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6 Settings for the Synthetic Data

6.1 Generation of Synthetic Matrices

Let Ap and Ap be a pair of matrices. For our simula-
tion in Section 4.1, we generated matrices that satisfy
Assumption 1. Specifically, we generated matrices that
simultaneously satisfy three conditions:

e positive-definite: A, = vI; for u € {A, B},
e sparse: A, ;; =0 for (¢,7) € Q, with v € {A,B},

e homogeneous: Ap ;; = Ap; for (i,7) €11,

where v is some positive constant, and Qa, Qp, and II
are properly chosen subsets of {1,2,...,d}?. In par-
ticular, all pairs of healthy variable indices have to
be involved in II so that the homogeneity is satisfied.
In addition, based on the sparseness and homogene-
ity conditions, Q24 N Qg C II must be satisfied. We
note that, although the first condition is not necessary
for general adjacency matrices, we used it since both
the covariance and precision matrices we used in the
simulation are positive-definite matrices.

The matrix generation procedure starts by specifying
v, Qa, Qp, II, and two reference matrices Ca,Cp €
R¥*?_ Here we chose Cx and Cg to be symmetric but
not necessarily to be positive-definite. We then derive
A and Agp as the solution to the problem:

1
min = Au - Cu 27
{Autueqa,py 2 ue%;g} ” HF
s.t. Ay = vl (u € {A,B}),
Ayij = 0for (i,5) € Q (u € {A,B}),
AA,ij = AB,ij for (l,j) eIl

where || ||r denotes the Frobenius-norm of the matrix.
This problem corresponds to searching for the matrices

Ap and Ap that are closest to the reference matrices
Cx and Cp under the specified conditions. The prob-
lem is convex and we can solve it by using ADMM [24].
We first rewrite the problem into an equivalent form:

1
= > (I1Xu - Cull?

min
{Xutueta,By {Yulueqa,by 2 ue{A B}
+ g, (Xu) + S(Yu))v
Xa,ij — Xp,iy = 0for (i,7) €11,

where dq, (X,) and §(Y,,) are the indicator functions
defined as

0 if X, =0forall (4,5) € Qu,
oo otherwise,

(591}’ (Xu) = {

0 ifYy, >0,
oo otherwise,

and we have A, =Y, as the solution for u € {A,B}.
Let Z, € R™4 (y € {A,B,0}) be the matrix of La-
grange multipliers. We then define the Augmented
Lagrangian (AL) function as

1

Ls(X,Y,2) =5 D (X = Cullf + 8o, (Xu) +6(Ya))

ue{A,B}
+ é( § | X0 — Yo +vig+ lZu||2
2 goE
ue{A,B}

1
+[|En © (Xa — XB) + BZOHI%“)v
where we set X := {Xu}ue{A,B}a Y = {Yu}uE{A,B}a
and Z := {Z,}yue(a,B,0} to simplify the notation, ®
denotes the Hadamard product of matrices, and FEry is
an indicator matrix of the set Il defined as

B it (i,4) € 10,
e == 0 otherwise.
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The optimization procedure of ADMM is defined using
this AL function. Specifically, we repeat these steps
until one of the termination criteria is fulfilled:
XD ¢ argminy L5(X, YR Z(R))
Y+ € argminy Lg(X*FFD |y, Z(0),

6.2 Parameter Settings

This subsection explains how the sparsity patterns Q4
and Qg and the shared pattern II are chosen. For
the sparsity pattern, we randomly pick index pairs so
that the average size of €, is 3,000 when d = 100.

ZkD) _ k) ﬁ(ngkH) —y D vlg) (u € {A,B}This corresponds to choosing 70% of the matrix entries

Z(()kJrl) _ Z(()k) +BEH o (XXCJFD _ X](ngrl)).

The first step, the update of X, can be decomposed
into individual problems on each (i,j)th entry given
as

1
B Z {(Xu,ij — Cu,ij)2 + B(Xu,ij — P,f’?])
ue{A,B}
1

B
+ §{EH,ij(XA,ij — Xgij) + 3
s.t. Xu,ij =0 for (Z,]) e Q, (U S {A,B}),

min
XA, XB,ij

Z0. )2,

where quk) is the matrix defined as
1
Pk =y k) _ BZ}P — vy (u € {A,B}).

