani(1994),
Donoho(2006), Candès et. al.(2006), Lee et. al.(2013)].

Another important problem is the one of confidence
statements for the parameter θ, i.e. of quantifying the
precision of an estimate of θ. Constructing confi-
dence sets in high dimensional regression was stud-
ied e.g. in the papers [Abbasi-Yadkori et. al.(2012),
Javanmard and Montanari(2013),
Beran and Dümbgen(1998), Baraud(2004),
Nickl and van de Geer(2013)] and it is, with the problem
of estimating θ, the second fundamental problem of
inference in this setting. The objective is to construct
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a set Cn that contains θ with high probability, and also
that is as small as possible, i.e. that is such that its l2
diameter is as small as possible. One can deduce from
the lower and upper bounds for the estimation problem
(see [Raskutti et al(2011), Nickl and van de Geer(2013),
Javanmard and Montanari(2013)]), that the optimal l2-
width of a confidence interval for the sparse vector θ
should depend on its sparsity S - it should be of order�

S log(p)/n. For δ > 0, if θ is S sparse and S is known,
and if θ̂ is an estimator of θ that satisfies Equation (1.2), a
l2-confidence interval Cn of coverage 1− δ should ideally
be of the form

Cn = {u ∈ Rp : �u− θ̂�2 ≤
�

E
S log(p/δ)

n
}.

On the other hand, if the sparsity S of the parameter θ is
unknown, which is the case in real applications since θ is
unknown, one cannot construct directly this optimally sized
confidence interval.

For the problem of estimating θ, computationally feasible
techniques that are adaptive to the unknown sparsity S
of θ exist (see Equation (1.2) and associated references).
Do similar results hold for the problem of constructing
a confidence set for θ? In particular, can one construct,
in a non computationally extensive way, a confidence set
for the adaptive estimate of Equation (1.2) that contains
θ with high probability and whose diameter is adaptive to
the unknown sparsity S of θ? This is the problem that this
paper targets. We would like to insist on the importance of
the construction of confidence sets. Indeed, most of the se-
quential learning algorithms rely on such confidence sets.
For instance, in the papers [Abbasi-Yadkori et. al.(2012),
Carpentier and Munos(2012),
Desphandes and Montanari(2012)] that are on the topic of
linear bandit in high dimensions, the authors assume that
an upper bound S̄ on the sparsity S is known, and they
consider a large confidence interval for θ whose diameter
depends on S̄. The final bounds on the regret of their
bandit algorithms then depend on the chosen upper bound
S̄, and not on the correct sparsity S of θ. In this setting,
it would be quite useful to have an adaptive and honest
confidence set for θ, that adapts to the sparsity S. The
bound on the regret would then depend on S and not on S̄.

2 Literature review

The problem of constructing a confidence set,
when the support of the parameter or its sparsity
S is known, is a problem that has received atten-
tion recently, see e.g.[Abbasi-Yadkori et. al.(2012),
Javanmard and Montanari(2013),
Javanmard and Montanari(2014),
Beran and Dümbgen(1998), Baraud(2004),
Lee et. al.(2014), van de Geer and Bühlmann(2014)].

The papers [Javanmard and Montanari(2013),
Javanmard and Montanari(2014), Lee et. al.(2014),
van de Geer and Bühlmann(2014)] are concerned with
finding the limiting distribution of an estimate of θ, and
using it to build tests and confidence sets for fixed, low
dimensional sub models (fixed subsets of coordinates of
θ). This approach does not provide an optimally sized
confidence set for the parameter θ itself, since its support
(i.e. the correct low dimensional model of interest) is not
known. On the other hand, the problem of constructing
an adaptive and honest confidence interval for θ when S
is unknown, has only recently started to receive attention.
It is an important problem, since there is no reason why
the low dimensional support of the parameter has to be
known before hand : therefore, the low dimensional model
of interest cannot be chosen efficiently in a non data driven
way. This problem is related to the problem of estimating
the sparsity S of the parameter θ, as explained in various
related settings in the papers [Hoffmann and Lepski(2002),
Juditsky and Lambert-Lacroix(2003),
Giné and Nickl(2010), Nickl and van de Geer(2013)].
Indeed, if a good estimate Ŝ of S is available, then one
could consider the confidence interval

Cn = {u ∈ Rp : �u− θ̂�22 ≤ E
Ŝ log(p/δ)

n
}.

