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Abstract

Conjugate pairs of distributions over infinite
dimensional spaces are prominent in machine
learning, particularly due to the widespread
adoption of Bayesian nonparametric method-
ologies for a host of models and applications.
Much of the existing literature in the learning
community focuses on processes possessing
some form of computationally tractable con-
jugacy as is the case for the beta process and
the gamma process (and, via normalization,
the Dirichlet process). For these processes,
conjugacy is proved via statistical machinery
tailored to the particular model. We seek to
address the problem of obtaining a general
construction of prior distributions over infi-
nite dimensional spaces possessing distribu-
tional properties amenable to conjugacy. Our
result is achieved by generalizing Hjort’s con-
struction of the beta process via appropriate
utilization of sufficient statistics for exponen-
tial families.

1 Introduction

Since Raiffa and Schlaifer [1] first formalized the no-
tion of conjugate prior families in 1961, they have re-
peatedly earned their distinguished role as the key to
the operability of Bayesian modeling. Indeed, in both
the parametric and nonparametric cases, the ability to
perform statistical inference in a computationally effi-
cient manner hinges on the existence of such conjugate
prior families.

Although conjugacy is key in both parametric and non-
parametric modeling venues, the manners in which
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conjugacy assumes its role in these two arenas cur-
rently exist in unsettled contrast with another. To be
sure, in the parametric setting, conjugate families such
as the normal gamma, multinomial Dirichlet, and the
Bernoulli beta, are familiar and often employed in the
task of inference. Furthermore, such families afford
the researcher convenient formulae for the updating
of posterior parameters as a function of the prior pa-
rameters and observed data. Thus, the acceptance and
application of conjugate families is received with a uni-
fied and uncontroversial disposition. Unfortunately, at
the present, no such unification exists for the treat-
ment of conjugate families in the case of nonparamet-
ric Bayesian models, a class of models which greatly
enrich the researcher’s toolkit and as such deserve the
effort required to achieve a greater understanding of
how to unify the notion of conjugacy in an infinite
dimensional setting.

Bayesian nonparametric (BNP) modeling is a promi-
nent and widely used technique in the machine learn-
ing community, providing a broad class of statistical
models which are more flexible than classical nonpara-
metric models and more robust than both classical and
Bayesian parametric models. BNP models such as the
Chinese restaurant process, the Indian buffet process,
and Dirichlet process mixture models have obtained
great success in problem domains such as clustering,
dictionary learning, and density estimation, respec-
tively [2–5]. This success is in large part due to the
adaptive nature of BNP models. As such, this model-
ing framework permits the data to determine the level
of model complexity rather than entail the specifica-
tion of the complexity level by the researcher. In or-
der for this adaptive framework to yield a computa-
tionally tractable model, one is commonly required to
construct a pair of conjugate distributions defined over
an infinite dimensional space.

Success in constructing such conjugate pairs in an in-
finite dimensional setting has been achieved in specific
cases producing, for example, the Dirichlet, gamma,
and beta processes. In each of these cases, the con-
struction of a suitable likelihood/prior pair and sub-
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sequent illustration of the desired form for the poste-
rior yielding conjugacy, is model specific. For exam-
ple, in the case of the Dirichlet process, conjugacy of
the multinomial and Dirichlet processes arises directly
from the conjugacy of their marginals. In contrast,
conjugacy in the case of the beta and Bernoulli pro-
cesses is defined and obtained in a seemingly less direct
manner, i.e. via the form of the densities for the pro-
cesses’ respective Lévy measures. This modification of
the definition of conjugacy from the finite dimensional,
or parametric, setting seems to yield a tractable def-
inition relying on a specification of the distributional
properties of the infinitesimal increments of the pro-
cesses under consideration.

While this modified definition provides a framework
for conjugacy in a number of cases, e.g. of the gamma
process as well, the actual proof techniques employed
in establishing this form of conjugacy are conceptu-
ally orthogonal to one another in each case and require
lengthy, involved, and dense arguments. Obtaining a
unified treatment of conjugacy in the infinite dimen-
sional setting via updating formulae for the parameters
governing the density of the processes’ Lévy measure,
analogous to the updating of the parameters of density
of the random variable in the finite dimensional case,
is a goal which we begin to work towards in this paper.
We describe the steps achieved in this paper below.

