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Abstract

In one-bit compressed sensing (1-bit CS), one
attempts to estimate a structured parameter
(signal) only using the sign of suitable linear
measurements. In this paper, we investigate
1-bit CS problems for sparse signals using the
recently proposed k-support norm. We show
that the new estimator has a closed-form so-
lution, so no optimization is needed. We es-
tablish consistency and recovery guarantees
of the estimator for both Gaussian and sub-
Gaussian random measurements. For Gaus-
sian measurements, our estimator is compa-
rable to the best known in the literature,
along with guarantees on support recovery.
For sub-Gaussian measurements, our estima-
tor has an irreducible error which, unlike ex-
isting results, can be controlled by scaling
the measurement vectors. In both cases, our
analysis covers the setting of model misspec-
ification, i.e., when the true sparsity is un-
known. Experimental results illustrate sev-
eral strengths of the new estimator.

1 Introduction

In recent years, one-bit compressed sensing (1-bit C-
S) (Boufounos & Baraniuk, 2008) for estimation of a
sparse or structured parameter (signal) has become in-
creasingly popular due to its low implementation cost
and robustness (Boufounos, 2010). Compared with
conventional compressed sensing (Donoho, 2006; Can-
des & Tao, 2006), which tries to recover a signal us-
ing real-valued measurements, 1-bit CS quantizes each
measurement into +1 or −1 instead.

Previous work on 1-bit CS can be categorized based on
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assumptions on noise and measurements. In the noise-
less setting (Jacques et al., 2013; Gopi et al., 2013; Plan
& Vershynin, 2013a), 1-bit CS estimates a signal vector
x∗ ∈ Rp from y = sign(Ux∗), where y = {−1,+1}n
are the measurements, and U = [u1,u2, · · · ,un]T ∈
Rn×p is the measurement matrix. In the noisy set-
ting (Plan & Vershynin, 2013b), yi is a suitable noisy
function of the inner product ⟨ui,x∗⟩ (see Section 2).
In the non-adaptive or passive setting, ui are assumed
to be random samples from a suitable distribution,
e.g., uij ∼ N (0, 1); in the adaptive or active setting, ui
are chosen sequentially based on prior measurements.
In this paper, we focus on a general noisy setting for 1-
bit CS with random measurements where the signal x∗

is assumed to be k-sparse, i.e., has k non-zero entries.

Given an estimate x̂ obtained from (y,U), consistency
analysis for 1-bit CS considers the error ∥x̂−x∗∥2 and
also the support of x̂ and x∗. For the noisy setting,
Plan & Vershynin (2013b) proposed a constrained op-
timization framework with a linear objective. This
convex formulation can work with a general notion

of noise and achieve O( 4

√
k log p
n ) error for both ex-

actly and approximately k-sparse signals. Recently
Zhang et al. (2014) considered a variant of this for-
mulation and developed an efficient passive algorith-
m with closed-form solution, which improves the error

bound to O(
√

k log p
n ) for exactly k-sparse signal. Gup-

ta et al. (2010) and Haupt & Baraniuk (2011) studied
the support recovery of x∗ based on thresholding meth-
ods, both of which can achieve support recovery with
a sample complexity O(k log p). Most such existing
results rely on using Gaussian measurements. One no-
table exception is Ai et al. (2014), which extends the
work by (Plan & Vershynin, 2013b) to sub-Gaussian
measurements. In contrast with the Gaussian case,
one gets an irreducible component in the error which
depends on ∥x∗∥∞ and cannot be controlled/reduced
by increasing the sample size or otherwise.

In this paper, we focus on recovering exactly k-sparse
x∗ in the noisy and non-adaptive measurement setting
for 1-bit CS. Building on the work in (Plan & Ver-
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shynin, 2013b), we propose a simple closed-form esti-
mator based on the recently proposed k-support norm.
In previous studies (Argyriou et al., 2012; Chatterjee
et al., 2014; McDonald et al., 2014), the k-support nor-
m has been shown to be an effective alternative to the
elastic net (Zou & Hastie, 2005) in estimating correlat-
ed parameter with theoretical guarantees. For the 1-
bit CS setting, we first establish recovery guarantees of
the new closed-form estimator for Gaussian measure-
ment matrices. Our general results and analyses allow
for model misspecification, i.e., do not assume knowl-
edge of true sparsity. Such analyses based on model
misspecification has not been considered in previous
work. With the model correctly specified, our analysis
yields a similar error bound compared with the best
known result in (Zhang et al., 2014), and also matches
the sample complexity for support recovery in (Gupta
et al., 2010), which is not available in (Zhang et al.,
2014). For sub-Gaussian measurement matrices, the
bound we obtain contains an additional irreducible er-
ror term depending on x∗, which can be related to the
one in (Ai et al., 2014). Interestingly, our irreducible
error can be controlled under certain situation by us-
ing properly scaled sub-Gaussian distributions, which
cannot be achieved in (Ai et al., 2014). Through ex-
periments with both Gaussian and sub-Gaussian mea-
surements, we show the effectiveness of our estimator.

The rest of the paper is organized as follows: In Sec-
tion 2, we introduce our k-support norm estimator for
1-bit CS. In Section 3 and 4, we present the recovery
analysis for Gaussian and sub-Gaussian measurement
matrix, respectively. In Section 5, we present experi-
mental results, and we conclude in Section 6.