Let us first consider a simpler instance of this problem that
will enlighten its difficulties. It is the case where one wants
to be adaptive to two sparsities S0 < S1 (and not to any
sparsity S). The objective is to construct a confidence set
Cn that is adaptive and honest, i.e. that contains θ with high
probability, and whose diameter is of order

�
S0 log(p)/n

if θ is of sparsity S0 or below, or of order
�

S1 log(p)/n
if the sparsity of θ is between S0 and S1. In other words,
the objective is to construct a set Cn based on the data such
that for P = l0(S1), for I = {S0, S1}, and for δ > 0,

max
S∈I

sup
θ∈l0(S)

�P
Pθ(θ ∈ Cn) ≥ 1− δ, and

max
S∈I

sup
θ∈l0(S)

�P
Pθ

�
|Cn|2 ≥

�
E�S log(p/δ)

n

�
≤ δ,

(2.1)

where E� > 0 is a constant and where |Cn|2 =
sup{�u − v�2, (u, v) ∈ C2

n} is the diameter of Cn.
There is however a serious obstruction to the creation
of a such confidence set. It is possible to prove (see
e.g. [Baraud(2004), Nickl and van de Geer(2013)]) that in
many situations, there exists no adaptive and honest confi-
dence sets on the entire parameter space P = l0(S1). The
problem is that there are some parameters that are not S0

sparse, but that are very close to S0 sparse vectors, and
for which it is impossible to detect that one needs a con-
fidence set of diameter

�
E�S1 log(p/δ)/n (since a con-

fidence set of diameter
�

E�S0 log(p/δ)/n won’t provide

121



Alexandra Carpentier

enough coverage). A reasonable and important question is
then to provide a confidence set that is adaptive and hon-
est on the largest possible model P ⊂ l0(S1). Intuitively,
this model P should be the set l0(S1) where the problem-
atic parameters that are not S0 sparse, but are very close to
l0(S0) have been removed.

There has been recently some very important advances on
this problem in the paper [Nickl and van de Geer(2013)].
They define the separated set l̃0(S1, ρ) for a constant ρ > 0
as

l̃0(S1, ρ) = {u ∈ l0(S1) : �u− l0(S0)�2 ≥ ρ}, (2.2)

where, if A ⊂ Rp, we write for u ∈ Rp, �u − A�2 =
infv∈A �u− v�2. They then define

P := P(ρ) := l0(S0)
�

l̃0(S1, ρ).

This new model excludes vectors that are not S0 sparse, but
at a distance that is less than ρ from S0 sparse vectors. The
smaller ρ, the more similar P is to l0(S1) (equality holds
when ρ = 0). The restriction to the model P can be seen
as a margin condition : the ρ−margin condition is satisfied
if the true parameter θ belongs to a sub-model where the
two classes of sparsity are ρ−away of each other, i.e. if
θ belongs either to l0(S0), or to l̃0(S1, ρ). This margin
condition is necessary for being able to distinguish between
the two sets of sparsity S0 and S1.

The objective is then to characterize the smallest possi-
ble ρ for which a such confidence set exists, and then
to construct this confidence set. Table 1 summarizes
the minimax-optimal order of ρ := ρn (with lower and
upper bounds) such that an adaptive and honest confi-
dence set for θ exists in P(ρn), in function of S0, S1

(see [Nickl and van de Geer(2013)]). All upper bounds
and lower bounds match in the three cases summarized
in the table, and limn→∞ ρn = 0 at a rate which de-
pends on S0, S1, which implies that P(ρn) converges
to l0(S1). The minimax-optimal rates at which ρn can
go to 0 are known for this problem, but an impor-
tant issue that remain on the existence of computation-
ally feasible adaptive and honest confidence intervals in
cases (ii) and (iii) of Table 1. Indeed, the procedure
in [Nickl and van de Geer(2013)] consists on computing
a quantity of the form infu∈l0(S0) |tn(u)| where tn(u) is
some quadratic functional of the data and u, then testing
if this quantity exceeds a threshold, and finally using the
output of this test for constructing the confidence inter-
val. Computing this statistic is a computationally extensive
problem, since its computational complexity is of order
pS0n. It is thus not proper for concrete applications. Also,
they assume that their design matrix is a random Gaussian
matrix, which is quite restrictive. Another aspect that more-
over prevents the use of this method in practical applica-
tions is the fact that sparsity is unlikely to hold exactly in

practice, and that results involving approximate sparsity are
more appealing.