The construction of families which are conjugate in
the modified sense requisite for a nonparametric set-
ting, entails both the construction of a prior with dis-
tributional qualities appropriate to the modeling task
at hand and the ability to derive a conjugate posterior
from this amenable form of the prior. With respect to
the latter of the two constructions, i.e. the existence
of a conjugate posterior, a number of distribution spe-
cific techniques have been successful, e.g. in the cases
of the gamma and beta processes. A limited number of
more general construction techniques either implicitly
lurk in the theory of conditional measures over infinite
dimensional spaces, or have explicitly been formulated
to prove the existence of a conjugate prior, albeit with
varying success. For example, recently Orbanz [6] has
obtained a mathematical framework for proving the
existence of a conjugate posterior over an infinite di-
mensional space given one has in hand an appropriate
prior over that space. Prominent cases where such
suitable priors exist are related to the class of expo-
nential families. In other words, one may apply the
Orbanz construction to produce a conjugate posterior
given one has shown the existence of a prior whose
distributional qualities are derived, i.e. appropriately
related, to an exponential family. In this paper we ad-
dress the issue of obtaining a general construction for
priors over an infinite dimensional space whose dis-

tributional properties are determined, in a sense to
be made clear in the sequel, by an exponential fam-
ily. This provides the first of the two constructions
required to produce a conjugate pair over an infinite
dimensional space.

2 Statistical Preliminaries

We first recall the definition of a completely random
measure, and then provide a brief account of their con-
nection to stochastic processes, while also supplying a
representation theorem in terms of Poisson processes.
In the second part of this section we will gather req-
uisite facts regarding exponential families and their
sufficient statistics.

2.1 Completely random measures

A random measure, Φ, is a function whose domain is a
measure space (Ω,F , µ) and whose range is a space of
measures over a state space (S,Σ), where we take Σ to
be a σ-algebra of subsets of S. In other words, for each
ω ∈ Ω we have Φ(ω, ·) is a measure on (S,Σ), and for
each fixed A ∈ Σ, the function Φ(·, A) : Ω −→ R+ is
an F-measurable function. In this way we may view a
random measure Φ as a collection of random variables
over Ω indexed by the elements of Σ.

A random measure Φ is said to be a com-
pletely random measure if for any finite collection
A1, A2, . . . , An of elements of Σ which are pair-
wise disjoint, the corresponding random variables
Φ(·, A1),Φ(·, A2), . . . ,Φ(·, An) are independent. To
motivate a bit of intuition in this situation, take for
example S = [0,+∞) and Σ to be the collection of
Borel measurable subsets of S. Then the condition of
complete randomness implies for any t1 < t2 < . . . <
tn we have Φ(·, (t1, t2]),Φ(·, (t2, t3]), . . . ,Φ(·, (tn−1, tn])
are independent. This is reminiscent of the situa-
tion where X(t) is a nondecreasing stochastic process
with independent increments in the sense that for any
t1 < t2 < . . . < tn we have X(t2) − X(t1), X(t3) −
X(t2), . . . , X(tn) − X(tn−1) are independent, and Φ
is the unique Borel measure for which Φ((a, b]) =
X(b+) − X(a+) for all a < b. As particular exam-
ples of this definition, both the beta and the gamma
processes satisfy the conditions of a completely ran-
dom measure.

Kingman showed [7, 8] that any completely random
measure Φ has a decomposition into independent com-
pletely random measures of the form Φ = Φf+Φd+Φo,
where Φf corresponds to the fixed atoms of Φ, Φd is
the deterministic component of Φ, and Φo is a purely
atomic measure. In general, it is the measure Φo that
is of interest. One can show that for any A ∈ Σ the

251



Robert Finn, Brian Kulis

random variable Φo(·, A) is infinitely divisible in the
sense that for any n there exists a decomposition of
A into pairwise disjoint sets A1, A2, . . . , An ∈ Σ such
that

E[exp(−Φo(Ai))] = {E[exp(−Φo(A))]} 1
n i = 1, . . . , n.

This property implies that the transform E[e−tΦo(A)]
has the form

E[e−tΦo(A)] = exp

(
−
∫
A×(0,∞]

(1− e−ts)ν(dx, ds)

)
.

The measure ν is referred to as the Lévy measure [9] of
the random variable Φo(A) and is of great importance
as it determines the random variable Φo(·, A).