2 1-bit CS with the k-Support Norm

In this section, we introduce the new k-support nor-
m estimator for 1-bit CS. We focus on recovering
an exactly k-sparse signal x∗ ∈ Rp with ∥x∗∥2 = 1
from n 1-bit measurements, y = [y1, y2, . . . , yn]

T ∈
{+1,−1}n. Provided with a measurement matrix
U = [u1,u2, . . . ,un]

T ∈ Rn×p, whose entries are inde-
pendently drawn from an identical distribution, each
measurement yi is assumed to be generated randomly
based on the quantity ⟨ui,x∗⟩, satisfying

E[yi|⟨ui,x∗⟩] = θ(⟨ui,x∗⟩) ,

where θ is some nonlinear function, representing the
noise, with a range [−1, 1]. The estimator as well as the
analysis does not assume knowledge of θ, allowing for
fairly general noise models. Plan & Vershynin (2013b)
proposed the following estimator to recover x∗:

max
x∈Rp

⟨x,UTy⟩ s.t. x ∈ K , (1)

where K is ideally a convex signal set. In particular,
the set K = {x | ∥x∥1 ≤

√
k, ∥x∥2 ≤ 1} is considered

to approximate the k-sparse signal set S = {x | ∥x∥0 ≤
k, ∥x∥2 ≤ 1}, which is non-convex. Instead of using
such K, we propose using the convex hull conv(S),
the tightest convex relaxation of S, which leads to the
following problem,

max
x∈Rp

⟨x,UTy⟩ s.t. x ∈ conv(S) . (2)

As discussed in (Argyriou et al., 2012), conv(S) is in
fact the unit ball of k-support norm, defined as

∥x∥spk = inf
vI

{ ∑
I∈Gk

∥vI∥2
∣∣∣ supp(vI) ⊆ I,

∑
I∈Gk

vI = x
}
,

where Gk is the collection of all index sets I with |I| =
k, and supp(vI) denotes the support of vI . Hence (2)
is equivalent to

max
x∈Rp

⟨x,UTy⟩ s.t. ∥x∥spk ≤ 1 . (3)

We note that this convex program simply computes
the dual norm of the k-support norm, which turns out
to be 2-k symmetric gauge ∥z∥(k) = ∥|z|↓1:k∥2, where
|z|↓ denotes the permuted vector of |z| with entries
sorted in decreasing order. The following lemma char-
acterizes the closed-form solution to (3).

Lemma 1 (k-support norm estimator) Let ẑ =
UTy. The solution x̂ to the convex program (3) is
given by

x̂i =


ẑi

∥|ẑ|↓1:k∥2
, if |ẑi| is in the largest

k entries of |ẑ|

0, if otherwise

. (4)

Proof: It is easy to verify that ⟨x̂,UTy⟩ = ∥UTy∥(k)
and x̂ is in conv(S). Hence x̂ is the solution to (3).

Note that the recovered signal x̂ is k-sparse, thus be-
longing to S, which is the sparse signal set of interest.
More generally, if K is a closed convex set, the convex
program (1) is to solve the polar operator of the gauge
function induced by K, which has efficient algorithms
for certain other K (Zhang et al., 2013).

3 Recovery Analysis: Gaussian
Measurements

For the analysis,we assume that the quantity λ defined
as

λ , E[θ(g)g] , (5)

where g is a standard Gaussian random variable, is
strictly positive, i.e., λ > 0. Next we show that with
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high probability, the x̂ obtained from Lemma 1 has
small ℓ2 error ∥x̂− x∗∥2, and nonzero entries in x̂ ex-
actly give the support of x∗. We start by recalling the
following lemma from (Zhang et al., 2014).

Lemma 2 The expectation of z = UTy
λn is E[z] =

1
λE[θ(⟨g,x∗⟩)g] = x∗, in which g is a standard Gaus-
sian random vector. Moreover, with probability at least
1− e1−t, the following inequality holds,

∥z− x∗∥∞ ≤ c

λ

√
t+ log p

n
, (6)

where c is an absolute constant.

The proof of Lemma 2 can be found in (Zhang et al.,
2014). The lemma also provides an intuition for our
estimator since the support of x∗ corresponds to the
largest k entries of |z| in expectation. Theorem 3 gives
the recovery error bound in a general scenario, al-
lowing for model misspecification, i.e., not assuming
knowledge of the true sparsity of x∗.

Theorem 3 Given a k0-sparse signal x∗ ∈ Rp with
∥x∗∥2 = 1 and a standard Gaussian measurement ma-
trix U ∈ Rn×p, we choose a specific k in the con-
vex program (3) to obtain x̂ (possibly k ̸= k0). As-
sume that k1(≤ k0) nonzero entries of x∗ are recov-
ered. Then the recovered signal x̂, with probability at
least 1− ηe1−t, satisfies

∥x̂− x∗∥2 ≤ c1
λ

√
k(t+ log p)

n
+

c2k(t+ log k)

λ2n

+
c3τk1(t+ log k1)

λ
√
n

+ ξ2(k0 − k1) + ξ
√
k0 − k1

= O(

√
k log p

n
+

k1 log k1√
n

) + ξ2(k0 − k1) + ξ
√
k0 − k1

where η, c1, c2 and c3 are absolute constants, and τ
and ξ are defined as

τ = max
{
x∗
i

∣∣ x̂i ̸= 0
}
, ξ = max

{
x∗
i

∣∣ x̂i = 0
}
.

