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Abstract

We consider the problem of learning from a
similarity matrix (such as spectral cluster-
ing and low-dimensional embedding), when
computing pairwise similarities are costly,
and only a limited number of entries can be
observed. We provide a theoretical anal-
ysis using standard notions of graph ap-
proximation, significantly generalizing pre-
vious results, which focused on spectral
clustering with two clusters. We also pro-
pose a new algorithmic approach based on
adaptive sampling, which experimentally
matches or improves on previous methods,
while being considerably more general and
computationally cheaper.

1 Introduction

Many unsupervised learning algorithms, such as
spectral clustering [18], [2] and low-dimensional em-
bedding via Laplacian eigenmaps and diffusion maps
[3],[16], need as input a matrix of pairwise similari-
ties W between the different objects in the dataset.
In some cases, obtaining the full matrix can be a
costly matter. For example, Wij may be based on
some expensive-to-compute metric such as W2D [5];
based on some physical measurement (such as in cer-
tain computational biology applications); or is given
by a human annotator. In such cases, we would like
to have a good approximation of the initially un-
known matrix, while querying only a limited number
of entries. An alternative but equivalent viewpoint is
the problem of approximating an unknown weighted
undirected graph, by querying a limited number of
edges.
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The problem of using machine learning algorithms
on partially sampled matrices has previously re-
ceived attention in works such as [17] and [9], under
the assumption that two distinct clusters indeed ex-
ists. Namely, they assume a large gap between the
second and third eigenvalues of the Laplacian ma-
trix. In this work we consider, both theoretically and
algorithmically, the question of query-based graph
approximation more generally, obtaining results rel-
evant beyond two clusters and beyond spectral clus-
tering.

When considering graph approximations, the first
question is what definition of approximation to con-
sider. One important definition is cut approximation
[14], where we wish for every cut in the approxi-
mated graph to have a weight close to the weight
of the cut in the original graph up to a multiplica-
tive factor. Many machine learning algorithms (and
many more general algorithms) such as cut based
clustering [11], energy minimization [22], and many
others [1] are based on cuts, so this definition of ap-
proximation is natural for these uses. An alternative
definition is spectral approximation [19], where we
wish to uniformly approximate the quadratic form
defined by the Laplacian up to a multiplicative fac-
tor. This approximation is important for algorithms
such as spectral clustering [2], Laplacian eigenmaps
[3], diffusion maps [16], etc. that use the connection
between the spectral properties of the Laplacian ma-
trix and the graph.

We first consider the simple and intuitive strategy
of sampling edges uniformly at random and obtain
results for both cut and spectral approximations un-
der various assumptions. We then show how these
results can be applied to the problem of clustering.
We note that these results are considerably more
general than the theoretical analysis in [17], which
focuses on the behavior of the 2nd eigenvector of
the Laplacian matrix, and crucially rely on a large
eigengap between the second and third eigenvectors.

Our approximation results build on techniques for
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graph sparsification [14] [19], in which the task is to
find a sparse approximation to a given graphG. This
is somewhat similar to our task, but with an impor-
tant difference: We do not have access to the full
graph, whereas in graph sparsification the graph is
given, and this full knowledge is used by algorithms,
e.g. using the sum of edge weights associated with
each node.

We then consider how adaptive sampling may be
used to reduce the number of edges queried. We
extend our guarantees to adaptive sampling strate-
gies, and design a generic framework as well as
a new adaptive sampling algorithm for clustering
(CLUS2K). Compared to previous approaches, the
algorithm is much simpler and avoid a costly full
eigen-decomposition at each iteration. We conclude
by presenting experimental comparison to previous
work and show that the proposed algorithm achieves
equal or even better performance on a range of
datasets.

2 A General Graph Approximation
Guarantee

In this section we derive our general approximation
theorem for spectral approximation. We will also
present a lower bound proving that, for a family of
graphs, the bound is tight up to a log factor.

We consider full graphs defined by a set of vertices V
and a weight matrix W , with zero weights indicate a
missing edge. We start with a few basic definitions.