Kingman proved the Lévy measure ν and the com-
pletely random measure Φo have parallel decomposi-
tions of the form

ν =
∑
n

νn, Φ0 =
∑
n

Φn,

where for each n, Φn =
∑

(s,φ(s))∈Πn

φ(s)δs.

Here, for each index n, Πn is a Poisson process on
S × (0,∞], and s ∈ S is an atom of weight φ(s) ∈
(0,∞]. It is precisely this decomposition derived from
the Lévy measure that permits simulation of the com-
pletely random measure via simulation of the Poisson
processes which constitute the decomposition, where
each νn is used as the mean measure of the Poisson
process Πn. The decomposition which allows one to
view the completely random measure as a composi-
tion of atomic measures defined by Poisson processes
is illustrated in Figure 1. Wang and Carin gave a de-
tailed analysis of this decomposition and subsequent
simulation techniques for the Lévy measures arising
from the beta and gamma processes [10].

2.2 Exponential families

We now turn to a brief accounting of exponen-
tial families and properties of their sufficient statis-
tics. Standard references for material on exponen-
tial families are [11] and [12]. To begin, a fam-
ily {Pθ}θ∈Θ of distributions over a probability space
(Ω,F) is said to constitute an n-dimensional expo-
nential family if the distributions have densities of
the form pθ(x) = h(x)e(〈η(θ),T (x)〉−B(θ))µ(dx) with re-
spect to some common measure µ. In the above,
η(θ) = (η1(θ), . . . , ηn(θ)), and ηi and B are real-valued
functions of the parameter θ. In addition, T (x) =
(T1(x), . . . , Tn(x)), the Ti are real-valued statistics
where x is in the support of the density, and 〈η, T (x)〉
denotes the usual inner product of η and T (x). While

Figure 1:A Lévy measure ν decomposed into {νn}∞n=1.
Each measure νn is constructed from a Poisson pro-
cess, Πn, on S × (0,∞] yielding an atomic measure
with with weights φ(s) assigned to the point mass at
s where (s, φ(s))∈ Πn. The Lévy measure ν is the
superposition of the measures ν1, ν2, . . . , νk, . . ..

this is the formal definition of an exponential fam-
ily, the form commonly used is obtained by employ-
ing the ηi, i = 1 . . . n, as the parameters and writing
the density in what is known as the canonical form
pθ(x|η) = h(x)e(〈η,T (x)〉−A(η))µ(dx). The integrand of
the density in its canonical form is a positive function
and will yield a bona fide probability distribution if
and only if∫

h(x)e(〈η,T (x)〉−A(η))µ(dx) = 1,

which is equivalent to∫
h(x)e〈η,T (x)〉µ(dx) = eA(η) < +∞.

The collection of all such η for which this holds is a
convex set called the natural parameter space and is
denoted by Ξ. Many common distributions belong to
exponential families; for example, the normal, beta,
and gamma distributions are all members of the expo-
nential family of distributions.

The real valued functions, i.e. the statistics, Ti(x),
i = 1 . . . n appearing in the expression for the densi-
ties of an exponential family posses a pleasant property
known as sufficiency. A statistic T for a random obser-
vation X is said to be sufficient for the family {Pθ} of
possible distributions for X if the conditional expecta-
tion of X given T = t is independent of θ for all t. The
property of sufficiency has numerous and varied conse-
quences which, although of great importance in many
branches of statistics, only one of which will concern
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us in this paper. This property allows the computa-
tion of moments of T , a variant of which will supply
a crucial step in the proof of our extension of Hjort’s
result. This well-known result relates the moments of
T to the partial derivatives of the normalizing factor
exp(A(η)) with respect to the natural parameters. In
fact, it can be shown that for any k where 1 ≤ k ≤ n
and any m ≥ 1 we have [11]

E[Tmk ] =

∫
Tmk (x)(h(x) exp

(
〈η, T (x)〉 −A(η)

)
µ(dx)

(1)

= e−A(η) ∂
m[eA(η)]

∂ηmk
.

We require a variant of this result which replaces the
natural parameter η by a function η(z) defined on
(0,∞). Thus, rather than taking the natural parame-
ters to freely vary we require them to be in the range of
the function η(z). Given this modification, the variant
of (1) involves functional derivatives, a common device
from variational calculus. The statement of the result,
whose proof appears in the supplemental material, is
as follows:

Lemma 1 Let η(z) = (η1(z), . . . , ηn(z)) be a
piecewise continuous function on (0,∞) such that
η((0,∞)) ⊆ Ξ , where Ξ is the natural parameter
space of the exponential family given by

p(x|η)θ = h(x) exp
(
〈η, T (x)〉 −A(η)

)
µ(dx).