Proof: With loss of generality, we assume that the
entries in x̂ and x∗ are rearranged such that x̂1:k con-
tains all k nonzero entries in x̂, where x̂1:k1 correspond
to k1 nonzero entries in x∗, and x̂k1+1:k correspond to
k − k1 zeros in x∗. Then we establish ℓ2 error bound

∥x̂− x∗∥2 ≤ ∥x̂1:k − x∗
1:k∥2 + ∥x̂k+1:p − x∗

k+1:p∥2

=
∥∥ z1:k
∥z1:k∥2

− x∗
1:k

∥∥
2
+ ∥x∗

k+1:p∥2

≤ ∥z1:k − x∗
1:k∥2 +

∥∥ z1:k
∥z1:k∥2

− z1:k
∥∥
2
+ ∥x∗

k+1:p∥2

≤
√
k∥z1:k − x∗

1:k∥∞ +
∣∣∥z1:k∥22 − 1

∣∣+ ξ
√
k0 − k1

≤ c1
λ

√
k(t+ log p)

n
+

∣∣ k∑
i=1

z2i − 1
∣∣+ ξ

√
k0 − k1 ,

(7)

in which c1 , c. To complete the analysis, we only
need to bound |

∑k
i=1 z

2
i − 1|. We decompose it as

∣∣ k∑
i=1

z2i − 1
∣∣ ≤ ∣∣ k1∑

i=1

z2i −
k1∑
i=1

(x∗
i )

2
∣∣+ k∑

i=k1+1

z2i

+
∣∣1− k1∑

i=1

(x∗
i )

2
∣∣

≤
k1∑
i=1

∣∣z2i − (x∗
i )

2
∣∣+ k∑

i=k1+1

z2i +
∣∣1− k1∑

i=1

(x∗
i )

2
∣∣

≤
k1∑
i=1

∣∣z2i − (x∗
i )

2
∣∣+ k∑

i=k1+1

z2i + ξ2(k0 − k1) ,

Using the results from (Zhang et al., 2014; Vershynin,
2012), we know ujiyj is a sub-gaussian random vari-

able with sub-Gaussian norm ∥ujiyj∥ψ2 = ∥uji∥ψ2 ,
K, then the centered sub-gaussian random variable
ujiyj
λ −x∗

i has ∥
ujiyj
λ −x∗

i ∥ψ2 ≤ 2K
λ . Further, zi−x∗

i =
1
n

∑n
j=1(

ujiyj
λ − x∗

i ) is an average of n independent
centered sub-gaussian random variables, whose sub-

gaussian norm satisfies ∥zi − x∗
i ∥2ψ2

≤ 4CK2

λ2n , in which

C is an absolute constant. Hence (zi − x∗
i )

2 is sub-
exponential with its sub-exponential norm satisfying

∥(zi − x∗
i )

2∥ψ1 ≤ 2∥zi − x∗
i ∥2ψ2

≤ 8CK2

λ2n
=⇒

∥z2i − 2x∗
i zi + 2(x∗

i )
2 − (x∗

i )
2∥ψ1 ≤ 8CK2

λ2n
,

By triangular inequality for sub-exponential norm, we
get

∥z2i − (x∗
i )

2∥ψ1 − ∥2x∗
i zi − 2(x∗

i )
2∥ψ1 ≤ 8CK2

λ2n

∥z2i − (x∗
i )

2∥ψ1 ≤ 8CK2

λ2n
+ 2|x∗

i |∥zi − x∗
i ∥ψ1

For 1 ≤ i ≤ k1, using the fact ∥ · ∥ψ1 ≤ ∥ · ∥ψ2 , we have

∥z2i − (x∗
i )

2∥ψ1 ≤ 8CK2

λ2n
+ 2τ∥zi − x∗

i ∥ψ2

≤ 8CK2

λ2n
+

4Kτ

λ

√
C

n
,

For k1 < i ≤ k, as x∗
i = 0, we have

∥z2i ∥ψ1
= ∥z2i − (x∗

i )
2∥ψ1

≤ 8CK2

λ2n
.

Hence we obtain the following concentrations for z2i by
the definition of sub-exponential variable,

P
{∣∣z2i − (x∗

i )
2
∣∣ > ϵ1

}
≤ exp

(
1− C ′ϵ1

8CK2

λ2n + 4Kτ
λ

√
C
n

)
,

if 1 ≤ i ≤ k1 ,

P
{
z2i > ϵ2

}
≤ exp

(
1− C ′ϵ2

8CK2

λ2n

)
, if k1 < i ≤ k ,
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in which C ′ is also an absolute constant. Taking the
union bound over all z2i , we get

P
{ k1∑
i=1

∣∣z2i − (x∗
i )

2
∣∣ > k1ϵ1

}
≤

k1∑
i=1

P
{∣∣z2i − (x∗

i )
2
∣∣ > ϵ1

}
≤ exp

(
1− C ′ϵ1

8CK2

λ2n + 4Kτ
λ

√
C
n

+ log k1

)
,

P
{ k∑
i=k1+1

z2i > (k − k1)ϵ2

}
≤

k∑
i=k1+1

P
{
z2i > ϵ2

}
≤ exp

(
1− C ′ϵ2

8CK2

λ2n

+ log(k − k1)
)
,

Let t = C′ϵ1
8CK2

λ2n
+ 4Kτ

λ

√
C
n

− log k1 = C′ϵ2
8CK2

λ2n

− log(k − k1),

then we get the following by using t to represent ϵ1
and ϵ2,

k1∑
i=1

∣∣z2i − (x∗
i )

2
∣∣+ k∑

i=k1+1

z2i

≤ k1
(
t+ log k1

)(8CK2

C ′λ2n
+

4Kτ

C ′λ

√
C

n

)
+

(
k − k1

)(
t+ log(k − k1)