Definition 2.1. Let G = (V,W ) be a weighted graph
and S ⊂ V a subset of vertices, then the cut defined
by S, |∂GS|, is the sum of all the weights of edges
that have exactly one endpoint in S.

Definition 2.2. Let G = (V,W ) and G̃ = (V, W̃ )
be two graphs on the same set of vertices. G̃ is an
ε-cut approximation of G if for any S ⊂ V we have
(1− ε)|∂GS| ≤ |∂G̃S| ≤ (1 + ε)|∂GS|
Definition 2.3. Let G be a weighted graph. The
graph Laplacian LG is defined as LG = D−W where
D is a diagonal matrix with values Dii =

∑
1≤j≤n

Wij.

The normalized graph Laplacian LG is defined as
LG = D−1/2(D −W )D−1/2 = D−1/2LGD

−1/2.

The Laplacian holds important information about
the graph [4]. In particular, the quadratic form de-
fined by the Laplacian relates to the graph through
the equation

xTLGx =
1

2

n∑
i,j=1

Wij(xi − xj)2 (1)

When xi ∈ {0, 1} this is easily seen to be the value
of the cut defined by x. Many spectral graph tech-
niques, such as spectral clustering, can be seen as a
relaxation of such a discrete problem to x ∈ Rn.

Definition 2.4. A graph G̃ is an ε−spectral approx-
imation of G if

∀x ∈ Rn (1− ε)xTLG̃x ≤ x
TLGx ≤ (1 + ε)xTLG̃x

We note that this is different than requiring ||LG −
LG̃|| ≤ ε using the matrix 2-norm, as we can view it
as a multiplicative error vs. an additive error term.
In particular, it implies approximation of eigenvec-
tors (using the min-max theorem [4]), which is rele-
vant to many spectral algorithms, and includes the
approximation of the 2nd eigenvector, the focus of
the analysis in [17], as a special case. Moreover,
it implies cut approximation via equation 1, and is
in fact strictly stronger (see [19] for a simple exam-
ple of a cut approximation which is not a spectral
approximation). We will focus more on spectral ap-
proximation in our theoretical results.

Our initial approximation strategy will be to uni-
formly at random sample a subset Ẽ of m edges, i.e.
pick m edges without replacement and construct a
graph G̃ = (V, W̃ ) with weights w̃ji = w̃ij =

wij
p for

any (i, j) ∈ Ẽ and zero otherwise, where p = m/
(
n
2

)
is the probability any edge is sampled. It is easy to
see that E[W̃ ] = W .

We begin by providing a bound on m which ensures
an ε-spectral approximation. It is based on an adap-
tation of the work in [19], in which the author con-
sidered picking each edge independently. This differs
from our setting, where we are interested in picking
m edges without replacement, since in this case the
probabilities of picking different edges are no longer
independent. While this seems like a serious compli-
cation, it can be fixed using the notion of negative
dependence:

Definition 2.5. The random variables X1, ..., Xn

are said to be negatively dependent if for all disjoint
subset I, J ⊂ [n] and all nondecreasing functions f
and g, E[f(Xi, i ∈ I)g(Xj , j ∈ J)] ≤ E[f(Xi, i ∈
I)]E[g(Xj , j ∈ J)].

Intuitively, a group of random variables are nega-
tively dependent if when some of them have a high
value, the others are more probable to have lower
values. If we pick m edges uniformly, each edge
that has been picked lowers the chances of the other
edges to get picked, so intuitively the probabilities
are negatively dependent. The probabilities of pick-
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ing edges have indeed been shown to be indeed neg-
atively dependent in [17].

An important application of negative dependence is
the Chernoff-Hoeffding bounds, which hold for sums
of independent random variables, also hold for neg-
atively dependent variables. See supplementary ma-
terial for details.

We can now state the general spectral approximation
theorem:

Theorem 2.1. Let G be a graph with weights wij ∈
[0, 1] and G̃ its approximation after sampling m
edges uniformly. Define λ as the second smallest
eigenvalue of LG and k = max{log( 3

δ ), log(n)}. If

m ≥
(
n
2

) (12k/ελ)2

minDii
then the probability that G̃ is not

an ε-spectral approximation is smaller then δ.