Then

1. the functional mth-derivative with respect to
ηk(z), 1 ≤ k ≤ n

∂m

∂(ηk(z))m

[ ∫
h(x) exp

(
〈η(z), T (x)〉−A(η(z))

)
µ(dx)

]
exists if and only if∫ {

h(x)
∂m

∂(ηk(z))m

[
exp

(
〈η(z), T (x)〉−A(η(z))

)]}
µ(dx)

exists, and the two quantities are equal;

2. if the quantities in 1 exist, then the mth moment
of Tk(x) exists and

E[Tmk ] = e−A(η(z)) ∂m

∂(ηk(z))m
[
eA(η(z))

]
. (2)

3 Sufficient statistics construction of a
Lévy measure

We begin part three of this paper with a brief dis-
cussion of our motivation for presenting the central

construction, and in particular the role we intend this
construction to take as the first of two components
necessary to extend the researcher’s palette of non-
parametric conjugate models. Following this, in the
first of the two remaining sections we discuss Hjort’s
construction of the beta process. The conditions under
which the construction is implemented and an essen-
tial step in his proof are explained. Our modifications
of these which allow the construction to produce pro-
cesses whose infinitesimal increments are distributed
according to an exponential family are provided. In
the final section we state and interpret our main re-
sult.

3.1 Conjugacy and densities

To begin, we remind the reader of the brief discus-
sion contained in the introduction regarding the forms
conjugacy assumes in the parametric and nonparamet-
ric cases. In the former, conjugacy is well known and
accepted as the condition that the density of the poste-
rior is of the same form as the density of the prior, and
the parameters for the posterior are obtained as a func-
tion of the parameters for the prior and the sampled
data. In contrast, for the nonparametric case, the form
conjugacy now commonly assumes applies not to the
densities of the random variables under consideration,
but to the densities of the Lévy measures associated
with the processes.

For example, the beta process is taken to be a stochas-
tic process whose infinitesimal increments are, for a
given base measure µ and concentration function c(ω),
BP(c(dω)µ(ω), c(ω)(1−µ(ω)) distributed. This some-
what imprecise definition of the beta process is for-
malized via the fact that the associated Lévy measure
of the process has the form ν(dπ, dω) = c(ω)π−1(1 −
πc(ω)−1)dπµ(dω), a form which is a degenerate beta
density. To obtain the data generating process for a
conjugate beta process model, one invokes the well
known conjugacy of the beta and Bernoulli distri-
butions from the parametric case, and then pushes
the analogy to the infinite dimensional case. In fact,
letting X be a Bernoulli process with base measure
B, denoted as X ∼ Be(B), one can show that if
B ∼ BP(c,B0) and X1|B,X2|B, . . . ,Xn|B ∼ Be(B)
are independent observations, then

B|X1, . . . , Xn ∼ BP

(
c+ n,

c

c+ n
B0 +

1

c+ n

∑
Xi

)
This result, while pointed out in [13], derives its proof
from a result of [14] which in fact proves that the den-
sity of the Lévy measure associated with the posterior
maintains the form of a beta density with parameters
derived from the prior and the observed data.

Thus, in both the parametric and nonparametric cases,
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the active definition of conjugacy is one of a condition
on the relationship between densities associated with
the prior and posterior. In the parametric case the def-
inition involves the densities of the random variables,
and in the nonparametric case the definition involves
the densities of the Lévy measures associated with the
stochastic processes.

It is precisely this observation which drives us to
consider extending Hjort’s construction to encompass
stochastic processes whose infinitesimal increments are
distributed according to a positive exponential family.
Or more precisely, to stochastic processes whose as-
sociated Lévy measures have densities from positive
exponential families. This choice of density class takes
aim directly at the problem which concerns the second
part of our program, namely demonstrating that the
processes yielded by our construction in this paper, do
in fact, under appropriate regularity conditions, serve
as infinite dimensional conjugate priors. As such, the
second part of our program will establish that the asso-
ciated infinite dimensional posteriors do in fact belong
to the same class as the priors and provide analyti-
cal formulae for their computation. Establishing this
fact will complete a program which defines a theory of
conjugacy for positive exponential families in infinite
dimensional spaces analogous to the current theory of
conjugacy for exponential families in a finite dimen-
sional setting. While space considerations for this pa-
per will not allow a detailed accounting of this pro-
gram, we provide some comments along this direction
below.