)(8CK2

C ′λ2n

)
≤ k(t+ log k)

8CK2

C ′λ2n
+ k1(t+ log k1)

4Kτ

C ′λ

√
C

n

, c2k(t+ log k)

λ2n
+

c3τk1(t+ log k1)

λ
√
n

,

with probability at least 1− 2e1−t. Combining it with
the bound for ∥z1:k−x∗

1:k∥2 and other terms, we obtain

∥x̂− x∗∥2 ≤ c1
λ

√
k(t+ log p)

n
+

c2k(t+ log k)

λ2n

+
c3τk1(t+ log k1)

λ
√
n

+ ξ2(k0 − k1) + ξ
√

k0 − k1

= O(

√
k log p

n
+

k1 log k1√
n

) + ξ2(k0 − k1) + ξ
√
k0 − k1

with probability at least 1− 3e1−t , 1− ηe1−t.

Remark In (7), the recovery error is decomposed into
three parts: the error due to empirical mean ∥z1:k −
x∗
1:k∥2, the scale error ∥ z1:k

∥z1:k∥2
− z1:k∥2, and the error

incurred by unrecovered support ∥x∗
k+1:p∥2. The first

two errors can be reduced by increasing sample size.
Interestingly the scale error does not quite depend on
the choice of k even if z1:k is k-dimensional. The third
depends explicitly on the choice of k and implicitly on
the sample size and x∗ itself.

Based on the general result, we consider some special
cases below:

Corollary 4 Under the setting of Theorem 3, denote
the largest and smallest nonzero elements in |x∗| by
κmax and κmin respectively. If n ≥ c4(t+log p)

λ2κ2
min

and

k ≥ k0 (over-specified sparsity), then with probabili-
ty at least 1− ηe1−t, the following happen:

• The support of x∗ is recovered, i.e., {i | x∗
i ̸= 0} ⊆

{i | x̂i ̸= 0} ,

• ∥x̂ − x∗∥2 ≤ c1
λ

√
k(t+log p)

n + c2k(t+log k)
λ2n +

c3κmaxk0(t+log k0)
λ
√
n

= O(
√

k log p
n + k0 log k0√

n
) ,

If n ≥ c4(t+log p)
λ2κ2

min
and k < k0 (under-specified sparsity),

with probability at least 1−ηe1−t, the following happen:

• k out of k0 nonzero entries are recovered, i.e.,
{i | x̂i ̸= 0} ⊆ {i | x∗

i ̸= 0} ,

• ∥x̂ − x∗∥2 ≤ c1
λ

√
k(t+log p)

n + c2k(t+log k)
λ2n +

c3κmaxk(t+log k)
λ
√
n

+ ξ2(k0 − k) + ξ
√
k0 − k =

O(
√

k log p
n + k log k√

n
) + ξ2(k0 − k) + ξ

√
k0 − k ,

Proof: Let c4 = 4c2, where c is the constant in

Lemma 2. Then we get c
λ

√
t+log p
n ≤ κmin

2 from

n ≥ c4(t+log p)
λ2κ2

min
. According to Lemma 2, we know

∥z − x∗∥∞ ≤ κmin

2 . If k ≥ k0, then it is sufficient
for all k0 nonzero entries to be recovered by x̂. Hence
k1 = k0 and τ = κmax. Substituting them into The-
orem 3, we get the result for k ≥ k0. If k < k0, then
only k out of k0 nonzero entries are recovered, i.e.,
k1 = k and τ ≤ κmax, which gives the similar result
for k < k0.

Remark From the results above, if k = k0 (correct
sparsity), the signal support can be exactly recovered

with n = c4(t+log p)
λ2κ2

min
= c4(t+log p)

λ2κ2
max

κ2
max

κ2
min

≤ c4κ
2
max

λ2κ2
min

k0(t +

log p) = O(k0 log p), which matches the sample com-
plexity in (Gupta et al., 2010), and the error bound

O(
√

k0 log p
n + k0 log k0√

n
) is comparable to the best known

result O(
√

k0 log p
n ) in (Zhang et al., 2014). The addi-

tional term k0 log k0√
n

stems from the analysis of scale

error ∥ z1:k

∥z1:k∥2
− z1:k∥2. Our analysis also yields results

under model misspecification. When the sample size is
sufficient large, a slightly larger k > k0 (over-specified
sparsity) will not increase the recovery error by much,
while a smaller k < k0 (under-specified sparsity) can
impact the error adversely due to the presence of irre-
ducible terms, which do not diminish with sample size,
due to unrecovered support. Note that the results also
explicitly involve κmax and κmin, and it is not difficult
to see that smaller κmax and larger κmin would yield
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better recovery, which is the case that nonzero entries
in x∗ are correlated, e.g., their magnitudes are roughly
equal (See Section 5 for empirical results).

4 Recovery Analysis: Sub-Gaussian
Measurements

In this section, we consider 1-bit CS based on sub-
Gaussian measurement matrix U. In certain set-
tings, suitable sub-Gaussian U, e.g., sampled from the
Bernoulli distribution, can lead to more efficient imple-
mentation compared to the Gaussian case. As shown
in (Ai et al., 2014), some signals x∗ cannot be recov-
ered using non-Gaussian U. In particular, the error
bound for their estimator includes an irreducible term
depending on ∥x∗∥∞ which does not decay with num-
ber of samples n.