Proof outline. The proof is based on an adaptation
of part of theorem 6.1 from [19]. The two main dif-
ferences are that we use negative dependence instead
of independence and a weighted graph instead of
an unweighted graph. The proof uses the following
lemma

Lemma 2.1. Let LG be the normalized Laplacian
of G with second eigenvalue λ. If ||D−1/2(LG −
LG̃)D−1/2|| ≤ ε then G̃ is an σ-spectral approxima-
tion for σ = ε

λ−ε .

The next part is to bound ||D−1/2(LG−LG̃)D−1/2||
using a modified version of the trace method [21].
See the supplementary material for more details.

Stating theorem 2.1 in a simplified form, we
have that if minDii = Ω(nα), then one
gets an ε-approximation guarantee using m =

O
(
n2−α

(
log(n)+log(1/δ)

ελ

)2
)

sampled edges.

The main caveat of theorem 2.1 is that it only leads
to a non-trivial guarantee (m � n2) when α > 0
and λ is not too small. Most algorithms, such as
spectral clustering, assume that the graph has k ≥ 2
relatively small eigenvalues, in the ideal case (more
then one connected component) we even have λ = 0.
We will now show that this is unavoidable, and that
the bound above is essentially optimal, up to log
factors, for graphs with bounded λ > C > 0, i.e.
expanders.

Since spectral approximation implies cut approxima-
tion, we will use this to find simple bounds on the
number of edges needed for both approximations.
We will show that a necessary condition for any ap-
proximation is that the minimal cut is not too small,

the intuition being that even finding a single edge for
connectedness, on that cut can be hard, and get a
lower bound on the number of samples needed. For
this we will need the following lemma (which follows
directly from the linearity of expectation)

Lemma 2.2. Let X be a finite set, and Y ⊂ X. If
we pick a subset Z of size m uniformly at random

then E [|Z ∩ Y |] = m·|Y |
|X|

We will now use this to prove a lower bound on the
number of edges sampled for binary weighted graphs
(i.e. unweighted graph) wij ∈ {0, 1} .

Theorem 2.2. Let G be an binary weighted graph
with minimal cut weight c>0. Assume G̃ was con-

structed by sampling m<
(
n
2

) (1−δ)
c edges, then for any

ε<1, the probability that G̃ is not an ε-cut approxi-
mation of G is greater then δ.

Proof. Let Y be all the edges in a minimal cut and
let Ẽ be the edges sampled. Since the weights are
binary, the weight of this cut in G̃ is the number
of edges in Y ∩ Ẽ. From lemma 2.2 we know that

E
[
|Y ∩ Ẽ|

]
= mc/

(
n
2

)
< 1 − δ. From Markov’s in-

equality we get that P
(
|Y ∩ Ẽ| ≥ 1

)
< 1 − δ. If

|Y ∩Ẽ| < 1 then the intersection is empty and we do
not have an ε-approximation for any ε < 1 proving

P
(
G̃ is an ε-cut approximation of G

)
< 1− δ.

This theorem proves that in order to get any reason-
able approximation with a small budget m (at least
with uniform sampling) the original graph’s minimal
cut cannot be too small and that Ω(n2/c) samples
are needed. Comparing this to theorem 2.1 (noticing
miniDii ≥ c) we see that, for graphs with a lower
bound on λ, sampling a logarithmic factor of this
lower bound is sufficient to ensure not only a good
cut approximation, but spectral approximation as
well.

In the next section, we show how a few reasonable
assumptions allows us to recover non-trivial guaran-
tees even in the regime of small eigenvalues.

3 Clusterable Graphs

Clustering algorithms assume a certain structure of
the graph. In general they assume k strongly con-
nected components, the clusters, with weak connec-
tions between them. The precise assumptions vary
from algorithm to algorithm. While this is a bad
setting for approximation, as this normally means
a small minimal cut, and for spectral clustering a
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small λ, we will show how the basic assumptions
for clustering ensure approximation can be used on
the inner-cluster graphs to obtain useful results. We
provide two results, one geared towards spectral ap-
proximation, and the other towards cut approxima-
tion.