When Ep,;; = 0 or (i,5) ¢ II, the problem can be
further reduced into the individual problems on X4 ;;
and Xp ;;. Hence, we have the solution

k e
(D) _ ﬁ(cu,ij + 5P1E,i)j) if (4,7) ¢ Qu,
wH 0 otherwise.
For the case of Err;; =1 and (4,7) ¢ Q. (u € {A,B}),
we have the solution

XB,ij (1+5)1+3p)

y {1 +28 B } Chij + BPl(&]fz?j - Z((Dk,z‘j
B L+28] |Cp 4y + Bplg,ci)j + Z(()k,ij

The update problem for Y can be decomposed into
individual problems on Y and Yg, which are given as

1
min o ||V — QU |[E, st Yu = 0 (u € {A,B}),
QU = (1) 4 %Zék) ol

This problem is equivalent to the Fuclidean projec-
tion of the matrix ng) onto the positive semidefinite
cone. Hence, this can be computed analytically us-
ing the eigenvalue decomposition. Here we assume
all of the matrices are symmetric, which can be as-
sured by initializing all of the matrices to be symmet-
ric. Let Qq(f) = UDU" be the eigenvalue decompo-
sition with D = diag(oy,092,...,04). We then have
YD — UDUT with D = diag(61, 5o, .. .,
&; = max(0;,0).

74) where

to be zero. For d = 200, they are set to be 8,000
(80%). The set II, the shared pattern, is chosen as
II=(ZxI)u(QaNnQp)UII;. The first set is all pairs
of healthy variables and the second set corresponds to
the shared zero entries between the two matrices. The
set I specifies the common non-zero entries, so that

Ay C Q4 NQF holds where ¢ denotes the compliment

of the set. For the construction of I1;, we consider the
subset of Q4 N Qf defined as

Iy :=(Z xI)*N (QF NQR),

which means that IIy specifies the set of index pairs
whose corresponding edges are non-zeros, and hence
connected to anomalous variables. We then randomly
pick index pairs (7, j) € Iy and add to IT.. We set the
size |II| to be 70% of |IIy| for both d = 100 and 200.

Across all of the settings, the value of v is set as
1073. Here is how the reference matrices Cx and
Cp are generated. We first generate random matri-
ces La,Lp € RI*[Vdl where each entry of each of
the matrices is generated from a standard Gaussian
distribution A/(0,1). We then set Ca = LaL) and
Cg = LBLg, and rescale them so that their diagonals
are one. Note that the generated matrices have at most
rank [v/d] which implies that they are rank deficient.
Therefore, the resulting covariance and precision ma-
trices encourage variables to have higher dependencies
with other variables.

6.3 Generation of Matrices with a
Concentrated Anomaly Pattern

In Section 4.1, Figure 6, we used a concentrated
anomaly pattern for the simulation. The synthetic
matrices were generated by modifying the generated
matrices in Section 6.1. Here, we denote by Mz« 7 the
sub-matrix consisting of the components of a matrix
M with indices in Z x J. We choose a subset H C 7
and update the matrix Ap by Aa uxz < ala nuxz
and Ap 7xy ¢ alazxy where a > 1 is some large
positive value. The matrix A is updated in the same
manner. Since the modified matrices Ay and Ag are
no longer positive definite, we add an identity matrix
Ap < Ap +clg and Ag <+ A + cly so that the ma-
trices become positive definite. In our simulation in
Section 4.1, we set the size of H to be 5 and a = 10.
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7 Proofs of Theorems

Here, we provide the proofs of the theorems in the
manuscript. We first enumerate key lemmas relevant
to a GGM estimator that are needed in the proofs, and
then present the proofs of theorems.

7.1 Key Lemmas on GGM estimators

Suppose that we have two groups of i.i.d. samples
{z; A)}”A (B )}”B ~ DB (xl(»A) € R? and

(B) € R?). To estimate the precision matrices As and
AB corresponding to pa and pg, respectively, we use
the following graphical-Lasso type estimators:

~ pa and {z;

Ay = argmin,, o — logdet(A) + tr[ AN+ )\(A)HA||1 off»
Ap = argmin,, o — logdet(A) + tr[ A]+ /\(B) | All1,08
where ¥x = A x( ) A)T/nA, S =
i e i, = Yigs -

Here we write Yo = Axl, and Yp = Agl. We de-
fine a linear operator &, : R¥¥4 — RIX? a5 oA =
Yatr[XaA] (in other words, ®o = XA ® Xa), and
Op : RI*d 5 R4Xd i the same manner.