We present an analysis of the error bound for our k-
support norm estimator and sub-Gaussian U. Our
estimator also has an irreducible term, which can be
shown to be smaller than twice of that based on ∥x∗∥∞
in (Ai et al., 2014). Moreover, in sharp contrast to
existing sub-Gaussian analysis (Ai et al., 2014), the ir-
reducible term for our estimator can be controlled by
choosing an appropriate scaling of the sub-Gaussian
measurement vectors, at the cost of increasing con-
stants in terms which are reducible by increasing the
number of samples. Thus, our estimator allows for a
trade-off, which we illustrate empirically in Section 5.

For sub-Gaussian U, the result in Lemma 2 for the
expectation of z is not valid anymore. As a result, the
subsequent analysis in Section 3 breaks down. Hence
we start the sub-Gaussian analysis by defining

w , E

[
UTy

n

]
= E[yu] = E[θ(⟨x∗,u⟩)u] , (8)

where u is a random vector with i.i.d. centered sub-
Gaussian elements and U consists of n such indepen-
dent u vectors. Note that w is deterministic when x∗

is given. We also redefine the random vector

z =
1

n

UTy

∥w∥2
. (9)

It is not difficult to see that if u is standard Gaussian
random vector, then w = λx∗ and z is reduced to the
original definition in Lemma 2. In order to recover
x∗, we need to assume that w ̸= 0 for each x∗. The
recovery guarantee is provided in Theorem 5.

Theorem 5 Given a k0-sparse signal x∗ ∈ Rp with
∥x∗∥2 = 1 and a measurement matrix U contain-
ing n i.i.d. samples, where each ui consists of i.i.d.
centered sub-Gaussian entries with ∥uij∥ψ2 ≤ K (See

(Vershynin, 2012) for more on ∥ · ∥ψ2) , we choose a
specific k in the convex program (3) to obtain x̂ (pos-
sibly k ̸= k0). Assume that k1 nonzero entries of x∗

are recovered (k1 < k0), and define

β =
⟨w,x∗⟩

∥w∥2∥x∗∥2
, τ = max

{ wi
∥w∥2

∣∣∣ x̂i ̸= 0
}
,

ξ = max
{ wi
∥w∥2

∣∣∣ x̂i = 0
}

.

Then the recovered signal x̂, with probability at least
1− ηe1−t, satisfies

∥x̂− x∗∥2 ≤ c1K

∥w∥2

√
k(t+ log p)

n
+

c2K
2

∥w∥22
k(t+ log k)

n

+
c3Kτ

∥w∥2
k1(t+ log k1)√

n
+ ξ2(k0 − k1)

+ ξ
√
k0 − k1 +

√
2(1− β)

= O(

√
k log p

n
+

k1 log k1√
n

) + ξ2(k0 − k1)

+ ξ
√
k0 − k1 +

√
2(1− β) ,

where η, c1, c2 and c3 are absolute constants.

Proof Sketch: We assume that x̂ has the same struc-
ture as in the proof of Theorem 3. Then the error
satisfies

∥x̂− x∗∥2 ≤
∥∥x̂− w

∥w∥2
∥∥
2
+
∥∥ w

∥w∥2
− x∗∥∥

2

≤
∥∥x̂1:k −

w1:k

∥w∥2
∥∥
2
+

∥wk+1:p∥2
∥w∥2

+
∥∥ w

∥w∥2
− x∗∥∥

2

≤
∥∥z1:k − w1:k

∥w∥2
∥∥
2
+
∥∥ z1:k
∥z1:k∥2

− z1:k
∥∥
2

+
∥wk+1:p∥2

∥w∥2
+
∥∥ w

∥w∥2
− x∗∥∥

2

≤
√
k
∥∥z1:k − w1:k

∥w∥2
∥∥
∞ +

∣∣∥z1:k∥22 − 1
∣∣

+ ξ
√
k0 − k1 +

√
2(1− β) ,

Using similar argument in the proof of Theorem 3, we
have following inequalities simultaneously hold with
probability at least 1− ηe1−t,∥∥z1:k − w1:k

∥w∥2
∥∥
∞ ≤ c1K

∥w∥2

√
t+ log p

n
,

∣∣∥z1:k∥22 − 1
∣∣ ≤ c2K

2

∥w∥22
k(t+ log k)

n

+
c3Kτ

∥w∥2
k1(t+ log k1)√

n
+ ξ2(k0 − k1) ,

where η, c1, c2 and c3 are absolute constants. Combin-
ing all the inequalities, we complete the proof.

Remark The new quantity which plays a role in

the error bound is β = ⟨w,x∗⟩
∥w∥2∥x∗∥2

. Clearly, β ≤ 1.
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Compared to the Gaussian case, the error bound in-
volves an additional irreducible term

√
2(1− β) =

∥ w
∥w∥2

−x∗∥2, which does not decrease with increasing

n. Further, ∥w∥2 controls the convergence rate for the
reducible terms, which decrease with n. Interestingly,
for two special cases, viz U being standard Gaussian
and nonzero entries in x∗ being equal, it is easy to show
that β = 1, thus eliminating the additional error.

The next result shows that the term (1 − β) is upper
bounded by the corresponding irreducible term based
on ∥x∗∥∞ in (Ai et al., 2014, Theorem 1.3).

Proposition 6 Under the setting of Theorem 5, if uij
is unit-variance and ∥uij∥ψ2 ≤ K as assumed in (Ai
et al., 2014, Theorem 1.3), and the second and third
derivatives of θ are bounded by τ2 and τ3 respectively,
then

1− β ≤ 2CK4

λ
(τ2 + τ3)∥x∗∥∞ ,

where C is an absolute constant.

