
Supplementary Material

A Proof of Theorem 2.1

We will need to Hoeffding-Chernoff bound for negative dependence:

Theorem A.1. Assume Xi ∈ [0, 1] are negatively dependent variables and define X =
n
∑

i=1

Xi then

P (|X − E[X]| ≥ ǫE[X]) ≤ 2 exp

(

−ǫ2E[X]

3

)

See [7] 1.6 and 3.1 for details.

First it is important to note a change in notation from [19] in order to be consistent with notation used in
[14]. A ǫ-spectral approximation in our paper is weaker then a (1 + ǫ)-spectral approximation in [19].

We will now go over the main changes needed to prove Theorem 6.1 in [19] (disregarding S.2) with negatively
dependent sampling of edges and weights wij ∈ [0, 1].

The proof of Claim 6.5 is quite straightforward. The claim of Lemma 6.6 needs to be changed to
E[∆k

r,t∆
l
t,r] ≤

wr,t

γk+l−1dr
instead of E[∆k

r,t∆
l
t,r] ≤ 1

γk+l−1dr
. The changes to the proof are again straightfor-

ward (remembering wij ∈ [0, 1]).

The main change is to Lemma 6.4. Using the modified Lemma 6.6 and substituting negative dependents for
independence one can prove

∑

σ valid for T,τ

∏

s∈T



∆vs−1,vs

∏

i:τ(i)=s

∆vi−1,vi



 ≤ 1

γk−|T |

∑

σ valid for T,τ

∏

s∈T

wvs−1,vs

dvs−1

.

instead of equation 10 in the paper. The last change is to pick σ(s) proportional to wvs−1,vs instead of
uniformly to prove that

∑

σ valid for T,τ

∏

s∈T

wvs−1,vs

dvs−1

≤ 1

instead of equation 11. From there on all changes are straightforward.

B Proof of Theorem 3.1

Let L̃ = L̃in + L̃out. Let P be the zeros eigenspace of L̃in, which is the same as the zero eigenspace of Lin,
if all the W̃ i are connected. Let Q be the space spanned by the first k eigenvectors of L̃. According to the

Sin-Theta theorem [6], || sin(Θ(P,Q))|| ≤ ||L̃out||
µin
2

where || · || is the spectral norm of L̃out and µin
2 is the

second smallest unnormalized eigenvalue of L̃in. To prove the theorem we will show that µin
2 = Ω(nα) and

that ||L̃out|| = O(nβ + nγ).

The first claim is through using the first two assumptions and the following lemma

Lemma B.1. Let λ2 and µ2 be the second smallest normalized and unnormalized eigenvalues of L, and
d = mini Dii then µ2 ≥ λ2 · d.
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Proof. From the min-max theorem we have

µ2 = min
U : dim(U)=2

{

max
x∈U\{0}

xTLx

||x||2
}

λ2 = min
U : dim(U)=2

{

max
x∈U\{0}

xTLx

xTDx

}

and the lemma follows from the fact that xTDx ≥ d||x||2.

Let m1 be the number of edges needed in order to have an ǫ-spectral approximation of each inner-cluster
matrix W i for ǫ = 3/4 with probability δ/2, then by theorem 2.1 we have that m1 = Õ(n2−α). Using this
fact, the first two assumptions and lemma B.1, it is easy to see that µin

2 = Ω(nα).

We now need to show that ||L̃out|| = O(nβ +nγ). The main tool would be the matrix Chernoff inequlity for
sampling matrixes without replacements.

Theorem B.1. Consider a finite sequence of Hermitian matrices X1, ...,Xk sampled uniformly without
replacements from a finite set of matrices of dimension n. Assume that

Xk � 0 ||Xi|| ≤ R.

Define Y =
k
∑

i=1

Xi then

P (||Y|| ≥ (1+ ǫ)||E[Y]||) ≤ n ·
(

eǫ

(1 + ǫ)1+ǫ

)||E[Y ]||/R

Proof. This is an adaptation of theorem 5.1.1 from [20] replacing the independence requirement to sampling
without replacements. In order to adapt the proof we notice that the only place where independence is used
in in lemma 3.5.1 (subadditivity of the matrix cumulant generating functions) where we need to prove that

∀θ ∈ R E

[

Tr
(

exp
(

∑

θXi

))]

≤ Tr
(

exp
(

∑

logEeθXi

))

(2)

Using the result of [12], if Xi are sampled uniformly at random without replacements for a finite set, and Yi

are sampled with the same probability with replacements then

E

[

Tr
(

exp
(

∑

θXi

))]

≤ E

[

Tr
(

exp
(

∑

θYi

))]

(3)

so we can conclude that

E

[

Tr
(

exp
(

∑

θXi

))]

≤ E

[

Tr
(

exp
(

∑

θYi

))]

≤

≤ Tr
(

exp
(

∑

logEeθYi

))

= Tr
(

exp
(

∑

logEeθXi

))

.

where the second inequality is from 2 as Yi are independent.