Now let Sa = {(2,7) | Aas; #0}U{(1,1),...,(d,d)}
and similarly Sg = {(¢,4) | Apsy # 0} U
{(1, 1), ey (d, d)} Let SA = maxi=1,_“7p |{] | AA,ij #
0} and sg := max;=1,.. ,|{j | AB; # 0}|. For ma-

trix M € RP*P (p € N), we denote by Mz, the
sub-matrix consisting of the components of M with
indices in Z x J, and let |M|co,co be an operator
norm of M as an operator from /o, to /s, that is,
[ M loo,00 1= maxi=1,_._p > 5_; [Mij].

Using these notations, we define

KEA = ||2A||OO,007
Ky, = [(¥a,5x5) o0 = [((Za ® Za)sxs) ™"

and define Ky, and Ky, in the same manner.

Finally, we assume the following conditions on the dis-
tributions pa and pg.

Assumption 2

1. (Sub-Gaussianity) Both pa and pp have zero
means and sub-Gaussian tails: 3o > 0, Vi € R,

E,, [exp(tX)] < exp(o?t?),
E,plexp(tX)] < exp(o?t?).

2. (Incoherence) There exists a real number o €

HO0,00?

(0,1] such that

WA sexs(PUa 5x5) Hioooo <1 —a,

1UB.5cx5(UB.5x5)  looco < 1 —a.

Now let n := min{na,ng} and we have the following
lemma.

Lemma 1 Under Assumption 2, if the sample size n
satisfies

n > C3s4 (1 + 3/a)*(2log(2d/n) + log4),
Cs := {48V2(1 + 40?) max (X4 ;;) max{Kx, Ky, , K, Ki }}7,

and the reqularization parameter )\%A) satisfies

AB) = (8/a)\/128(1 + 402)2 max(X A 4)2 M,

n

then with probability greater than 1—n/2 (V1 > 0), the
estimated Aa satisfies the bound,

IAA — Aall,, <16v2(1 + 402) max(Xa i) (1 +8a~)

21og(2d log 4
qu,A\/ og( /2)+ og4.

and the non-zero elements of Aa are included in Ay,
{G,9) | AA,ij #0} C Sa.

(Proof of Lemma 1) The statement is a modification
of Corollary 1 of Ravikumar et al. [10]. Assump-
tion 2 yields the conditions assumed in Theorem 1
and Corollary 1 (sub-Gaussian condition) [10], thus
we can apply these theorems. The assertion is im-
mediately proven by replacing d;(n,p”) and ns(n,p")
with &;(n,n/(2d?)) and ns(n,n/(2d?)) in the proof of
Corollary 1 in the paper. If we replace d” with /(2d?),
then the tail probability of the noise can be evaluated
as

PlII% = ="l > b¢(n,n/(2d%))] <

M\z

by Lemma 8 and its proof [10]. Finally, we notice
log(2d?/n) < 21og(2d/n), and obtain the assertion. [J

We have the same statement for the estimation of Ag.

Lemma 2 Under the conditions assumed in Lemma
1, I' — T satisfies the following inequality with proba-
bility greater than 1 —n (n € (0,1)):

A 2log(2d/n) + log 4
P T, < vy 21820/ o1

Cy :=16v2(1 + 46%)(1 4 8a™ 1)
X (max(X} ;) Kry + max(Xg ;) Kry, ).




Satoshi Hara, Tetsuro Morimura, Toshihiro Takahashi, Hiroki Yanagisawa

In particular, we have
[T =Ts, <[I'=TF

<C \/dmin{sA + sp, d}{2log(2d/n) + log 4}
>~ L1 ’
n

with probability greater than 1 —n, where || - ||s. is the
spectrum norm and || - ||F is the Frobenius norm.

(Proof of Lemma 2) Since
- |AA,ij —Anj— AB,ij + A 4|
< |Aai; — Apijl = |Aa; — As il
< |AA,ij —Aaj — AB,ij + Agijl,
we obtain
T = Tlllo < l[Ax = Aa = Ap + Aglll
< [1Aa = Aallo + A8 — gl

Thus, applying the bound derived in Lemma 1 to both
[[Aa — Aall,, and [[Ap — Ag||,,, we obtain the first
assertion.

o0?

As for the second assertion, since I' — T has at most
min{d(ss + sp),d?} non-zero components by the sec-
ond assertion of Lemma 1, the Frobenius norm be-
tween I' — I has the bound,

I~ Tllr < /min{d(sa + sg), 2HIE — T2,
= \/mln{d(SA + SB)7 dQ}IHf - 1_‘|||oo’

which gives the assertion. |

This lemma gives a bound on the discrepancy between
Amin(I') and Apin(T) as follows.