Proof: Note that 1 − β ≤ (1 − β)(1 + ∥w∥2

λ ) ≤
1
λ (|∥w∥2−βλ|+ |λ−β∥w∥2|). Using the Berry-Esseen
type central limit theorem (i.e. Lemma 3.1 in (Ai
et al., 2014)), we obtain∣∣E[θ(⟨u,x∗⟩)⟨u, w

∥w∥2
⟩]−E[θ(⟨g,x∗⟩)⟨g, w

∥w∥2
⟩]
∣∣

=
∣∣∥w∥2 − βλ

∣∣ ≤ CK4(τ2 + τ3)∥x∗∥∞ ,∣∣E[θ(⟨u,x∗⟩)⟨u,x∗⟩]−E[θ(⟨g,x∗⟩)⟨g,x∗⟩]
∣∣

=
∣∣β∥w∥2 − λ

∣∣ ≤ CK4(τ2 + τ3)∥x∗∥∞ ,

in which g is the random vector with i.i.d s-
tandard Gaussian entries and we use the equality
E[θ(⟨g,x∗⟩)g] = λx∗ from Lemma 2. The result sim-
ply follows.

Though the error term
√
2(1− β) can be bounded by

twice of ∥x∗∥∞ term in (Ai et al., 2014, Theorem 1.3),
the bound can be loose in general. Next we illustrate
that under suitable scalings of the sub-Gaussian vec-
tors, β is close to 1. We start with the following lemma.

Lemma 7 Suppose that u is a random vector with
i.i.d. centered sub-Gaussian entries of variance σ2,
then for any vector x ∈ Rp, E[⟨u,x⟩u] = σ2x.

Proof: We expand the expectation for each entry,
E[⟨u,x⟩ui] = E[u2

ixi] +
∑
j ̸=iE[uiujxj ] = E[u2

i ]xi +

0 = σ2xi. Hence the result holds for the vector.

By this lemma, if we can ensure that θ(⟨ui,x∗⟩) looks
like a linear function in a suitable neighborhood, say
around 0, then with proper scaling of the ui, we expect

w to be approximately aligned with x∗, thus β ≈ 1.
Specifically we have the following result.

Theorem 8 Assume that θ is twice continuously d-
ifferentiable, and the second-order derivative θ′′ is
bounded by ϕ. Let ν = θ′(0), and ui consists of i.i.d.
centered sub-Gaussian of variance σ2 , the following
inequality holds for every unit k0-sparse vector x∗.

β =
⟨w,x∗⟩

∥w∥2∥x∗∥2
≥ 1− α√

1 + 2α+ k0
C6α2

,

where α = 3
√
3ϕC3K3

2σ2ν , C is an absolute constant, and
K = ∥uij∥ψ2 is the sub-Gaussian norm.

Proof: We expand θ(⟨ui,x∗⟩) at 0 by Taylor expan-

sion, θ(⟨ui,x∗⟩) = θ(0)+θ′(0)⟨ui,x∗⟩+ θ′′(r)
2 ⟨ui,x∗⟩2,

where r is between 0 and ⟨ui,x∗⟩. Then we have

w = E[θ(⟨ui,x∗⟩)ui] = E[θ(0)ui] +E[θ′(0)⟨ui,x∗⟩ui]

+E[
θ′′(r)

2
⟨ui,x∗⟩2ui] = σ2νx∗ +E[

θ′′(r)

2
⟨ui,x∗⟩2ui],

⟨w,x∗⟩ = ⟨σ2νx∗ +E[
θ′′(r)

2
⟨ui,x∗⟩2ui], x∗⟩

= σ2ν +E[
θ′′(r)

2
⟨ui,x∗⟩3]

≥ σ2ν − ϕ

2
E[|⟨ui,x∗⟩|3] ≥ σ2ν − 3

√
3ϕ

2
C3K3 .

The last inequality follows the definition of sub-
Gaussian norm and the fact that ⟨ui,x∗⟩ is sub-
Gaussian (Vershynin, 2012). Similarly we have

∥w∥22 = ⟨w,w⟩ =
⟨
σ2νx∗ +E[

θ′′(r)

2
⟨ui,x∗⟩2ui],

σ2νx∗ +E[
θ′′(r)

2
⟨ui,x∗⟩2ui]

⟩
≤ σ4ν2 + 3

√
3ϕσ2νC3K3 +

∥∥E[
θ′′(r)

2
⟨ui,x∗⟩2ui]

∥∥2
2
.

To bound the last ℓ2-norm term, we first try to bound
each entry in that vector. For simplicity, we assume
that x∗

1:k0
are nonzero. For j > k0, it is easy to see

E[
θ′′(r)

2
⟨ui,x∗⟩2uij ] = E[

θ′′(r)

2
⟨ui1:k0 ,x

∗
1:k0⟩

2]E[uij ] = 0

For 1 ≤ j ≤ k0, we have∣∣E[
θ′′(r)

2
⟨ui,x∗⟩2uij ]

∣∣ ≤ E
[
|θ

′′(r)

2
⟨ui,x∗⟩2uij |

]
≤ ϕ

2
E[⟨ui,x∗⟩2|uij |] =

ϕ

2
E[

k0∑
k,l=1

xkxluikuil · |uij |]

=
ϕ

2

(
x2
jE[|uij |3] +

k0∑
k ̸=j

x2
kE[u2

ik]E[|uij |]
)

≤ ϕ

2

(
3
√
3x2

jK
3 +

k0∑
k ̸=j

2x2
kK

3
)
≤ 3

√
3ϕ

2
K3
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=⇒
∥∥E[

θ′′(r)

2
⟨ui,x∗⟩2ui]

∥∥2
2
≤ 27ϕ2k0

4
K6 .

Combining the lower bound for ⟨w,x∗⟩ and the upper
bound for ∥w∥22, we get the inequality for β.