We define for each edge e connecting nodes in different clusters the matrix Xe that is equal to zero with
probability 1 − p and is equal to 1

pLe with probability p, where Le is the Laplacian of a single edge graph

with weight we. Then L̃out =
∑

e∈Sout

Xe, E[L̃out] = Lout, Xe � 0 and ||Xe|| ≤1/p.

If we use the matrix Chernoff inequality with 1 + ǫ = 2e · nγ−β then

P (||L̃out|| ≥ 2enγ) ≤ n

(

1

2nγ−β

)2enγp

So if p = m/
(

n
2

)

= O
(

log(n)
nγ

)

we get that P (||L̃out|| ≥ 2enγ) < δ/2 for large enough n.
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C Cut Approximation

We will start by proving an analog of theorem 2.1 in the paper. We will use the following lemma from [13]:

Lemma C.1. Let G be an undirected graph with n vertices and minimal cut c > 0. For all α ≥ 1 the number
of cuts with weight smaller of equal to αc is less then n2α.

The lemma is proven in [13] for graphs with integer weights, but the extension to any positive weights is trivial
by scaling and rounding. We can now state and prove the theorem guaranteeing good cut approximations.

Theorem C.1. Let G be a graph with weights wij ∈ [0, 1], with minimal cut c > 0, and G̃ its approximation

after sampling m edges uniformly. If m ≥
(

n
2

) 3(2 ln(n)+ln( 1
δ
)+k)

ǫ2c where k = ln(2+4 ln(n)), then the probability

that G̃ is not an ǫ-cut approximation is smaller then δ.

Proof. This is an adaptation of the proof in [14] - consider a cut with weight αc. Let p = m/
(

n
2

)

the
probability to sample a single edge. Let Ye = Xe ·we where Xe is an indicator whether edge e on the cut was
sampled and we its weight. Define Y the sum of Ye on all the edges along the cut, then by the fact that edges
are negatively dependent and theorem A.1, the probability that the cut is not an ǫ approximation is smaller
then

2 exp

(

−ǫ2E[Y ]

3

)

= 2 exp

(

−ǫ2αcp

3

)

≤

≤ 2 exp

(

−
(

ln

(

1

δ

)

+ k

)

α

)

· n−2α

Define P (α) = 2 exp
(

−
(

ln
(

1
δ

)

+ k
)

α
)

· n−2α and let f(α) the number of cuts with value αc in the original
graph. By the union bound the probability that some cut is not an ǫ approximation is less then

∑

α≥1

f(α)P (α)

(notice that this sum is well defined since f(α) is non zero only in a finite number of α values). Defining
F (α) =

∑

α≥x

f(x) then by the previous lemma F (α) ≤ n2α. Let g be any measure on [1,∞) such that

G(α) =
α
∫

1

dg ≤ n2α, then the integral
∞
∫

1

P (x)dg is maximized when G(α) = n2α. This is due to the fact

that P is a monotonically decreasing function, so if the inequality is not tight at some point x1 we could
increase the value by picking g̃(x) = g(x) + ǫ̃δ(x − x1) − ǫ̃δ(x − x2) for some appropriate x2 > x1 and ǫ̃
(where δ is the Dirac delta function) . From this we can conclude that the probability of some cut not being
an ǫ-approximation is bounded by

n2P (1) +

∞
∫

1

P (α)
dn2α

dα
dα = 2δe−k +

4δ ln(n)e−k

ln( 1δ ) + k

≤ δ (2 + 4 ln(n)) exp(−k) = δ

A drawback is that the theorem gives a bound that depends on the minimal cut, which we do not know, and
unlike the situation in [14] we cannot approximate it using the full graph. We can prove a bound that uses
only known data about the graph. The following theorem shows we can lower bound c.

Lemma C.2. Let G be a graph with weights wij ∈ [0, 1], with minimal cut c, and G̃ its approximation after
sampling m edges with minimal cut c̃ > 0. Define p = m/

(

n
2

)

the probability to sample a single edge. Also

define l =
3 ln( 1

δ
)

4 and β =
√

1 + l
pc̃ −

√

l
pc̃ . With probability greater then 1− δ the following inequality holds

- c ≥ c̃ · β2.