In this paper, we provide a computationally feasible
method for constructing an honest and adaptive confidence
set on a maximal model P (in the minimax-optimal sense
of Table 1), in a more general setting, i.e. in the setting of
approximate sparsity for the parameter θ, and under more
general assumptions for the design matrix X , namely that
its condition number is not too large for S1 sparse vectors.
The confidence set we propose is actually trivial to imple-
ment and its computational complexity is of order O(pn)
(provided that an adaptive estimate satisfying Equation 1.2
is available). We first provide a method in the case of two
sparsity indexes (that achieves adaptivity to two sparsities
S0, S1), and we then extend it to the more general setting of
many sparsity indexes I. In particular, the method we pro-
pose applies to constructing a confidence set that is adap-
tive and honest for all the sparsities smaller than a large
sparsity index p̄. It is minimax optimal also in this set-
ting, adaptive, and implementable in practice. We test our
method with numericals simulations and all proofs are in
the supplementary material [Carpentier(2015)].

3 Setting

Let n and p be two integers with n � p. Consider the
model defined in Equation (1.1).

3.1 Assumption on the noise �

We state the following assumption about the noise �,
namely that its entries are independent and sub-Gaussian.

Assumption 3.1. The entries of � are independent. More-
over, ∀i ≤ n,E�i = 0,V�i = σ2 and ∀i ≤ n, ∀λ > 0,
there exists c > 0 such that

E exp(−λ�i) ≤ exp(−λ2c2/2).

For instance bounded random variables and Gaussian ran-
dom variables satisfy this Assumption.

3.2 Assumption on the design matrix X

We make the following assumption about the design matrix
X .

Assumption 3.2. Let p̄ > 0. The matrix X is such that
there exists two constants CM > cm > 0 such that for any
u that is p̄−sparse, we have

cm�u�2 ≤ � 1√
n
Xu�2 ≤ CM�u�2.

This assumption is a relaxation of the celebrated R.I.P. con-
dition (see [Foucart and Lai(2009)] for another paper in
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Case (i) Case (ii) Case (iii)
Values of S0 and S1 S0 = o(n1/2/ log(p)) S0 = o(n1/2/ log(p)) S0 = o(n/ log(p))

S1 = o(n1/2/ log(p)) S1 = o(n/ log(p)) S1 = o(n/ log(p))

UB on ρ
�

S1 log(p)
n n1/4 0

LB on ρ
�

S1 log(p)
n n1/4 0

Computational complexity np npS0 npS0

Table 1: Upper and lower bounds on the parameter ρ2 for the problem of constructing an honest and adaptive confidence
set. UP stands for Upper Bound, LB stands for Lower Bound.

this setting). This condition makes sense, when n � p,
only if p̄ is actually smaller than n, i.e. p̄ = O(n/ log(p)).
In this case, for instance, random Fourier matrices, and
more generally RIP matrices, satisfy this condition, with
cm and CM close to 1. More generally, e.g. random matri-
ces with sub-Gaussian entries whose variance-covariance
matrix has bounded condition number satisfy this condi-
tion for p̄ = O(n/ log(p)) and cm and CM depending on
the condition number of the variance-covariance matrix.

3.3 The set of vectors of approximate sparsity

We are interested in situations where θ is approximately S-
sparse. More specifically, we focus on vectors θ that have
less than S “large” components, but that can have up to p̄
“small” components such that their l2 norm is not too large.
Definition 3.1. We define the following sets of approxi-
mately S−sparse vectors, for B,C, p̄, δ > 0, as

SS(C,B, p̄, δ) =
�
u ∈ l0(p̄), �u�2 ≤ B :

�u− l0(S)�22 ≤ CS log(p/δ)

n

�
,

where for a vector u, �u−l0(S)�22 = infv∈l0(S) �u−v�22 =�p
j=S+1 u

2
(j), where u(.) is the ordered version of |u|,

i.e. is such that |u(1)| ≥ |u(2)| ≥ ... ≥ |u(p)|.

The vectors in these sets have at most S “large” compo-
nents, and the p − S remaining components have small l2
norm. An important property of SS(C,B, p̄, δ) is that it
contains all S−sparse vectors whose l2 norm is bounded
by B, and is an enlargement of the set of sparse vector to
“approximately” sparse vectors.

