
Model Selection for Topic Models via Spectral Decomposition

A Theoretical results for LDA

A.1 Coefficient Setting for Theorem 2.4

Bound of σ1(M2)

We have that with probability greater than

1−Ke−
c22
2

−KV e−
c1
2 min{ c12 ,

√
β}

−K[
eδ
′

(1 + δ′)1+δ′
]

V β

K(β+c1β
1/2)2 ,

we have

σ1(M2) ≤ 1

K(Kα+ 1)

(1 + δ′)V (β +Kβ2)

(V β − c2
√
V β)2

.

We can choose c1, c2 and δ′ as follows to simplify the
formula of the bound

• Choose c2 =
√

2 log(K/δ1), first probability term
is less than δ1.

• Choose c1 = 2√
β

log(KV/δ2), third probability

term is less than δ2.

• Choose δ′ as

δ′ =

(
log(K/δ3)K (β + 2 log (K/δ2))

2

V β

) 1
2

,

second probability term is less than δ3.

As a result, with probability greater than 1− δ1− δ2−
δ3, we have

σ1(M2) ≤ 1

K(Kα+ 1)

(1 + δ′)V (β +Kβ2)

(V β −
√

2V β log(K/δ1))2
.

As an alternative, we can choose c1, c2 and δ1 as follows
to simplify the formula of the bound

• Choose c2 =
√

2 log(K/δ), first probability term
is less than δ.

• Choose c1 = 4√
β

log(KV ), third probability term

is less than 1
KV .

• Choose δ′ = 0.1, second probability term is less

than K(0.995)
V (β+Kβ2)

K(β+c1β
1/2)2 .

As a result, with probability greater than

1− δ − 1

KV
−K(0.995)

V β

K(β+2 log(KV ))2 ,

we have

σ1(M2) ≤ 1.1

K(Kα+ 1)

V (β +Kβ2)

(V β −
√

2V β log(K/δ))2
.

Bound of σK(M2)

We have that with probability greater than

1−Ke−
c2
2 min{ c22 ,V β}

−KV e−
c1
2 min{ c12 ,

√
β}

−K[
e−δ

′

(1− δ′)1−δ′
]

V β

K(β+c1β
1/2)2 ,

we have

σK(M2) ≥ 1

K(Kα+ 1)

(1− δ′)V β
(V β + c2

√
V β)2

We can choose c1, c2 and δ′ as follows to simplify the
formula of the bound

• Choose c2 = 2
√

log(K/δ1), first probability term
is less than δ1.

• Choose c1 = 2√
β

log(KV/δ2), third probability

term is less than δ2.

• Choose δ′ as

δ′ =

(
log(K/δ3)K (β + 2 log (K/δ2))

2

V β

) 1
2

,

second probability term is less than δ3.

As a result, with probability greater than 1− δ1− δ2−
δ3, we have

σK(M2) ≥ 1

K(Kα+ 1)

(1− δ′)V β
(V β + 2

√
V β log(K/δ1))2

As an alternative, we can choose c1, c2 and δ1 as follows
to simplify the formula of the bound

• Choose c1 = 4√
β

log(KV ), third probability term

is less than 1
KV .

• Choose c2 = 2
√

log(K/δ), first probability term
is less than δ.

• Choose δ′ = 0.1, second probability term is less

than K(0.995)
V (β+Kβ2)

K(β+c1β
1/2)2 .

As a result, with probability greater than

1− δ − 1

KV
−K(0.995)

V β

K(β+2 log(KV ))2 ,

we have

σK(M2) ≥ 0.9

K(Kα+ 1)

V β

(V β + 2
√
V β logK/δ)2

.
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A.2 Lemma for Theorem 2.1

Lemma A.1. With M̂2 and M2 previously defined,
we have that

max
i
|σi(M̂2)− σi(M2)| ≤ max

i
|λi(M̂2)− λi(M2)|

Proof. Because M2 is a symmetric semidefinite ma-
trix, so we have

σi(M2) = λi(M2), ∀i,

And because M̂2 is a symmetric matrix, we have

σi(M̂2) = |λs(i)(M̂2)|, ∀i,

for some permutation s.

Because we have λi(M̂2) ≤ |λi(M̂2)| = σj(M̂2), so we

have λi(M̂2) ≤ σi(M̂2).