3.1 Spectral Clustering

In this section, we show how the eigenspace corre-
sponding to the k clusters can be approximated, and
give a tradeoff between the number of edges sampled
and the error.

Definition 3.1. Assume a graph G = (V,W ) con-
sists of k clusters, define W in as the block diago-
nal matrix consisting of the similarity scores between
same-cluster elements.

Win =


W1 0 · · · 0
0 W2 · · · 0
...

...
. . .

...
0 0 · · · Wk


and W out = W −W in the off-diagonal elements.

Assumption 3.1. Define λin = min
1≤i≤k

λ2(Li), the

smallest of all the second normalized eigenvalues
over all Li = LW i . Assume λin > C > 0 for some
constant C.

Assumption 3.2. minDin
ii = Ω(nα) where Din

ii =∑
jW

in
ij for some α > 0.

Assumption 3.3. Assume that ||W out|| = O(nβ)
for some β < α.

Assumption 3.1 implies well connected clus-
ters, while assumption 3.2 excludes sparse, well-
connected graphs, which we have already shown ear-
lier to be hard to approximate. Assumption 3.3 es-
sentially requires the between-cluster connections to
be relatively weaker than the within-cluster connec-
tions.

Under these assumptions, we can approximate the
zero eigenspace of Lin = Din − W in which corre-
sponds to the k connected components, i.e. the clus-
ters. More rigorously:

Theorem 3.1. Let P be the zero eigenspace of
Lin = Din − W in corresponding to the k clusters,
L̃ the Laplacian of the graph we get by sampling
m = Õ(n2−γ) edges for β ≤ γ ≤ α, and Q the space
spanned by the first k eigenvectors of L̃. Under pre-

vious assumptions, || sin (Θ (P,Q)) || = O(n
β+nγ

nα ).

We simplified the statement in order not to get over-
whelmed by notation. Θ (P,Q) is a diagonal ma-
trix whose diagonal values correspond to the canon-
ical angles between the subspaces P and Q, and
|| sin (Θ (P,Q)) || is a common way to measure dis-
tance between subspaces.

Proof outline. If γ = 0, i.e. Q was spanned by
eigenvectors of the full L, then the theorem would
be true by the sin-theta theorem [6] under our as-
sumptions. We need to show that this theorem can
be used with L̃. The sin-theta theorem states that
|| sin (Θ (P,Q)) || ≤ ||L̃

out||
µ2

where ||L̃out|| the ”noise”
factor, and µ̃2 the unnormalized second eigenvalue
of L̃in the ”signal” factor. Using theorem 2.1 and
our first two assumptions we can approximate each
LW i and use to show that µ̃2 = Ω(nα). We now
only need to show ||L̃out|| = O(nβ + nγ). This can
be done using the matrix Chernoff inequality [20],
by applying a result in [12] that shows how it can be
adapted to sampling without replacements. We note
that the result in [12] is limited to sampling without
replacements as negative dependence has no obvious
extension to random matrices. For further details
see the supplementary material

This gives us a tradeoff between the number of edges
sampled and the error. The theoretical guarantee
from the sin-theta theorem for the complete graph is
O(nβ/nα) so for γ = β we have the same guarantee
as though we had used we used the full graph. For n
large enough one can get || sin (Θ (P,Q)) || as small
as desired by using γ = α− ε.

3.2 Cut Clustering

Cut based clustering, such as [11], has a different
natural notion of ”clusterable”. We will assume
nothing on eigenvalues, making this more general
than the previous section.

We will show that after a sufficient number of edges
sampled, the cuts between clusters are smaller then
cuts in clusters.

Assumption 3.4. Assume G can be partitioned
into k clusters, within which the minimal cut is at
least cin. Furthermore, assume that any cut sep-
arating between the clusters of G, i.e. not splitting
same cluster elements, is smaller then cout, and that
cin > 4cout.

