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A Proof of Theorem 2

Notice that for a fixed sample point X(?), its k-nearest-
neighbor distance ry, (X(i)) is always equal to or larger
than the k-nearest-neighbor distance of at the same
point X projected into a sub-dimension j, i.e., for
any i, j, we have

Tk (X(i)) =Tk (XE”)

Using Eq. A.1, we get the upper bound of IA;CNN,k (X)
as follows:

(A1)

Therefore, reconsidering A.2, we get the following in-
equality for Iynn i (X):

IN

kaN,k‘ (X) (d— 1) log (]Vk_l) +O(d10gd)

(d—1)log (N — 1)+ O (dlogd)

Requiring that |kaN,k (X) — I(X)| < e, we obtain,

N > Cexp (I(X)_e> +1 (A.3)
d—1
where C'is a constant which scales like O(%). O

B Derivation of Eq. 17

The naive kNN or KSG estimator can be written as:

IAkNN,k X) = Inng(X) = (d—=1)n% L P(x ())>
. Ea v
1 al P (x@) -N Z d p X() (B.1)
= Nzlog y —(d=1) " i=1 H 5
i=1 11 5 (Xéi)) j=1
Jj=1 .
N kT4 (X(i))id where P(x()) is the probability mass around the k-
_ L Zlog N—1_ nd/z 'k nearest-neighborhood at x(¥ and P(Xy)) is the prob-
N P ﬁ k. T(1/2)+1 ra (X(vi))_1 ability mass around the k-nearest-neighborhood (or
gy N I ny, (i)-nearest-neighborhood for KSG) at X pro-
—(d=1) jected into j-th dimension. Also, V' (7) and V; () denote
N_1 T (d/2) + the volume of the kNN ball(or hype- rectangle in KSG)
< (d—1)log <k> og min the joint space and projected subspaces respectively.
+
—(d—1) (¥ (k) —logk) Now our local nonuniform correction method replaces
! 4/2) 4 1 the volume V(i) in Eq. B.1 with the corrected volume
< (d—1)log <_ ) + log /2 +1 V( ), thus, our estimator is obtained as follows:
1/2) +1
—(d=1) (¥ (1) - log 1) e . LA
(A.2) Ienek(¥) = Zlog 4 p X
i=1 11 ]
The last inequality is obtained by noticing that (k) — j=1 vil)
log(k) is a monotonous decreasing function. N P(x®) vy
_ 1 OO
Also, we have, - Z log P x®
i=1 11 J
r(d/2)+1 L V()
og% = log(I'(d/2) +1) —dlog(T'(d/2) + 1) 7=1
(T'(1/2) +1) A il V (i)
d/2+1/2 = IgX)— = og -
241/2
< log (va(d/ _Z / > ) N i=1 V(@)
(B.2)
—dlog (71'% + 1)
C Empirical Evaluation for I k.d

O (dlogd)

The inequality above is obtained by using the bound
of gamma function that,

z+1/2

F(m+1)<f(x+1/z)

Suppose we have a uniform distribution on the d di-
mensional (hyper)rectangle with volume V. We sam-
ple k£ points from this uniform distribution. We per-
form PCA using these k points to get a new basis!®.

01n practice, we recommend k to be larger than 2! d.
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After rotating into this new basis, we find the volume,
V, of the smallest rectilinear rectangle containing the
points. By chance, we will typically find V < V, even
though the distribution is uniform. This will lead to
us to (incorrectly) apply a local non-uniformity cor-
rection. Instead, we set a threshold oy, ¢ and if V/V is
above the threshold, we assume that the distribution
is locally uniform. Setting « involves a trade-off. If
it is set too high, we will incorrectly conclude there is
local non-uniformity and therefore over-estimate the
mutual information. If we set o too low, we will lose
statistical power for “medium-strength” relationships
(though very strong relationships will still lead to val-
ues of V/V smaller than ).

In practice, we determine the correct value of oy, q em-
pirically. We look at the probability distribution of
V' /V that occurs when the true distribution is uniform.
We set a conservatively so that when the true distribu-
tion is uniform, our criteria rejects this hypothesis with
small probability, €. Specifically, we do a number of tri-

N _
als, N, and set dy, 4 such that > | (% < dk,d> /N < e
i=1 ¢

where € is a relatively small value. In practice, we
chose ¢ = 5 x 1073 and N = 5 x 10°. The following
algorithm describes this procedure:

Algorithm C.1 Estimating a4 4 for LNC

Input: parameter d (dimension), k (nearest neigh-
bor), N, €
Output: &y g
set array a to be NULL
repeat

Randomly choose a uniform distribution sup-
ported on d dimensional (hyper) rectangle, denote
its volume to be V'

Draw k points from this uniform distribution, get
the correcting volume V after doing PCA

add the ratio % to array a
until above procedure repeated N times
Gi,q < [eN] th smallest number in a

Figure C.1 shows empirical value of éy 4 for different
(k,d) pairs. We can see that for a fixed dimension
d, @y 4 grows as k increases, meaning that V' must be
closer to V' to accept the null hypothesis of uniformity.
We also find that &y, 4 decreases as the dimension d in-
creases, indicating that for a fixed k, V becomes much
smaller than V' when points are drawn from a uniform
distribution in higher dimensions.
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Figure C.1: ajq as a function of k. k ranges over
[d,20] for each dimension d.
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D More Functional Relationship Tests
in Two Dimensions

We have tested together twenty-one functional rela-
tionships described in Reshef et al. (2011); Kinney and
Atwal (2014), we show six of them in Section 5. The
complete results are shown in Figure D.1. Detailed de-
scription of the functions can be found in Table S1 of
Supporting Information in Kinney and Atwal (2014).
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