Proof. Let S be a subset of vertices such that |∂GS| = c then from the Chernoff-Hoeffding inequality (the
12



one-sided version)

P (|∂G̃S| ≥ (1 + ǫ)|∂GS|) = P (p|∂G̃S| ≥ (1 + ǫ)p|∂GS|)

≤ exp

(

−ǫ2pc

3

)

Where we multiply by p to have all the elements bounded by 1. Setting ǫ =
√

3 ln( 1
δ
)

pc we get that with

probability greater then 1− δ that

pc

(

1 +
√

3 ln( 1
δ
)

pc

)

= pc+
√

3 ln( 1δ )
√
pc ≥ |∂G̃S| ≥ pc̃. By completing the square we get that





√
cp+

√

3 ln( 1δ )

4





2

=
(√

cp+
√
l
)2

≥ pc̃+ l

which means (after some simple algebraic manipulation) that

c ≥ c̃β2

We can combine these to theorems and get

Theorem C.2. Let G be a graph with weights wij ∈ [0, 1] and G̃ its approximation after sampling m edges

with minimal cut c̃ > 0. Define β and k as in previous theorems. If m ≥
(

n
2

) 3(2 ln(n)+ln( 2
δ
)+k)

ǫ2β2c̃ then the

probability that G̃ is not an ǫ-cut approximation is smaller then δ.

Proof. This is just using lemma C.2 with error probability δ
2 and using that c for theorem C.1 with the same

error probability and the union bound.

This theorem gives a high probability bound that depends only on observable quantities. While
the notation is a bit cumbersome, it is easy to see that if pc̃ ≫ ln( 1δ ), i.e. the unscaled weight of the
smallest cut is not too small, then β ≈ 1 and we have a bound that is almost as good as if we knew the real c.

We will now prove theorem 3.2 in the paper.

Theorem (3.2). Let G be a graph with weights wij ∈ [0, 1] and G̃ its approximation after observing
m edges. Assume G is partitioned into ℓ clusters each has minimal cut greater or equal to cin, and
the cuts separating clusters from the others is smaller then cout. Furthermore assume cin > 4cout. If

m ≥ 12n2

cin

(

2 ln(n) + ℓ ln( 2δ ) + k
)

then the cuts separating the clusters are smaller then any cut that cuts into
one of the clusters.

Proof. After seeing m edges, the probability for sampling any edge inside any cluster is p = m/
(

n
2

)

. By

theorem C.1 we have that if m ≥ 12n2

cin

(

2 ln(n) + ln( 2
ℓ

δ ) + k
)

then the probability of any cut in a single cluster

being smaller then cin
2 is smaller then δ

2ℓ , with the union bound we have that with probability greater then 1− δ
2

all cuts in any cluster (and therefore any cut in G̃ that cuts some cluster) have weights greater or equal to cin
2 .

We now need to show that the cuts separating the clusters are not too large. Consider a cut separating some
clusters from the others. If the weight of this cut is c we need to show that with probability greater then
1− δ

2ℓ+1 we have c̃ < cin
2 . This means that we want to show that c̃ < (1+ ǫ̃)c ≤ (1+ ǫ̃)cout =

cin
2 , i.e. we can

use the negatively dependent Chernoff-Hoeffding inequality (theorem A.1) with ǫ̃ = cin
2cout

− 1 > cin
4cout

(using

the fact that cin > 4cout) and get that the P (pc̃ − pc > (1 + ǫ̃)pcout) ≤ exp
(

− ǫ̃2pcout

3

)

≤ exp
(

−pcin
12

)

. As

m ≥ 12n2

cin
ln( 2

ℓ

δ ) we can finish the proof.
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D Adaptive Unbiased Sampling

For adaptive unbiased sampling, one needs to reweigh the sampled edge weights according to their sampling
probabilities. This re-scaling is not easy to compute in general when sampling without replacement, as
the probability of sampling an edge is a marginal distribution over all the algorithm’s possible trajectories.
Sampling with replacement is much easier, since it only depends on the sampling probability in the cur-
rent iteration. Moreover, as long as we sample only a small part of all edges, the risk of re-sampling an
already-sampled edge is negligible. Therefore we will show bounds concerning on adaptive sampling with
replacements. We will present here a proof that it has the same theoretical guarantees as uniform sampling
for cut approximation.

Let G̃i be the graph build at step i, an adaptive sampling algorithm is an algorithm who picks an edge at
step i+1 with probability p(e; G̃i) that depends on G̃i. In order to prove that with high probability G̃ = G̃m

is a ǫ-approximation of G for m = o(n2) we need that p(e; G̃i) isn’t too small on any edge. This can be easily
done by sampling according to a modified distribution - with probability 0.5 pick an edge uniformly, and with
probability 0.5 pick it according to p(e;Hi). The new distribution satisfies p̃(e; G̃i) =

1
2p(e; G̃i)+

1
n(n−1) >

1
n2 .