These assumptions basically require the inner-
cluster connections to be relatively stronger than
between-cluster connections.

4
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Theorem 3.2. Let G be a graph with weights
wij ∈ [0, 1] and G̃ its approximation after observ-
ing m edges. Under previous assumptions if m =

Ω̃
(
n2

cin
k ln( 1

δ )
)

then the cuts separating the clusters

are smaller then any cut that cuts into one of the
clusters.

Proof outline. We can use cut approximation for the
clusters themselves so c̃in ≥ cin/2. Using the Cher-
noff bound and union bound for the 2k cuts be-
tween clusters we get that none of them is greater
then cin/2. See the supplementary material for full
proof.

In the supplementary material, we provide a more
in-depth analysis of cut approximation including an
analog of theorem 2.1.

4 Adaptive Sampling and the
Clus2K Algorithm

Theorem 2.2 states that, with uniform sampling and
no prior assumptions on the graph structure, we
need to sample at least Ω(n2/c) edges where c is the
weight of the smallest cut. What if we had an adap-
tive algorithm instead of just uniform sampling? It
is easy to see that for some graphs the same lower
bound holds, up to a constant. Consider a graph
with 2n vertices, consisting of two cliques that have c
randomly chosen edges connecting them. Further as-
sume that an oracle told us which vertex is in which
clique, so any sensible algorithm would sample only
edges connecting the cliques. As the edges are ran-
dom, it would take Θ

(
n2/c

)
tries just to hit one

edge needed for any good approximation. Neverthe-
less, in some cases an adaptive scheme can reduce
the number of samples needed, as we now turn to
discuss it in the context of clustering.

Consider a similar toy problem - we have a graph
which is known to consist of two connected compo-
nents, each a clique of size n, and we wish to find
these clusters. We can run the uniform sampling
algorithm until we have only two connected com-
ponents and return them. How many edges will we
need to sample until we get only two connected com-
ponents? If we look only at one clique, then basic
results in random graph theory [8] show that with
high probability, the number of edges added before
we get a connected graph is Θ(n log(n)) which lower
bounds the number of samples needed. To improve
on this we can use an adaptive algorithm with the
following scheme: at each iteration, pick an edge at

random connecting the smallest connected compo-
nent to some other connected component. At each
step we have at least a probability of 1

3 to connect
two connected components. This is because there
are n nodes in the wrong cluster, and at least n

2
in the right cluster (since we pick the smallest con-
nected component). Therefore with high probability
the number of steps needed to decrease the number
of connected components from 2n to two is Θ(n).

This argument leads us to consider adaptive sam-
pling schemes, which iteratively sample edges ac-
cording to a non-uniform distribution. Intuitively,
such a distribution should place more weight on
edges which may be more helpful in approximating
the structure of the original graph. We first discuss
how we can incorporate arbitrary non-uniform dis-
tributions into our framework. We then propose a
specific non-uniform distribution, motivated by the
toy example above, leading to a new algorithm for
our setting in the context of clustering.

One approach to incorporate non-uniform distribu-
tions is by unbiased sampling, where we re-scale the
weights according to the sampling probability. This
means that the weights are unbiased estimates of
the actual weights. One can show that whatever
the non-uniform distribution, a simple modification
(adding with probability half a uniform sample) suf-
fices for cut approximation to hold. Unfortunately,
we found this approach to work poorly in practice,
as it was unstable and oscillated between good and
bad clustering long after a good clustering is initially
found.

Due to these issues, we considered a biased sam-
pling approach, where we mix the non-uniform dis-
tribution with a uniform distribution (as proposed
earlier) on unseen edges, but do not attempt to re-
scale weights. More specifically, consider any adap-
tive sampling algorithm which picks an unseen edge
at step i+ 1 with probability p(e; G̃i) that depends
on the graph G̃i seen so far. We will consider a
modified distribution that with probability 0.5 picks
an unseen edge uniformly, and with probability 0.5
picks it according to p(e; G̃i).