Let j be the smallest index that |λj(M̂2)| 6= σj(M̂2),
for i < j, we have

|σi(M̂2)−σi(M2)|

=|λi(M̂2)− λi(M2)|

≤max
i
|λi(M̂2)− λi(M2)|

By the fact that λi(M2) ≥ 0, we have that for ∀i ≥ j,

σi(M̂2) ≤ max
k
|λk(M̂2)− λk(M2)|

We also have
σi(M̂2) ≥ λi(M̂2)

Because

|λi(M̂2)− σi(M2)| ≤ max
k
|λk(M̂2)− λk(M2)|

We can prove that

|σi(M̂2)− σi(M2)| ≤ max
k
|λk(M̂2)− λk(M2)|

Therefore,

max
i
|σi(M̂2)− σi(M2)| ≤ max

i
|λi(M̂2)− λi(M2)|

B Theoretical results for GMM

The proof of Theorem 4.1 is achieved by analyzing
the concentration result δR of empirical second order
moments and also upper bound for the first singular
value of the true moment M2. Thresholding with δR
leads to the first claim, while solving the inequality on
the σ1(M̂2) provides the second claim.

B.1 Relation Between M2 and M̂2

We bound the different between singular values of M2

through the following Theorem.

Theorem B.1. For spherical Gaussian mixtures with
probability at least 1− δ, ∀i ∈ {1, 2, . . . ,m},we have

|σi(M̂2)− σi(M2)| ≤ σm√
Nδ

√
2σ2

µ +
m+ 1

m
σ2 = δR

Especially, when i ≤ K + 1, we have

σi(M̂2) ≤ σm√
Nδ

√
2σ2

µ +
m+ 1

m
σ2. (4)

Proof. We establish the result by bounding the Frobe-
nius of matrix R as we do for LDA model. The square
of Frobenius norm is ||R||2F =

∑
i,j R2

ij . Since we have
E[Rij |µ] = 0, thus

V ar[Rij |µ] = E[R2
ij |µ]− E2[Rij |µ] = E[R2

ij |µ],

and

E[||R||2F] =E[E[||R||2F|µ]]

=E[
∑
i,j

V ar[Rij |µ]|µ]

=E[
∑
i 6=j

V ar[Rij |µ] +
∑
i

V ar[Rii|µ]|µ]

=
m(m− 1)

N
σ2(2σ2

µ + σ2) +
m

N
σ2(2σ2

µ + 2σ2)

=
m2σ2

N
(2σ2

µ +
m+ 1

m
σ2).

Then by Markov inequality, we have

Pr(||R||2F ≥ k × E[||R||2F]) ≤ 1/k.

By setting k = 1/δ, we have that with at least proba-
bility 1− δ,

‖R‖F ≤
σm√
Nδ

√
2σ2

µ +
m+ 1

m
σ2

B.2 Spectral Structure of M2

We use following theorem to characterize the spectral
structure of M2.

Theorem B.2. Assume that αi = α in the spherical
Gaussian mixtures, we have

(1) With probability at least 1−δ1−δ2−2 exp(−t2/2),
we have

σ1(M2) ≤
σ2
µ

K

α+ 2 log(K/δ1)

α−
√

2α log(1/δ2)/K
(
√
m+

√
K + t)2

(5)
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(2) Further assume that and wi ≥ wmin,∀i, then with
probability at least 1− 2 exp(−t2/2), we have

σK(M2) ≥ wminσ
2
µ(
√
m−

√
K − t)2 (6)

Proof. We have M2 =
∑K
k=1 wkµk ⊗ µk = OAO>,

where O = (µ1, µ2, . . . , µK) is a m × K matrix and
A = diag(w1, w2, . . . , wK) is a diagonal matrix. Be-
cause M2 = OAO> = OA1/2A1/2O>, we have
that σi(M2) = σi(A

1/2O>OA1/2),∀i = 1, 2, . . . ,K.
Therefore, we have the following inequalities [HJ]:

σ1(M2) ≤ σ1(O>O)σ1(A), (7)

σK(M2) ≥ σK(O>O)σK(A). (8)

Note that the elements of O are i.i.d. Gaussian
random variables, i.e., Oij ∼ N (0, σ2

µ). The dis-

tribution of σi(O
>O) has been well-studied in ran-

dom matrix theory [Ver10]. With probability at least
1− 2 exp(−t2/2), we have

σ1(O>O) ≤ σ2
µ(
√
m+

√
K + t)2,

σK(O>O) ≥ σ2
µ(
√
m−

√
K − t)2.

