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A Proof of Theorem 2
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point x(i) projected into a sub-dimension j, i.e., for
any i, j, we have

r
k

⇣
x(i)
⌘
> r

k

⇣
x
(i)
j

⌘
(A.1)

Using Eq. A.1, we get the upper bound of bI
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(x)
as follows:
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The last inequality is obtained by noticing that  (k)�
log(k) is a monotonous decreasing function.

Also, we have,
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The inequality above is obtained by using the bound
of gamma function that,
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Therefore, reconsidering A.2, we get the following in-
equality for bI

kNN,k

(x):
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Requiring that |bI
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(x)� I(x)|  ", we obtain,
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where C is a constant which scales like O( 1
d

).

B Derivation of Eq. 17

The naive kNN or KSG estimator can be written as:
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where P (x(i)) is the probability mass around the k-

nearest-neighborhood at x(i) and P (x(i)
j

) is the prob-
ability mass around the k-nearest-neighborhood (or
n
xj (i)-nearest-neighborhood for KSG) at x(i) pro-

jected into j-th dimension. Also, V (i) and V
j

(i) denote
the volume of the kNN ball(or hype-rectangle in KSG)
in the joint space and projected subspaces respectively.

Now our local nonuniform correction method replaces
the volume V (i) in Eq. B.1 with the corrected volume
V (i), thus, our estimator is obtained as follows:
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C Empirical Evaluation for ! k,d

Suppose we have a uniform distribution on the d di-
mensional (hyper)rectangle with volume V . We sam-
ple k points from this uniform distribution. We per-
form PCA using these k points to get a new basis10.

10 In practice, we recommend k to be larger than 2 ! d.
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After rotating into this new basis, we find the volume,
V̄ , of the smallest rectilinear rectangle containing the
points. By chance, we will typically find V̄ < V , even
though the distribution is uniform. This will lead to
us to (incorrectly) apply a local non-uniformity cor-
rection. Instead, we set a threshold ↵

k,d

and if V̄ /V is
above the threshold, we assume that the distribution
is locally uniform. Setting ↵ involves a trade-o↵. If
it is set too high, we will incorrectly conclude there is
local non-uniformity and therefore over-estimate the
mutual information. If we set ↵ too low, we will lose
statistical power for “medium-strength” relationships
(though very strong relationships will still lead to val-
ues of V̄ /V smaller than ↵).

In practice, we determine the correct value of ↵
k,d

em-
pirically. We look at the probability distribution of
V̄ /V that occurs when the true distribution is uniform.
We set ↵ conservatively so that when the true distribu-
tion is uniform, our criteria rejects this hypothesis with
small probability, ✏. Specifically, we do a number of tri-

als, N , and set ↵̂
k,d

such that
NP
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I
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⌘
/N < ✏

where ✏ is a relatively small value. In practice, we
chose ✏ = 5 ⇥ 10�3 and N = 5 ⇥ 105. The following
algorithm describes this procedure:

Algorithm C.1 Estimating ↵
k,d

for LNC

Input: parameter d (dimension), k (nearest neigh-
bor), N , ✏
Output: ↵̂

k,d

set array a to be NULL
repeat

Randomly choose a uniform distribution sup-
ported on d dimensional (hyper) rectangle, denote
its volume to be V

Draw k points from this uniform distribution, get
the correcting volume V̄ after doing PCA

add the ratio V̄

V

to array a
until above procedure repeated N times
↵̂
k,d

 d✏Ne th smallest number in a

Figure C.1 shows empirical value of ↵̂
k,d

for di↵erent
(k, d) pairs. We can see that for a fixed dimension
d, ↵̂

k,d

grows as k increases, meaning that V̄ must be
closer to V to accept the null hypothesis of uniformity.
We also find that ↵̂

k,d

decreases as the dimension d in-
creases, indicating that for a fixed k, V̄ becomes much
smaller than V when points are drawn from a uniform
distribution in higher dimensions.

Figure C.1: b↵
k,d

as a function of k. k ranges over
[d, 20] for each dimension d.

D More Functional Relationship Tests
in Two Dimensions

We have tested together twenty-one functional rela-
tionships described in Reshef et al. (2011); Kinney and
Atwal (2014), we show six of them in Section 5. The
complete results are shown in Figure D.1. Detailed de-
scription of the functions can be found in Table S1 of
Supporting Information in Kinney and Atwal (2014).
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