4.1 Adaptive biased sampling

While biased sampling can ruin approximation guar-
antees, we show similar results to theorem 3.2 (un-
der stronger conditions) for any adaptive sampling
scheme.

First, note that for a specific known graph one can
always design a bad biased sampling scheme. Con-

5

245



sider an adversarial scheme that always samples the
largest weight edge between two constant clusters,
it is easy to see that this can lead to bad cut clus-
tering. To circumvent this we will consider graphs
where the edge weights between the clusters, which
we regard as noise, are picked randomly.

Assumption 4.1. Assume G can be partitioned
into k clusters of size Ω(n), within which the mini-
mal cut is at least cin = Ω(nα).

Assumption 4.2. Assume that the weights of edges
between the clusters are 0, besides cout = o(nα) edges
chosen uniformly at randomly (without replacement)
between any two clusters that have weight 1.

Theorem 4.1. Let G̃ be the graph after sampling
m = Ω̃

(
n2−βk ln( 1

δ )
)

edges without replacements
(with probability 1/2 of sampling uniformly) with
β < α. Let c̃in and c̃out be the minimal cut weight in-
side any cluster and the maximal cut weight between
clusters, under previous assumptions the probability
that c̃in < c̃out is smaller then δ.

Proof. Using cut approximation theorem (?? in the
supplementary material) on the edges sampled uni-
formly (remembering that the biased sampling can
only increase the cut weight) we get that with proba-
bility greater then δ/2, c̃in = Ω̃

(
m
n2 cin

)
= Ω̃(nα−β).

If we consider the weight of any cut between clusters,
then the key observation is that because the edges are
picked uniformly at random, then whatever the algo-
rithm does is equivalent to running a uniform sam-
pling of a constant edge set. We then get that the
expected minimal cut weight is Õ(m·coutn2 ) = o(nα−β)
using lemma 2.2 (the upper bound is by looking as if
all edges where picked from this cut). We can now
use the Markov inequality to show P (c̃out/c̃in < 1) =
o(nα−beta)
Ω(nα−β)

< δ/2.

It is simple to generalize this theorem to any uniform
weighting that has o(cout) expected cut weights.

4.2 CLUS2K Algorithm

We now turn to consider a specific algorithmic in-
stantiation, in the context of clustering. Motivated
by the toy example presented earlier, we consider a
non-uniform distribution which iteratively attempts
to connect clusters in the currently-observed graph,
by picking edges between them. These clusters
are determined by the clustering algorithm we wish
to use on the approximated graph, and are incre-
mentally updated after each iteration. Inspired by
the common practice in computer vision of over-
segmentation, we use more clusters than the desired
number of clusters k (2k in our case). Moreover, as

discussed earlier, we mix this distribution with a uni-
form distribution. The resulting algorithm, which
we denote as CLUS2K, appears as Algorithm 1 be-
low.

Algorithm 1 CLUS2K

Input: budget b, number of clusters k
Initialize: S = {(i, j) ∈ {1, ..., n}2 : i < j}, W̃
the zero matrix.
for t = 1, ..., b do

With probability 1/2 pick (i, j) ∈ S uniformly;
Otherwise:

C1, ..., C2k ←cluster W̃ into 2k clusters;
pick two distinct clusters Cl and Cm uni-

formly at random;
pick (i, j) ∈ S connecting Cl and Cm uni-

formly at random;
Set w̃ij = w̃j,i = wij ;S = S\(i, j);

end for

For the setting of budget-constrained clustering, the
two most relevant algorithms we are aware of are
the algorithm of [17] (hereby denoted as S&T), and
the IU RED algorithm of [9]. These algorithms are
somewhat similar to our approach, in that they in-
terleave uniform sampling and a non-uniform sam-
pling scheme. However, the sampling scheme is very
different than ours and focuses on finding the edge
to which the derivative of the 2nd Laplacian eigen-
vector is most sensitive. This has two drawbacks.
First, it is specifically designed for spectral cluster-
ing and the case of k = 2 clusters, which is based
on the 2nd Laplacian eigenvector. Extending this to
more than 2 clusters requires either recursive par-
titioning (which can be suboptimal), or considering
sensitivity w.r.t. k − 1 eigenvectors, and it is not
clear what is the best way to do so. Second, com-
puting eigenvector derivatives requires a full spectral
decomposition at each iteration, which can be quite
costly or impractical for large matrices. In contrast,
our algorithm does not compute derivatives. There-
fore, when used with spectral clustering methods,
which require only the smallest 2k eigenvectors, we
have a significant improvement.