Let 0 < S0 < S1 be two sparsities. Similarly to what is
proposed in Equation (2.2), we define the separated set as

S̃S1
(C,B, p̄, δ, ρ) := S̃S1,S0

(C,B, p̄, δ, ρ)

= {u ∈ SS1
(C,B, p̄, δ) : �u− l0(S0)�2 ≥ ρ}. (3.1)

These sets are such that, between SS0
and S̃S1

, there is a
ρ-margin condition.

For the same value of ρ, these sets are strictly larger
than the sets presented in Equation (2.2) with bounded

l2 norm, which are actually the sets considered in pa-
per [Nickl and van de Geer(2013)]. Indeed, they corre-
spond to the vectors in the enlarged sets SS1

(C,B, p̄, δ)
that are at least ρ-away from l0(S0).

3.4 Adaptive and honest confidence sets

We now provide the definition of adaptive and honest con-
fidence sets in the wider model of approximately sparse
vectors. It is an extension of the definition provided in
Equation (2.1) to the larger set of approximately sparse vec-
tors (it demands that the second equation in Definition (3.2)
holds also for approximately sparse vectors).
Definition 3.2. Let δ, C,B, p̄ > 0. A set Cn is
a δ−adaptive and honest confidence set for P ⊂
SS1

(C,B, p̄, δ) and for I ⊂ {1, . . . , p̄} if

max
S∈I

sup
θ∈SS(C,B,p̄,δ)

�P
Pθ(θ ∈ Cn) ≥ 1− δ, and

max
S∈I

sup
θ∈SS(C,B,p̄,δ)

�P
Pθ

�
|Cn|2 ≥

�
E�S log(p/δ)

n

�
≤ δ,

where E� > 0 is a constant.

4 Adaptive estimation of θ on the enlarged
sets

We are first going to prove that on these enlarged
sets SS(C,B, p̄, δ), adaptive inference remains possible,
i.e. that it is possible to build an estimate of θ that satis-
fies results similar to what is described in Equation (1.2).
More precisely, we prove that if the design is not too cor-
related (cm and CM not too far from 1 in Assumption 3.2)
then the lasso estimator will provide good results on the
enlarged sets.
Theorem 4.1 (Adaptive Lasso on the enlarged sets). Let
Assumptions 3.1, and 3.2 be satisfied for c, cm, cM , 66p̄
such that c > 0, cm > 2/3, CM < 4/3 and p̄ > 0. Let
B > 0 and C > 0. Let δ > 0. The solution θ̂ of l1 mini-
mization or lasso

θ̂ = argmin
u

�
�Y −Xu�22 + κ

�
log(p/δ)n�u�1

�
,
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where κ > 4max(c,
√
C/3, c2, C/9) is such that we have

∀0 < S ≤ p̄

sup
θ∈SS(C,B,p̄,δ)

Pθ

�
�θ̂ − θ�22

≥
�
12(36κ+ 36)2 + C2

�S log(p/δ)

n

�
≤ δ.

The proof of this theorem is in the Supplementary Ma-
terial [Carpentier(2015)] (see Appendix B). Proving this
bound for the lasso on the enlarged sets is actually very
similar to proving it on the set of exactly sparse vec-
tors. An important remark is that the lasso’s com-
putational complexity is not high and is well defined,
see [Tibshirani(1994)]. As usual, the lasso does not work
on too correlated designs, it can be applied when cm > 2/3
and CM < 4/3. When this is not satisfied, other techniques
have to be considered, see e.g. [Foucart and Lai(2009)]. It
is actually possible to prove that for any 0 < cm < CM ,
there exists an estimate that satisfies a result similar to the
one in Theorem 4.1, see Theorem D.1 in the Supplementary
Material [Carpentier(2015)] Appendix D. This estimate is
however the result of l0 minimization, and is thus computa-
tionally extensive (the computational complexity is npS0 ),
and is in practice not implementable whenever p, S0 are too
large.

The really nice feature of such a result is that it provides an
estimate whose l2-risk is adaptive uniformly to the sparsity
of any vector of the enlarged sparsity class, for any sparsity
smaller than p̄. The estimate is data driven, but it needs
an upper bound C on the amount of which θ deviates from
the sparsity S, and also it needs an upper bound c on the
parameter that bounds the sub-Gaussian tail of the noise.