And since σ1(A) = maxi{wi}, we can prove that with
probability at least 1− δ1− δ2, we have (see appendix
C.3 for proof)

max
i
{wi} ≤

1

K

α+ 2 log(K/δ1)

α−
√

2α log(1/δ2)/K

We also have σK(A) = mini{wi} ≥ wmin. We com-
plete the proof by substituting the above formulas into
inequalities (7).

C Tail bound for Gamma distribution

In this section, we proof some tail bound related to the
Gamma distribution. Our main tool is the following
Lemma.

Lemma C.1. [Massart and Laurent] Tail Bound
for Chi-square distribution Let U be a χ2

D random
variable with D degree of freedom, then for any positive
x, the following holds

Pr(U ≥ D + 2
√
Dx+ 2x) ≤ e−x,

Pr(U ≤ D − 2
√
Dx) ≤ e−x.

Proof. See [LM00] for proof.

C.1 Tail Bound for a Single Gamma
Distribution

In this section, we provide tail bound for a single
Gamma random variable (R. V.).

Lemma C.2. Tail Bound for Gamma R.V. Let
X ∼ Gamma(α, 1) be a Gamma R.V. with shape pa-
rameter α, and scale parameter 1, then for any positive
c, the following holds

Pr(X ≥ α+ c
√
α) ≤e− c2 min{ c2 ,

√
α},

Pr(X ≤ α− c
√
α) ≤e− c

2

2 .

Proof. By relationship between Gamma R.V. and chi-
square R.V., we have that 2X ∼ χ2

2α. Apply Lemma
C.1 directly, we have

Pr(X ≥ α+ c
√
α) ≤e−c

√
α+α(
√

1+2cα−1/2−1),

Pr(X ≤ α− c
√
α) ≤e− c

2

2 .

To get the same formula as in the lemma, we can
easily prove that c

√
α − α(

√
1 + 2cα−1/2 − 1) >

c
2 min{ c2 ,

√
α}, ∀c, α > 0.

Corollary C.3. Tail Bound for Sum of Square
of Gamma R.V. If we have n i.i.d Gamma R.V.
Xi ∼ Gamma(α, 1), i = 1, . . . , n, then for any positive
c, the following holds

Pr(
∑
i

X2
i ≥ n(α+ c

√
α)2) ≤ ne− c2 min{ c2 ,

√
α}.

C.2 Tail Bound for Maximum/Minimum of
Gamma Random Variables

Lemma C.4. If we have n i.i.d Gamma R.V. Xi ∼
Gamma(α, 1), i = 1, . . . , n, we have that

Pr(max
i
{Xi} ≥ α+ c

√
α) ≤ne− c2 min{ c2 ,

√
α},

Pr(min
i
{Xi} ≤ α− c

√
α) ≤ne− c

2

2 .

Proof. It can be proved by applying union bound di-
rectly.

C.3 Tail Bound for Maximum/Minimum
Element of Dirichlet Distribution

It is well known that a random vector
(x1, x2, . . . , xn) ∼ Dir(α1, α2, . . . , αn) is equiva-
lent to a random vector (y1, y2, . . . , yn)/

∑
i yi, where

yi ∼ Gamma(αi, 1) independently. And we have
maxi{xi} = maxi{yi}/

∑
i yi.

Assume αi = α, so we have

Pr(max
i
{yi} ≥ α+ c1

√
α) ≤ ne−

c1
2 min{ c12 ,

√
α}.
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And since
∑
i yi ∼ Gamma(nα, 1), we have

Pr(
∑
i

yi ≤ nα− c2
√
nα) ≤ e−

c22
2

By setting c1 = 2 log(n/δ1)/
√
α (when n > δ1e

α) and
c2 =

√
2 log(1/δ2), we have that with probability at

least 1− δ1 − δ2,

max
i
{xi} ≤

1

n

α+ log(n/δ1)

α−
√

2α log(1/δ2)/n

Similarity, mini{xi} = mini{yi}/
∑
i yi. And

Pr(min
i
{xi} ≤ α− c1

√
α) ≤ne−

c21
2 ,

Pr(
∑
i

yi ≥ nα+ c2
√
nα) ≤e−

c2
2 min{ c22 ,

√
nα}.