Key to such a program is the ability to invoke well
known conjugacy relationships from a parametric set-
ting, and then, as in the case of the beta and Bernoulli
processes mentioned above, analogously push the con-
jugacy to the infinite dimensional setting. In pass-
ing the conjugacy relationship from the finite dimen-
sional setting to the infinite dimensional setting, one
in fact transfers the conjugacy condition on densities
of random variables to densities of Lévy measures of
stochastic processes. A number of results concerning
explicit relationships between these two densities have
been demonstrated [15], and recent work has produced
such results readily applicable to the case of densities
from exponential families [16–18]. Theorem 1 of this
paper, presented in section 3.3, explicitly constructs
a stochastic process whose associated Lévy measure
possesses a density derived from an exponential fam-
ily. As such, the processes yielded by our construction
are firmly positioned to take advantage of the above
mentioned results in order to prove the existence of
their conjugate posteriors.

3.2 Hjort’s construction of the improper
beta process

Hjort [14] provides an explicit construction proving
the existence of a process B(t) on [0,∞) such that
B(0) = 0 and B(t) possesses independent increments
which are infinitesimally beta distributed. In addition,
Hjort requires the condition that the sample paths of
(1− e−B(t)) are all cumulative distribution functions.
The construction is given relative to two fixed objects:
1. a nondecreasing, right continuous function, A0(t) on
[0,∞) with A0(0) = 0 and the quantity (1 − e−A0(t))
yielding a cumulative distribution function on [0,∞),
and 2. a piecewise continuous function c(z) on (0,∞).
The properties required of the function A0(t) ensured
the resulting process (1 − e−B(t)) would have sam-
ple paths that were cumulative distribution functions.
The function c(z), which is termed the concentration
function, in part determines the beta distribution of
the increments of B(t).

In the course of his construction, Hjort proposes a form
for the Lévy measure for B(t). Proving the correctness
of the form for the Lévy measure relies heavily on the
ability to find a convenient closed form for all moments
of a beta distributed random variable. Fortunately it
is known that for X ∼ Beta(α, β) we have for all m ≥ 1

E[Xm] =
Γ(α+m)Γ(α+ β)

Γ(α+ β +m)Γ(α)
.

When attempting to generalize Hjort’s construction to
prove the existence of a process X(t) on [0,∞) such
that X(0) = 0 and X possesses independent incre-
ments which are distributed according to an exponen-
tial family, the lack of a closed form for the moments
of a random variable distributed according to a gen-
eral exponential family imposes a significant obstacle.
However, equation (2) provides a formula for the mo-
ments of the sufficient statistics Tk(x) relative to a
density which is a modification of the density of X.
It is for this reason that our extension of Hjort’s con-
struction uses a sufficient statistic Tk(x) of X rather
than X itself.

Additionally, we do not require the fixed function
A0(t) to have the property that (1 − e−A0(t)) yields
a cumulative distribution function on [0,∞). We only
require that A0(t) corresponds to a unique Lebesgue-
Stieltjes measure on [0,∞). Finally, we replace the
piecewise continuous function c(z) with the vector of
piecewise continuous functions (η1(z), . . . , ηn(z)).

3.3 Sufficient statistics construction for
positive valued exponential families

We now state our main result, the proof of which is
provided in the supplementary material. In the light
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of the discussion of Hjort’s construction above, the fol-
lowing paragraph provides few essential comments re-
garding the construction obtained in Theorem 1 and
the objects it produces.

For a given m-dimensional exponential family, pθ(x|η),
defined on [0,∞), one has, in our case, the func-
tion η(z) = (η1(z), . . . , ηm(z)) supplying the natu-
ral parameters, and the sufficient statistics T (s) =
(T1(s), . . . , Tm(s)). Our construction employs only one
of the sufficient statistics, say Tk(s) for a fixed k where
1 ≤ k ≤ m. As long as the chosen Tk(s) and the given
function η(z) satisfy the regularity conditions in the
theorem, then for any positive, increasing A0(z) on
[0,∞) which is right continuous with left hand lim-
its, the construction of the theorem results in a Lévy
process T (t) and a corresponding Lévy measure given
by the specified form. Indeed, the change of variables
formula expressed in equation (3) in the theorem fur-
nishes the machinery to accomplish this task. That
this change of variables permits such a construction is
shown in the example 4.3.