Remark Note that ϕ and ν are constants in this the-
orem, if we replace ui with ũi = ui

γ for some large

γ > 0, then the sub-Gaussian norm K̃ = K
γ , variance

σ̃ = σ
γ , and thus α̃ = α

γ accordingly. As γ increases, α̃

approaches 0, so the corresponding β̃ approaches 1.

We highlight the key differences between our bound
for the irreducible error and that in (Ai et al., 2014).
Essentially our irreducible term characterizes the ℓ2
norm ∥ w

∥w∥2
− x∗∥2, while Ai et al. (2014) considers

the quantity |⟨w, x̂⟩−λ⟨x∗, x̂⟩| instead. For the bound
in (Ai et al., 2014) to hold, the sub-Gaussian entry
uij should be unit-variance. Hence it is impermissible
to reduce it by scaling down ui. As for our result,
the irreducible term can be made arbitrarily small by
using ui

γ with γ large enough. However, the scaling is

not a free lunch since using ui

γ with large γ decreases

∥w∥2 which adversely affects the constant 1
∥w∥2

for the

reducible terms (decreasing with n) in Theorem 5.

5 Experiments

In recent work, Zhang et al. (2014) illustrated that
their passive algorithm outperforms other baselines.
Hence, in the experiments, we directly compare our
estimator against their passive algorithm. The regu-
larization parameter γ of the passive algorithm is set

to
√

log p
n , which is the optimal choice used in (Zhang

et al., 2014). All results are reported based on an av-
erage over 100 trials.

5.1 Gaussian Measurement Matrix

We use standard Gaussian U, i.e., uij ∼ N (0, 1). The
noise model is random bit-flip with probability 0.1, i.e.,
yi = ρ sign(⟨ui,x∗⟩), where ρ equals 1 with probability
0.9, −1 with probability 0.1. Apart from total error
∥x̂−x∗∥2, we also investigate the behavior of the three
types of error, i.e., error from empirical mean ∥z1:k −
x∗
1:k∥2, error in scale ∥ z1:k

∥z1:k∥2
− z1:k∥2, and error from

unrecovered support ∥x∗
k+1:p∥2.

First we study the recovery error at different sam-
ple sizes n. In particular, we choose k = k0 = 50,
p = 5000, and vary n from 1500 to 30000. We focus
on two different scenarios, x∗ being uncorrelated or
correlated. Correlated x∗ tends to have some nonzero
entries with similar magnitude, whereas the uncorre-
lated does not (see settings in Figure 1(a),1(b)). The
error curves are shown in Figure 1. The performance
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(a) Uncorrelated signal. Nonzero entries are sam-
pled from N (0, 1). Our estimator performs worse
at small n, but quickly catch up when n grows.
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(b) Correlated signal. Half of the nonzero entries
are sampled from N (5, 1), half are from N (−4, 1).
Our estimator outperforms the passive algorithm.

Figure 1: Recovery error vs. sample size n (Gaussian).

of the two estimators are comparable for the uncor-
related case, while the new estimator does better in
the correlated case. Further, in the correlated case
(Figure 1(b)), the error from unrecovered support de-
creases nearly to zero, which means that the support of
x∗ is well recovered in this situation and matches our
analysis. Besides, we can see that the error from em-
pirical mean always dominates the total and the error
in scale plays little role in both cases.

Next we study the error of our estimator under mis-
specified model, i.e., k ̸= k0 (Figure 2). We stay
with correlated x∗ and two scenarios, sample size be-
ing large or small. For large n (Figure 2(a)), the error
sharply drops at the correct k = k0, and our estimator
performs better than the passive algorithm in a neigh-
borhood of k0. Under misspecification with k < k0,
the error is large since the error from unrecovered sup-
port is large. For k > k0, the support is correctly
recovered so that the corresponding error is small, but
there is some additional error due to empirical mean.
For small n (Figure 2(b)), our estimator outperforms
the passive algorithm over a wide range of k, with the
best performance being around k = k0. The trend of
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(a) Recovery error for uncorrelated
signal. Nonzero entries are generat-
ed from N (0, 1).
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(b) Recovery error for correlated sig-
nal. Half of the nonzero entries are
from N (5, 1), half are from N (−4, 1).
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(c) Recovery errors for differently s-
caled Bernoulli distributions. Nonze-
ro entries are generated from N (0, 1).

Figure 3: Recovery error for sub-Gaussian.
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(a) Large sample size, n = 25000. Total error
is minimized at k = k0. k < k0 incurs a large
error from unrecovered support, and k > k0 only
slightly increases the error from empirical mean.
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(b) Small sample size, n = 5000. The error from
empirical mean is comparable to error from un-
recovered support, and the curve of total error is
smoother than the one for large sample size.

Figure 2: Recovery error vs. parameter k (Gaussian).

three types of error matches our theoretical bounds.