The graphs G̃i are by no means independent. Although one can view (after subtracting the mean) them
as a martingale process, using the method of bounded differences [7] will not suffice, as it depends on the
square of the bounding constant, so we will have a n4 factor that only gives a trivial bound. We will next
show that a high probability bound does exists.

Consider a cut with weight c that contains the edges e1, ..., el and consider any bounded adaptive sampling
algorithm with replacements with m steps. Define Xik with 1 ≤ i ≤ l and 1 ≤ k ≤ m to be the random

variable that has value w(ei)
p̃(ei)

if the edge ei was chosen at step k and zero otherwise. Define Yk =
l
∑

i=1

Xik, Yk

is the weight added to the cut at step k and its expectation is c.

Lemma D.1. If ∀i, l : p̃(ei) ≥ ρ and w(ei) ≤ 1 then

E[exp(tρYk)|G̃k−1] ≤ exp(cρ(et − 1))

Proof. Since at most one of the positive variables Xik is nonzero for a constant k then they are negatively

dependent when conditioned by G̃k−1. This implies that E[exp(tρYk)|G̃k−1] ≤
l
∏

i=1

E[exp(tρXik)|G̃k−1]. By

definition of Xik we get that

E[exp(tρXik)|G̃k−1] = p̃(ei) · exp
(

tρw(ei)

p̃(ei)

)

+ (1− p̃(ei)) (4)

One can easily verify that the right hand side of equation 4 decreases monotonically with p̃(ei), so the fact
that ρ < p̃(ei) and w(ei) ≤ 1 implies that

E[exp(tρXik)|G̃k−1] ≤ ρw(ei)e
t + (1− ρw(ei)) =

= ρw(ei)(e
t − 1) + 1 ≤ exp(ρw(ei)(e

t − 1))

Where the last inequality is due to the fact that for 1 + x < ex. We can finish the proof since

E[exp(tρYk)|G̃k−1] ≤
l

∏

i=1

E[exp(tρXik)|G̃k−1]

≤ exp(ρc(et − 1)).

as
∑

w(ei) = c.

We can now prove the concentration of measure bound for a single cut
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Theorem D.1. Let G be a graph such that w(ei) ≤ 1 and G̃ = G̃m the output of a bounded adaptive
sampling algorithm with replacements such that p̃(ei) ≥ ρ then the probability that a cut with weight c in G̃m

is not a ǫ-approximation is bounded by 2 exp
(

− ǫ2ρmc
3

)

.

Proof. We need to show that

P

(
∣

∣

∣

∣

∣

m
∑

k=1

Yk −mc

∣

∣

∣

∣

∣

> ǫmc

)

≤ 2 exp

(

−ǫ2ρmc

3

)

The proof is similar to the proof of the Chernoff bound, replacing independence with lemma D.1. First look
at P (

∑m
k=1 Yk > (1 + ǫ)mc). Using the standard trick for all t > 0

P

(

m
∑

k=1

Yk > (1 + ǫ)mc

)

=

P

(

exp

(

tρ
m
∑

k=1

Yk

)

> exp(t(1 + ǫ)ρmc)

)

By the Markov inequality this is bounded by
E

[

exp

(

tρ
m
∑

k=1

Yk

)]

exp(t(1+ǫ)ρmc) . The law of total expectation states that

E

[

exp

(

tρ
m
∑

k=1

Yk

)]

= E

[

E

[

exp

(

tρ
m
∑

k=1

Yk

)

|G̃m−1

]]

. As
m−1
∑

k=1

Yk is a deterministic function of G̃m−1 this

is equal to

E

[

E

[

exp(tρYm)|G̃m−1

]

exp

(

tρ
m−1
∑

k=1

Yk

)]

≤ E

[

exp

(

tρ

m−1
∑

k=1

Yk

)]

exp(ρc(et − 1)).

using lemma D.1. By induction we can conclude that the expectation is smaller then exp(ρmc(et − 1)). We
have shown that

P

(

m
∑

k=1

Yk > (1 + ǫ)mc

)

≤ exp(ρmc(et − 1))

exp(t(1 + ǫ)ρmc)

Following the steps as in the standard Chernoff bound proof one can show that this is smaller (for the right

t) then exp
(

− ǫ2ρmc
3

)

. The proof for this bound on P (
∑m

k=1 Yk < (1− ǫ)mc) is done in a similar fashion,

and using the union bound we finish our proof.

Using ρ = 1
n2 one can now show similar theorems to what we shown in the previous section with this theorem

replacing the (negatively dependent) Chernoff bound.
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