Theorem 1 Let Tk(x) be a sufficient statistic of an
m-dimensional exponential family pθ(x|η), η(z) =
(η1(z), . . . , ηm(z)) a vector of piecewise continuous,
nonnegative functions on (0,∞), and A0(z) a positive,
increasing function on [0,∞) which is right continuous
with left hand limits. Assume the following conditions
hold:

1. T−1
k (u) exists and is differentiable;

2. for all z ∈ (0,∞) we have η(z) ∈ Ξ , the natural
parameter space of pθ(x|η);

3. if (η1(z), . . . , ηm(z)) ∈ Ξ then for every 0 < ε < 1
it follows that
(η1(z), . . . , εηk(z), . . . , ηm(z)) ∈ Ξ.

Then there exists a Lévy process T (t) with a Lévy rep-
resentation given by

E[exp(−θT )] = exp

{
−
∫

(1− e−θu)dLt(u)

}
=

exp

{
−
∫

(1− e−θTk(s))dLt(s)

}
, where

dLt(u) =

{∫ t

0

exp
(
〈η(z), U〉 −A(η(z))

)dT−1
k

du
dA0(z)

}
du

(3)

and

dLt(s) =

{∫ t

0

exp
(
〈η(z), T (s)〉 −A(η(z))

)
dA0(z)

}
ds.

(4)

where U = (T1(T−1
k (u)), ..., Tm(T−1

k (u))) and
u = Tk(s).

Condition 1 is required so that an explicit form of
the density function of Tk can be found, which in
turn permits the computation of the the transform
E[exp(−θTk)] linking the random variable Tk to the
Lévy measure

ν(du, dA0(z)) = exp
(
〈η(z), u〉 −A(η(z))

)dT−1
k

du
dA0(z)du.

As noted in section 2.1 this linkage between Tk and
ν(du, dA0(z)) completely establishes the distributional
properties of the random variable via a Poisson process
with intensity measure given by the Lévy measure.

Condition 2 of the theorem simply requires that η(z)
does in fact determine a well defined exponential fam-
ily. Condition 3 is a technical requirement which is
directly tied to the construction of the Lévy process
T (t). The condition, loosely interpreted, states that
the natural parameter space is closed under contrac-
tion towards 0, i.e. if one takes any point in the natural
parameter space, and shrinks it in absolute value by an
amount ε, then the resulting value is still in the natural
parameter space. Note that this is not quite equiva-
lent to the well known property of convexity of the
natural parameter space [12], as the element 0 need
not be in the space. This is precisely the case for a
beta distributed random variable. Finally, we note
that if there are multiple sufficient statistics satisfying
condition 1 of the theorem, then the Lévy measures
resulting from different choices of Tk(s) will all be ab-
solutely continuous with respect to one another, i.e.
all measures will be equivalent.

4 Examples

In this section we demonstrate that the Lévy measures
for the beta and gamma processes are obtainable from
the Lévy measure representation derived in Theorem
1. In addition, we compute the Lévy measure for a
process with infinitesimally Pareto distributed incre-
ments.

The methodology employed in the examples which fol-
low stands in contrast to the Lévy measure decomposi-
tion procedure demonstrated in [10]. This decomposi-
tion procedure requires one to have the Lévy measure
for the completely random measure in hand, and then
after examining the particular form of the measure,
apply a number of series expansions and identities par-
ticular to the moments of the process to arrive at the
decomposition. Thus, starting with a completely ran-
dom measure, the researcher arrives at a decomposi-
tion which, while permitting simulation of the process,
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does not allow the researcher to specify the Lévy mea-
sures which are used to generate the simulation. Wang
and Carin acknowledge this in [10] by noting that all
that can be said about the components of the resulting
decomposition are that they are Lévy processes.

In comparison, employing the construction in Theo-
rem 1, our procedure allows the researcher to specify
a priori the specific forms of the Lévy measures, prove
the existence of the corresponding processes, and then
arrive at the desired completely random measure via
an infinite sum.