5.2 Sub-Gaussian Measurement Matrix

Here we specifically use a centered Bernoulli distribu-
tion to generate U, i.e, each uij takes −1 or +1 with
equal probability. We choose k0 = 10, p = 1000 and
set function θ(t) = et−1

et+1 , which corresponds to logistic
regression model. The small k0 facilitates the calcu-
lation of w, whose complexity is basically O(2k0) for
Bernoulli distribution. Thus we can compute the irre-

ducible error term ∥ w
∥w∥2

− x∗∥2 using w.

From Figures 3(a) and 3(b), we note similar error
curves against sample size compared to those for
Gaussian measurement matrix. In fact, the curve
for Bernoulli measurements almost overlaps with the
Gaussian one, and the irreducible error is negligible
relative to the total. Again, our estimator outperforms
the passive algorithm, especially for the correlated x∗.

We also study how the scaling of sub-Gaussian dis-
tribution affects the recovery error. We choose three
scaled Bernoulli distributions, uij = ±2,±1 and ±0.5.
In Figure 3(c), uij = ±2 has largest irreducible error,
while its reducible error has almost converged, yield-
ing a moderate total error. In contrast, uij = ±0.5 has
smallest irreducible error, but the reducible error has
not yet converged in range of n we consider, resulting
in a large total error. uij = ±1 balances the two error
in a way and gives the smallest total error. These ob-
servations confirm our conclusions in Theorem 8, and
the optimal scaling depends on the sub-Gaussian dis-
tribution, the noise model and the sample size.

6 Conclusions

In this paper, we first introduce the k-support norm es-
timator for 1-bit CS, which has a closed-form solution.
Then we establish its recovery guarantees. For Gaus-
sian measurement matrix, our result considers model
misspecification and is comparable to the best known
results for both ℓ2 error and support recovery. In sub-
Gaussian case, our bound ends up with an irreducible
error similar to previous work. However, we show that
this error can be controlled under certain assumptions
by properly scaling the sub-Gaussian distribution. Ex-
perimental results provide sound support to our theo-
retical development.

Acknowledgements

The research was supported by NSF grants IIS-
1447566, IIS-1422557, CCF-1451986, CNS-1314560,
IIS-0953274, IIS-1029711, and by NASA grant N-
NX12AQ39A.

145



Sheng Chen, Arindam Banerjee

References

Albert Ai, Alex Lapanowski, Yaniv Plan, and Roman
Vershynin. One-bit compressed sensing with non-
gaussian measurements. Linear Algebra and Appli-
cations, 441:222–239, 2014.

Andreas Argyriou, Rina Foygel, and Nathan Srebro.
Sparse prediction with the k-support norm. In NIP-
S, pages 1466–1474, 2012.

Petros T. Boufounos. Reconstruction of sparse signals
from distorted randomized measurements. In ICAS-
SP, 2010.

Petros T. Boufounos and Richard G. Baraniuk. 1-bit
compressive sensing. In CISS, 2008.

Emmanuel J. Candes and Terrence Tao. Near-optimal
signal recovery from random projections: Universal
encoding strategies? IEEE Transactions on Infor-
mation Theory, 52(12):5406–5425, December 2006.
ISSN 0018-9448.

Soumyadeep Chatterjee, Sheng Chen, and Arindam
Banerjee. Generalized dantzig selector: Application
to the k-support norm. In NIPS, pages 1934–1942.
2014.

David L. Donoho. Compressed sensing. IEEE Trans-
actions on Information Theory, 52:1289–1306, 2006.

Sivakant Gopi, Praneeth Netrapalli, Prateek Jain, and
Aditya V. Nori. One-bit compressed sensing: Prov-
able support and vector recovery. In ICML, pages
154–162, 2013.

Ankit Gupta, Robert Nowak, and Benjamin Recht.
Sample complexity for 1-bit compressed sensing and
sparse classification. In ISIT, pages 1553–1557,
2010.

Jarvis Haupt and Richard Baraniuk. Robust support
recovery using sparse compressive sensing matrices.
In CISS, pages 1–6, 2011.

Laurent Jacques, Jason N. Laska, Petros T.
Boufounos, and Richard G. Baraniuk. Robust 1-bit
compressive sensing via binary stable embeddings of
sparse vectors. IEEE Transactions on Information
Theory, 59(4):2082–2102, 2013.

Andrew M. McDonald, Massimiliano Pontil, and Dim-
itris Stamos. Spectral k-support norm regulariza-
tion. In NIPS, pages 3644–3652. 2014.

Yaniv Plan and Roman Vershynin. One-bit com-
pressed sensing by linear programming. Communi-
cations on Pure and Applied Mathematics, 66:1275–
1297, 2013a.

Yaniv Plan and Roman Vershynin. Robust 1-bit Com-
pressed Sensing and Sparse Logistic Regression: A
Convex Programming Approach. IEEE Transac-
tions on Information Theory, 59(1):482–494, Jan-
uary 2013b. ISSN 0018-9448.

Roman Vershynin. Introduction to the non-asymptotic
analysis of random matrices. In Compressed Sens-
ing, chapter 5, pages 210–268. Cambridge University
Press, 2012.

Lijun Zhang, Jinfeng Yi, and Rong Jin. Efficient al-
gorithms for robust one-bit compressive sensing. In
ICML, pages 820–828, 2014.

Xinhua Zhang, Yaoliang Yu, and Dale Schuurmans.
Polar operators for structured sparse estimation. In
NIPS, pages 82–90, 2013.

Hui Zou and Trevor Hastie. Regularization and vari-
able selection via the elastic net. Journal of the Roy-
al Statistical Society, Series B, 67:301–320, 2005.

146