It is possible to speed up implementation even fur-
ther, in the context of spectral clustering. Since only
a single edge is added per iteration, one can use
the previously computed eigenvectors as an initial
value for fast iterative eigenvector solvers (although
restarting every couple of steps is advised). Another
possible option is to pick several edges from this dis-
tribution at each step, which makes this process par-
allelizable.

6
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Figure 1: Synthetic datasets results

We note that generalizing theorem 3.1 for any adap-
tive sampling algorithm is impossible, but we will
give intuition as to why the CLUS2K algorithm pre-
serves spectral clustering.

The reason spectral clustering can fail is if ||L̃out|| is
too large. Using the Gershgorin circle theorem we
can show that if each node is sampled θ(m/n) times
then the biased samples do not add a large deviation
to ||L̃out||. As long as the clusters (at least for most
of the running time) are of size θ(n/(2k) this holds
and we will get the same guarantees as uniform sam-
pling. In practice, much better performance results
are achieved.

5 Experiments

We tested our CLUS2K algorithm on several datasets,
and compared it to the S&T and IU RED discussed
earlier (other alternatives were tested in [17] and
shown to be inferior). It is important to note that
S&T and IU RED were designed specifically for k = 2
and spectral clustering using the unnormalized
Laplacian LG, while we also tested for various
values of k, and using the normalized Laplacian
LG [18] as well . The IU RED performed badly
(perhaps because it relies substantially on the k = 2

assumption) in these cases while S&T performed
surprisingly well (yet still inferior to CLUS2K ).

Clustering was measured by cluster purity, a
standard measure for clustering performance . The
purity of a single cluster is the percent of the
most frequent class in the cluster. The purity of a
clustering is a weighted average of its single cluster
purity, weighted by the number of elements in each
cluster.

As all algorithms are random, we ran each experi-
ment 5 times and averaged the purity over the runs.

5.1 Synthetic Data

The synthetic experiments were performed on two
datasets - the two half circles dataset, and a dataset
comprising of four well separated Gaussians. Both
experiments used unnormalized spectral clustering
(see figure 5.1) using a gaussian weight matrix wij =
exp(−||xi − xj ||/t). The two half circles is a classic
clustering dataset with k = 2 clusters. The Gaussian
dataset shows how the various algorithms handle an
easy k > 2 dataset. The IU RED performs worse than
uniform sampling in this case.
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Figure 2: UCI datasets results

5.2 Real Data

We tested on three datasets - the iris and glass UCI
datasets, both with k>2 clusters, using a Gaussian
weight matrix and the Caltech-7 dataset, a subset
of the Caltech-101 images datasets with 7 clusters
gathered by [15], using the similarity matrix sug-
gested by [10]. We tested each dataset using both
the normalized and unnormalized Laplacian for clus-
tering. The results are presented in figure 5.1

Overall, the experiments show that the CLUS2K al-
gorithm performs as good as or better than pre-
vious algorithms for budget-constrained clustering,
while being significantly computationally cheaper as
it avoids doing a full eigen-decomposition.

6 Summary

We have shown that well connected graphs can be
approximated by uniform sampling and we derived
a tight (up to log factor) bound on the number
of edges needed. We later showed that while
clusterable graphs are not well connected, their
structure suffices to ensure that the clusters can be
retrieved while sampling a relative small number of
edges.

We discussed how adaptive sampling can lower the
number of edges sampled, and we introduced a new
adaptive sampling algorithm the CLUS2K algorithm.
This algorithm performs as well as or superior to
previous algorithms on various datasets while be-
ing computationally cheaper and can scale on larger
graphs.
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