4.1 The beta process

In Wang and Carin [10] the beta process B with
corresponding Lévy measure given by ν(ds, dz) =
c(z)s−1(1−s)c(z)−1dsdµ(z) is decomposed into infinite
sums B =

∑
nBn and ν =

∑
n νn where the Bn are

Lévy processes with Lévy measures νn(ds, dz), given
by

νn(ds, dz) = Beta(1, c(z) + n)ds
c(z)

c(z) + n
dµ(z). (5)

The function c(z) in the above is assumed to be a
piecewise continuous positive function on (0,∞). The
decomposition of the Lévy measure ν into an infinite
series with components given by (5) is achieved by
simply writing the s−1 term in ν as an infinite series
and then distributing the remaining terms, as well as
employing identities for the gamma function.

Rather than beginning with the measure ν and then
subsequently arriving at the form of the decomposi-
tion, the Lévy measures in (5) can be constructed di-
rectly from Theorem 1, hence we will verify that the
conditions of Theorem 1 are satisfied.

First, the sufficient statistics for the beta distribution
are T1(x) = ln(x) and T2(x) = ln(1 − x) and both of
these functions has an infinitely differentiable inverse,
hence condition 1 of the theorem is satisfied. Second,
defining η(z) = (1, c(z)+n) yields a function satisfying
condition 2 of the theorem. Finally, since the natural
parameter space Ξ of the beta distribution consists of
all (α, β) where α,β > 0 we see that for any ε > 0 if
(α, β) ∈ Ξ then both (εα, β) and (α, εβ) are in Ξ. Thus
condition 3 is satisfied. As all the requisite conditions
are satisfied, we can construct processes Bn for n =
1, . . . whose Lévy measures have the form in (5). This
is achievable by Theorem 1 as each νn is of the form in
(3) with A0(z) = (c(z)/(c(z) + n))F (z), where F (z) is
the cumulative distribution of µ, resulting in an A0(z)
which is a positive, increasing function which is right
continuous with left hand limits.

4.2 The gamma process

Similar to the decomposition of the Lévy measure
for the beta process, in [10] a decomposition for the
gamma process Lévy measure

ν(ds, dz) = s−1 exp

(
−s
c(z)

)
dsdµ(z) (6)

is obtained. In this case the Lévy measure is decom-
posed into a doubly indexed infinite sum of Lévy mea-
sures νk,h(ds, dz), where for every k, h

νk,h(ds, dz) = Gamma

(
h,

c(z)

k + 1

)
ds

dα(z)

(k + 1)hh
. (7)

The decomposition of the Lévy measure in (6) into a
doubly indexed infinite series with components given
by (7) is achieved not by a simple series expansion of
a term in (6), but rather by an iterative procedure
of rewriting the exponential term in the measure as
a product of terms, one of which may be series ex-
panded. This step decomposes the Lévy measure into
a sum of two measures and repeated application of this
process produces the doubly indexed infinite series of
measures.

Again, we may avoid decomposition techniques partic-
ular to a given Lévy measure, and instead construct
each νk,h directly from Theorem 1. We see that each
νk,h is of the form in (3) with

η(z) =

(
h,

c(z)

k + 1

)
and A0(z) =

dα(z)

(k + 1)hh
F (z),

where c(z) is a positive piecewise continuous function,
and F (z) is the cumulative distribution of α. Noting
that the sufficient statistics for the gamma distribu-
tion are T1(x) = ln(x) and T2(x) = x,both of which
have an infinitely differentiable inverse, condition 1 of
Theorem 1 is satisfied. Again, similar to the case for
the beta distribution, the natural parameter space Ξ
of the gamma distribution consists of all (α, β) where
α,β > 0. From this it follows that conditions 2 and 3
of Theorem 1 are also satisfied.

4.3 A completely random measure based on
the Pareto distribution

We illustrate the construction of a completely random
measure whose infinitesimal increments are Pareto dis-
tributed. We will demonstrate the procedure using the
change of variables formula from Theorem 1 explicitly.