5 Adaptive and honest confidence sets for θ

We now propose a method that is computationally feasible
for constructing an adaptive and honest confidence set for
θ. We fist present this method in the case of adaptivity to
only two sparsities S0 < S1 (two sparsity indexes method),
and then explain how to extend these results to larger sets
of sparsities (multi sparsity indexes method).

5.1 Presentation of the confidence set for two sparsity
indexes S0 < S1

Construction of the confidence set Let S0 < S1 < p̄.
The algorithm for the two sparsity indexes, Algorithm 1,
contains two main steps. The first step is to construct a test
Ψn for deciding whether θ is S0 approximately sparse, or
S1 approximately sparse. The test consists in first comput-
ing an adaptive estimate θ̂ of θ, and then on thresholding
all non-significant components. Then, the testing decision
is based on two factors (i) testing whether the number of
non-zero entries of the thresholded estimate is larger than

S0 and (ii) testing whether the squared residuals �r̂�22 are
significant or not. If both these quantities are small enough,
the test is accepted, otherwise it is rejected. The outcome
of this is the test Ψn. The second step is to use this in-
formation to construct the confidence set Cn. Based on
Ψn, the confidence interval Cn will be of diameter of order�

S0 log(p)
n (if Ψn = 0), or

�
S1 log(p)

n (if Ψn = 1). The
procedure is explained in Algorithm 1.

Algorithm 1 Two sparsity indexes confidence set
Parameters: δ, S0, S1,σ

2

set the following quantities, computed on the
first half of the samples only, as B̂2 :=

3/2
�
n−1

�
i≤n Y

2
i (1 + 2 log(1/δ)) + 2 log(1/δ)

�
, and

τn := 14|B̂|
�

n−1/2 log(1/δ) + 381|B̂|
�

S0 log(p/δ)
n ,

and τ �n := 330|B̂|
�

S1 log(p/δ)
n , and let θ̂ be the lasso

estimate as in Theorem 4.1. All these quantities are
computed on the first half of the sample, and from now
on we only use the second half of the sample.

set the residual r̂ = Y −X θ̂
set the test statistic Rn = �r̂�22 − nσ2

set the test Ψn = 1 − 1{Rn ≤ τ2n}1{
�p

j=S0+1 θ̂
2
(j) ≤

(τ �n)
2}, where θ̂(.) is the ordered version of |θ̂|

set the confidence interval

Cn :=
�
u ∈ SS1

: �u− θ̂�2 ≤ 650

�
S0 log(p)

n
1{Ψn = 0}

+ 650

�
S1 log(p)

n
1{Ψn = 1}

�
.

return Cn

The parameter σ2 car be replaced by a consistent estimator
of the variance of the noise � (e.g. a Bootstrap estimate, a
cross validation estimate, etc).

Main result The following theorem states that this confi-
dence interval is adaptive and honest (in the sense of Defi-
nition (3.2)) over a large model P .

Theorem 5.1. Assume that the noise is either Gaussian of
variance less than 1, or bounded by 1, and assume that the
assumptions for convergence of the adaptive lasso, stated
in Theorem 4.1, are satisfied, and that S1 ≤ p̄. Then the
confidence set presented in Algorithm 1 is δ adaptive and
honest for I = {S0, S1} and over the model

P(ρn) = SS0
(32,∞, p̄, δ)

�
S̃S1

(32,∞, p̄, δ, ρn),

where

ρn = |B̂|min
�
54
�

log(1/δ)n−1/4, 460

�
S1 log(p/δ)

n

�
.

By definition of the enlarged set, this implies in particular
that the confidence set is δ adaptive and honest for I =
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{S0, S1} and over the model

P(ρn) = l0(S0)
�

l̃0(S1, ρ̃n), with ρ̃n = 2ρn.

This theorem is actually a corollary of a more gen-
eral result, presented in the Supplementary Mate-
rial [Carpentier(2015)], Appendix A. The proof of this the-
orem is in the Supplementary Material [Carpentier(2015)]
(Appendix C).

The confidence set is adaptive and honest under the same
assumptions that ensure consistency of the lasso estimate.
It is quite reasonable that it is so, since the creation of adap-
tive and honest confidence sets is a strictly more difficult
problem than the problem of estimating the parameter (in-
deed, any point of the confidence set is a good estimate of
the parameter). Also, since limn→∞ ρn = 0, for any θ and
for n large enough, the confidence set contains θ with high
probability, and its diameter adapts to the sparsity of θ. It
is adaptive to the two sparsities {S0, S1} only and not to
the whole spectrum of sparsities, but it already allows to
improve many existing learning algorithms by diminishing
the size of the confidence interval (by not always setting it
to

�
S1 log(p)/n independently of θ). Moreover, it com-

putational complexity is of order np, which is linear.