By setting c1 =
√

2 log(n/δ1) and c2 =
√

2 log(1/δ2)
(when δ2 > e( − 2α)), we have that with probability
at least 1− δ1 − δ2,

min
i
{xi} ≥

1

n

α−
√

2 log(nα/δ1)

α+
√

2α log(1/δ2)/n

which is nontrivial only when α is large enough.

D Variance Calculation for LDA

In this section, we presents the overall procedure and
some important intermediate results of the variance
calculation for LDA. Note that we have the following
assumptions on the scale of each statistics or param-
eters: L = O(D), V = O(D), L = O(V ), K = O(L),
1/K = O(1), α = Θ(1), and β = Θ(1).

First, we have

R =
1

D

∑
d

1

L(L− 1)

∑
l 6=s

xd,lx
>
d,s

− α0

α0 + 1
[

1

D

∑
d

1

L

∑
l

xd,l][
1

D

∑
d

1

L

∑
l

xd,l]
>

−M2.

We represent each term by

R(1) =
1

D

∑
d

1

L(L− 1)

∑
l 6=s

xd,lx
>
d,s,

R(2) =
α0

α0 + 1
[

1

D

∑
d

1

L

∑
l

xd,l][
1

D

∑
d

1

L

∑
l

xd,l]
>,

R(3) =
1

D

∑
d

1

L

∑
l

xd,l.

And we have the following identity:

EµV arX [Rij ] =EµV arX [R
(1)
ij ] + EµV arX [R

(2)
ij ]

−2EµCovX [R
(1)
ij , R

(2)
ij ],

with H = {µ, h}, X = {h, x}.

R
(2)
ij =

α0

α0 + 1
R

(3)
i R

(3)
j .

For simplicity of representation, we assume the follow-
ing,

f
(ij)
d =

1

L(L− 1)

L∑
l 6=s

x
(i)
d,lx

(j)
d,s,

g
(i)
d =

1

L

L∑
l=1

x
(i)
d,l.

and the superscript (ij) or (i) will be omitted if there
is no ambiguity. By this representation, we have

R(1) =
1

D

∑
d

fd,

R(3) =
1

D

∑
d

gd.

We also assume the representation z
(i)
d =

∑
k µ

(i)
k h

(k)
d ,

which is the probability of ei in the d-th documents
conditioned on H = {µ, h}. And δij = 1 if and only if
i = j.

The intermediate results for diagonal and off-diagonal
variance are different, so we provide them separately
in the following sections.

D.1 Calculate Off-diagonal Variance

In this section, we assume that i 6= j. And we have
the following results:

EµV arX [R
(1)
ij ] ≤ 1

DL2V 2
+

2

DLV 3
+

1

DV 4
+O(ε)

EµV arX [R
(2)
ij ] ≤ 2

DLV 3
+

1

DV 4
+O(ε)

EµCovX(R(1), R(2)) ≥ 2

DLV 3
+O(ε)

Therefore, we have that

EµV arX [Rij ] ≤
1

DL2V 2
+

2

DLV 3
+

1

DV 4
+

2

DLV 3

+
1

DV 4
− 4

DLV 3
+O(ε)

=
1

DL2V 2
+

2

DV 4
+O(ε).
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D.2 Calculate Diagonal Variance

In this section, we assume that i 6= j. And we have
the following results:

EµV arX [R
(1)
ij ] ≤ 1

DL2V
+

4

DLV 3
+

1

DV 4
+O(ε),

EµV arX [R
(2)
ij ] ≤ 2

DLV 3
+

1

DV 4
+O(ε),

EµCovX(R(1), R(2)) ≥ 3

DLV 3
+O(ε).

Therefore, we have that

EµV arX [Rij ] ≤
1

DL2V
+

4

DLV 3
+

1

DV 4
+

2

DLV 3

+
1

DV 4
− 6

DLV 3
+O(ε)

=
1

DL2V
+

2

DV 4
+O(ε).
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