To begin consider the density function for a Pareto

distributed random variable p(u|α) =
αuαm
uα+1 . In this
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form α > 0 is the shape parameter, um is the scale pa-
rameter, and the support of p(u|α) is [um,∞). Writ-
ing p(u|α) in canonical form yields p(u|α) = exp

(
−

(α+ 1) ln(u)− (− ln(α)−α ln(um)
)
. From this we see

that there is one natural parameter, −(α + 1), and
the corresponding sufficient statistic is T (u) = ln(u).
Our goal is to choose an initial exponential family, ap-
ply the construction in Theorem 1, and then arrive,
after the change of variable, at a form for the den-
sity of the Lévy measure in (3) which conforms to
the density of a Pareto distribution. Thus, we con-
sider the exponential family with sufficient statistics
T1(x) = ln(x), T2(x) = ln(ln(x)), and natural parame-
ters η1 = −1, η2 = −(α+ 1). We note that on (1,+∞)
both sufficient statistics have a well defined inverse
which is differentiable. Second, integration by parts
on the integrand x−1(ln(x))−(α+1) shows that (η1, η2)
is in the natural parameter space of p(x|η). Similarly,
we also see that the natural parameter space is closed
under contraction towards 0. Hence we may apply the
construction of Theorem 1 to produce a Lévy process T
so that the density of the corresponding Lévy measure,
after performing the change of variables to express the
Lévy measure as in equation (3) of the theorem, has
the form

exp
{
− (α+ 1) ln(u)− u− (− ln(α)− α ln(um)

}
eu

=
αuαm
uα+1

which is a Pareto density.

More generally, taking α = α(z), a positive piece-
wise continuous function on (0,∞), we see that con-
ditions 2 and 3 of Theorem 1 are satisfied. Like-
wise, the sufficient statistic T (x) chosen in the pre-
vious paragraph satisfies condition 1. Thus, there ex-
ists a Lévy process whose Lévy measure is given by

α(z)u
α(z)
m u−(α(z)+1)dA0(z)du where A0(z) is any func-

tion satisfying the conditions of Theorem 1.

Note that, analogously to the previous two exam-
ples, we may consider the case where we wish
to choose specific forms for α(z) for all n =
1, 2, . . ., yielding {αn(z)}∞n=1. Applying the above
construction to each αn(z) produces νn(dz, du) =

αn(z)u
αn(z)
m u−(αn(z)+1)dA0(z)du which are the Lévy

measures acting as the intensity parameters for the
countably many Poisson processes used to simulate
the completely random measure whose corresponding
Lévy measure is given by

∞∑
n=1

α(z)nu
αn(z)
m u−(α(z)+1)dA0(z)du.

Fixing an α(z) so that defining dA0,n = 1
nα(z)dz for

n = 1, . . ., all A0,n(z) satisfy the condition of Theorem

Algorithm 1 Sampling algorithm for a CRM with
Lévy measure Pareto density

Input: N , A0,n(z), α(z)nx
αn(z)
m u(−αn(z)+1) for n =

1 . . . N
for n = 1→ N do
mn ← Poisson(

∫
A0,n(dz))

for j = 1→ mn do

zj,n
i.i.d.←−−− A0,n(dz)∫

A0,n(dz)

uj,n
i.i.d.←−−− α(z)nu

αn(z)
m u(−αn(z)+1)

end for
end for
return

⋃N
n=1{(zj,n, uj,n)}mnj=1

1, the above expression becomes

∞∑
n=1

nα(z)unα(z)
m u−(α(z)+1) 1

nα(z)
dzdu =

(
1 +

u
α(z)
m

u−(α(z)+1) − uα(z)
m

)
dzdu.

Thus, we have proved the existence of a completely
random measure whose Lévy measure decomposition
consists of the Pareto densities of our choice and whose
composition of Lévy measures is obtained by the closed
form expression

dLt(u) =

{∫ t

0

(
1 +

u
α(z)
m

u−(α(z)+1) − uα(z)
m

)
dz

}
du.

Employing the Lévy measures {νn}Nn=1, where N is
a chosen level of truncation, simulation of this com-
pletely random measure may be achieved by Algorithm
1, analogous to the sampling algorithms based on de-
compositions of the beta and gamma processes.

5 Conclusion and future work

Through our generalization of Hjort’s construction via
sufficient statistics we have addressed the problem of
obtaining a general construction of prior distributions
over infinite dimensional spaces possessing distribu-
tional properties amenable to conjugacy. Thus, we
have completed the first part in a two stage program
which aims to define a theory of conjugacy for posi-
tive exponential families in infinite dimensional spaces
analogous to the current theory of conjugacy for ex-
ponential families in a finite dimensional setting. A
forthcoming article will target the second stage of this
theory and as such will delineate appropriate condi-
tions on the Lévy measures associated with the pro-
cesses constructed in this paper that will allow the
construction of their conjugate priors.
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