Comparison with results in pa-
per [Nickl and van de Geer(2013)]. Our results imply
all the upper bounds of [Nickl and van de Geer(2013)]
in all cases (i), (ii) and (iii) of Table 1, i.e. imply the
upper bounds on exactly sparse sets (this is illustrated
in Theorem 5.1). Also, our confidence set is adap-
tive and honest in all three cases (i), (ii) and (iii), and
we do not need to change the construction method
as in paper [Nickl and van de Geer(2013)]. Our as-
sumptions on the design of X are weaker than in the
paper [Nickl and van de Geer(2013)], where the au-
thors consider Gaussian design which a fortiori satisfies
Assumption 3.2 with high probability. Finally, the
confidence set is, as we saw, computationally feasible,
since its computational complexity is of order np. As
mentioned in the introduction, the procedure in the
paper [Nickl and van de Geer(2013)] boils down to min-
imizing over the set of S0− sparse vectors a quadratic
quantity, which has complexity of order pS0n. This implies
that our procedure is computationally efficient on a set that
is as large as possible in a minimax sense, as illustrated by
the lower bounds in Figure 1.

5.2 Adaptive and honest confidence sets for multiple
sparsities

Construction of the confidence set In the last subsec-
tion, we restricted ourselves to constructing a confidence
set that is adaptive to only two sparsities S0, S1. Although
it is already useful with respect to existing techniques that

are not adaptive at all, it is only a first step toward a more
global result where all sparsity indexes I = {1, . . . , p̄} are
considered. Algorithm 2 solves this problem.

Algorithm 2 Multi sparsity indexes confidence set, second
version

Parameters: δ,σ2

set using only the first half of the 2n samples,

B̂2 := 3/2
�
n−1

�

i≤n

Y 2
i (1+ 2 log(1/δ))+ 2 log(1/δ)

�
,

and τn(S) := 14|B̂|
�

n−1/2 log(1/δ) +

381|B̂|
�

S log(p/δ)
n , and τ �n(S) :=

330|B̂|
�

(S+1) log(p/δ)
n , and let θ̂ be the lasso esti-

mate as in Theorem 4.1.
set the residual r̂ = Y −X θ̂
set the statistic Rn = �r̂�22 − σ2

set for any S ≤ p the statistic R�
n(S) :=

�p
j=S+1 θ̂

2
(j),

where θ̂(.) is the ordered version of |θ̂|.
set Ŝ as the smallest S ≤ p such that Rn ≤

τn(S)
2, and, R�

n(S) ≤ (τ �n(S))
2.

set the confidence interval

Cn :=
�
u ∈ Rp : �u− θ̂�2 ≤ 650

�
Ŝ log(p/δ)

n
.

return Cn

The parameter σ2 car be replaced by a consistent estimator
of the variance of the noise � (e.g. a Bootstrap estimate, a
cross validation estimate, etc).

The following theorem holds in this case (it is a direct con-
sequence of Theorem 5.1).

Theorem 5.2. Assume that the noise is either Gaussian of
variance less than 1, or bounded by 1, and assume that the
assumptions for convergence of the adaptive lasso, stated
in Theorem 4.1, are satisfied, and that for S1 ≤ p̄. Then the
confidence set presented in Algorithm 2 is δ adaptive and
honest for I = {1, . . . , p̄} and over the model

P := S1(32,∞, p̄, δ)
� p̄�

S=2

S̃S,S−1(32,∞, p̄, δ, ρn(S)).

where

ρ̃n(S) = |B̂|min
�
50

�
log(1/δ)n−1/4, 460

�
(S + 1) log(p/δ)

n

�
.

A more general procedure is presented in the Supplemen-
tary Material [Carpentier(2015)], Appendix A.

Discussion This result is minimax optimal from the
lower bounds in Figure 1, and it is also computationally
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feasible. The resulting confidence interval is adaptive and
honest for all indexes I over P . Moreover, P is signifi-
cantly larger than the set of “detectable” parameters such
that all non-zero component are larger than

�
log(p/δ)/n.

For this reason, this method is more efficient than the naive
method of counting the number of non-zero entries in a
thresholded adaptive estimate, and using this number for
constructing the confidence set.

6 Experimental results

In this section, we present some simulations and also some
applications on images.

6.1 Simulations

In order to illustrate the efficiency of our method, we apply
it to simulated data. We consider a problem in dimension
p = 10000, and where n = 1000 (the sampling rate is
10%). Let 0 < S0 < S1 be the two approximate sparsity
levels. We are going to define three types of distributions
(priors) on the set of parameter θ:

• θ ∼ Θ1: (i) S0 random coordinates of θ are N (0, 1)
and (ii) the remaining coordinates are N (0,σ2

0) where
σ2
0 = S0 log(p)

np . With high probability, θ ∈
SS0

(C,B, p̄, δ).

• θ ∼ Θ2: (i) S1 random coordinates of θ are N (0, 1)
and (ii) the remaining coordinates are N (0,σ2

0). With
high probability, θ ∈ S̃S1

(C,B, p̄, δ, ρ2n) where ρ2n =

O(S1 log(p)
n + S0 log(p)

n ).

• θ ∼ Θ3: (i) S0 random coordinates of θ are N (0, 1)
and (ii) the remaining coordinates are N (0,σ2

1) with
σ2
1 = C

�
1

n1/2p
+ S0 log(p)

np

�
. With high probability,

θ ∈ ˜SS1
(C,B, p̄, δ, ρ2n), where ρ2n = O(n−1/2 +

S0 log(p)
n ).

See Figure 1 for an illustration of this.
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Figure 1: Mean of the square of the re-ordered coordinates
θ2(j) of θ sampled according to priors Θ1, Θ2, and Θ3.

The distributions correspond to two extremal cases in
which the sampled vector θ is not approximately sparse,

i.e. either the norm of the tail coefficients is large, or the
number of detectable coefficients is larger than S0. For a
given θ ∼ Θk (k ∈ {1, 2, 3}), we write Ψ for its “class”,
i.e. if the hypothesis in test (C.1) to which they belong with
high probability. This means that Ψ = 0 for θ ∼ Θ1 and
Ψ = 1 for θ ∼ Θ2 or θ ∼ Θ3.

For all distributions Θk, we do 10000 experiments (cor-
responding to trying our methods over 10000 samples of
θ sampled according to Θk) where we perform the test
we described in Section 5 for the testing problem (C.1),
infer the sparsity, compute adaptive confidence interval,
and compute the risk of the estimate. The sampling ma-
trix X is composed of Gaussian random variables, and the
noise � is i.i.d. Gaussian with variance 1. In this design,
p̄ = O(n/ log(p)). We compute an estimate of θ via hard
thresholding, which happens in this orthogonal setting to
be equivalent to lasso, on the first half of the samples. We
then construct the test on the second half of the sample. We
summarise the results in Table 2.

A first general remark is that the test we consider manages
to distinguish efficiently between H0 and H1, for many dif-
ferent configuration of sparsity. The adaptive and honest
confidence sets we built using this test are also quite effi-
cient. The probability that the true parameter belongs to
the adaptive confidence set is very close to the probability
of correctly inferring the class of θ. The strength of these
sets is to be adaptive to the sparsity of the problem, i.e. they
contain θ with high probability and do not have the same
width depending on the complexity of the true parameter
(S0 or S1). As a matter of fact, the width of the adaptive
confidence set is close to the value of the risk of the adap-
tive estimate, which is exactly what is wanted. It is partic-
ularly interesting, since as expected, the risk is much larger
under H1 than under H0.

In the case of distribution Θ3, it is interesting to remark
that although the sparsity of θ̂ is close to S0 in expectation,
it does not prevent our test to efficiently classify it as H1.
This is actually quite important in terms of confidence sets
since we can observe that, for each configuration of spar-
sity, the risk and thus the width of the adaptive confidence
interval, is much larger for Θ3 than for Θ1. A test only
based on the inferred sparsity (i.e. on �θ̂�0) would not have
detected this since the inferred sparsity is approximately
similar in these two cases.

6.2 Application of the method to images

We consider now a more concrete setting, where we apply
our method to images. We focus on black and white draw-
ings1. The particularity of such images is that only a few

1Note that a pre-treatment, like differentiation, can be applied
to regular images to transform them into drawing-like images.
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S1 = 5 and S2 = 10 S1 = 5 and S2 = 103 S1 = 50 and S2 = 103

Prior Θ1 Θ2 Θ3 Θ1 Θ2 Θ3 Θ1 Θ2 Θ3

Pθ(Ψn �= Ψ) 5 10−2 1 10−2 X 1 10−2 8 10−7 8 10−2 1 10−3 2 10−5 6 10−3

E�θ̂�0 4.8 9.7 X 4.8 2.1 103 4.8 48.7 2.3 103 49.3
Pθ(θ �∈ Cn) 1.2 10−1 9 10−2 X 5 10−2 9.10−7 8.1 10−2 3.2 10−3 4 10−5 7.8 10−3

E|Cn| 6.16 10−2 1.8 10−1 X 7.76 10−2 9.8 103 5.7 10−1 27.6 9.9 103 9.7 103

E�θ̂ − θ�22 3.37 10−2 1.1 10−1 X 3.7 10−2 9.6 103 3.2 10−1 15.04 9.7 103 9.4 103

Table 2: Expected results for the test, risk and adaptive and honest confidence set for the three priors.

Figure 2: First column = original image. Second column=
reconstructed image. Third column: extremal point of the
confidence set that minimises the contrast. The test of 3%p
sparsity is accepted for the first image but rejected for the
other.

pixels are non-zero, i.e. if we align the columns of such an
image, it can be considered as a sparse vector θ of dimen-
sion p where p is the number of lines times the number of
columns of the image. Such an image θ can easily be com-
pressed by conserving n Fourier coefficient of this vector,
chosen at random frequencies. We write X the n×p matrix
that represents this convolution. The model is then again
Y = Xθ + �, where � is some noise to the compression,
due for instance to transmission. An interesting question
when observing the compression Y of an image is to infer
what is the quality of the reconstruction, i.e. if the image is
indeed quite sparse or not.

When one then observes such a compression, it is possible
to reconstruct the image θ by, as we explained in Section 4.
Also, the test and the confidence sets are build in the same
way as what was done in Section 5.

We consider here an image with p = 7200000 pixels. We
consider n = 5%p = 36000 Fourier coefficients obtained
by FFT (Fast Fourier Transform). We consider 2 images
that we display in Figure 2 (first column), and write θ(k)

where k ∈ {1, 2}. The first image is a black and white

drawing of a cathedral, and the second one is the same
drawing but with a background (a cloud): the first one
will be approximately sparse and the second one not. It is
possible to compress these images by considering, instead
of θ(k), the vector Y (k). The quality of the compression,
i.e. the proximity between the image reconstructed trough
Y (k) and the image θ(k), will depend however very much
on the sparsity of the image, as we saw in Theorem 4.1. We
can use the results of Section 5 to test whether the image
is a least 3%p approximately sparse or not, and then build
confidence sets around it. Figure 2 (two last columns, the
first one containing the reconstructed images and the sec-
ond one an extremal point of the confidence sets) illustrates
this. More precisely, we display, for each image, the esti-
mate of θ(k) (i.e. the reconstructed image), and an extreme
points of the confidence sets that we choose as being the
image that minimises the contrast.

Although image 1 and 2 are different images, their esti-
mates are very close. The test reveals the fact that they are
not the same, and that in particular the reconstruction of im-
age 1 will be good while the reconstruction of image 2 will
be bad (although they seem similar from their reconstruc-
tion). The confidence sets also show how much the true
image could actually be different from the reconstructed
image. In particular, the extremal point of the confidence
set that minimises the contrast implies that although it is
rather unlikely that there is a background in image 1, im-
age 2 might well have one. For these images, the notion
of approximate sparsity is very important since even the
first image is not at all sparse (not even 40%p sparse). It
is however less than 3%p approximately sparse. Because
of the background, however, the second image is not even
close to 3%p approximately sparse.

Conclusion In this paper, we developed a computation-
ally feasible, adaptive and honest confidence interval, first
in the two sparsity indexes case, and then in the general
setting of multi sparsity indexes. The method we propose
is efficient on a maximal set (in a minimax-optimal sense),
and is implementable, which is a novelty with respect to
the existing results. The assumptions we make are also less
restrictive than what was previously required.We also pro-
vided an experimental validation of this results by simula-
tions, and also an application on images.
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