Lemma 3 Under the conditions assumed in Lemma
1, we have the following bound with probability greater
than 1 —n,

‘)‘min (f) — Amin (F)l
\/dmin{sA + sp,d}{2log(2d/n) + log4}
<Ci .

n

(Proof of Lemma 3) For a real symmetric matrix
Q € R¥™4 let \;(Q) be the i-th smallest eigenvalue
(AM(Q) < X2(Q) < -+ < Xg(Q)). For all real symmet-
ric matrices Q, R € R¥?, the well-known Hoffman
and Wielandt inequality (see Theorem 6.3.5 and its
corollaries in Horn et al. [25]) yields

d

D> (@) = Mi(R)? < [|Q — Rl|r.

i=1

Then applying Lemma 2 to the right-hand side of
this inequality and noticing the relation |Amin(Q) —

Amin(R)| < \/Z?;l(/\i(Q) —Xi(R))2, we obtain the

assertion. O

7.2 Proof of Theorem 1

rFhe theorem is true for k = dand k = 0 since T =
7 =1{1,2,...,d} and T = Z = () hold, respectively.
Therefore, we only need to consider the case when 1 <
k<d-1.

Let € := [|[I' =T, and f(K,K's M) =3 jexr Mij
for a matrix M. We also set the index sets P, Q, and
RasP:=7T\Z, Q:=7\Z, and R := ZNZ. We now
have

= f(P,P;1) + 2f(P,R;T) — £(Q, Q;T) — 2f(Q,R; T)
< f(P,P;T) +2f(P,R;T) — f(Q, Q;T) — 2f(Q,R; T)

+e(|P? + Q7 +2P||R| +2|Q||R)
< F(T,TT) - f(Z,I;T) + e(k* + d°),

where, in the first inequality, we used the fact that
|f(KC, K T)—F(K,K';T)| < €|K||K’|, and in the second
inequality, we used |P|* +|Q|* + 2|P||R| + 2|Q||R| <
(IPI+ IRD* + (1Q + [R)? = [Z + [T < k* + d*.
Since this inequality is valid for all Z # Z, we have

F(Z,Z;T) — f(Z,Z;T) < e(k* + d?) — h.

From the assumption that Z is unique, we have h > 0.
If € < h/(k® + d?), then the right hand side becomes
negative implying Z is the minimizer of (1), which
proves the claim. O

7.3 Proof of Theorem 2

The proof of the theorem immediately follows from the
next two lemmas:

Lemma 4 Let Au,zxz e RF*F gnd Au,sz S
RE=F)XE pe sub-matrices of Au indexed by T and
J. Suppose the following conditions hold for some
7,7 >0:

AL 71 > 71y, (5)
1+ 7

A gxzly > 1y . (6)

Then Iy = T.

Lemma 5 Suppose the conditions in Theorem 2 hold
true. Then there exists 7,7 > 0 that satisfy the con-
ditions (5) and (6).

(Proof of Lemma 4) Since the problem (3) is a convex
quadratic programming with a positive-definite matrix

Ay, the KKT conditions given here are both necessary
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and sufficient for the optimality of the solution:

Aus— ¢ —ilg =0y, (7)
5,¢ >0y, (8)

§©¢ =04 9)
176-1=0, (10)

where f and 7 are the dual parameters, and ® denotes
the Hadamard product.

Here, let t7, t7, £z, and €7 be sub-vectors of ¢, & € R?
indexed by Z and J. We define vectors ¢ and §
by tz = A;}l'xl']-]ﬂ ty = 04—, &2 = O, &y =
Au)szﬁ;}zlek — 14_;. We also define a scalar
by v = 1/1,1—A;,1IX11;€. We show that setting § < ¢,
¢ « ~¢, and i « ~ satisfies the conditions (7)-(10).
From the definitions of ¢, €, and , the conditions (7),
(9), and (10) are obvious, and there remains only the
condition (8) to be verified. The condition § > 04 is
guaranteed from the condition (5). By combining (5)
and (6), we also have

€7 >TA, gxzll — g > 7' 1q_p > 0g_y,

which guarantees 5 > 04. This result indicates the
vector 8§ defined here is the optimal solution to the
problem (3) with Zy = Z, which completes the proof.
O

(Proof of Lemma 5) Let ¢ := [|A, — A,]|...
Bs < 1/2 for any § > 0, we have € < p/2d.

Since

We first consider the condition (5). We note that,
from Assumption 1, I'zxz = 0j7)x |z holds and thus

A, 1xz = ply. Hence, A, 747 can be expressed as

A, 1x1 = plp + E with ||E|| < e. From Ravikumar
et al. [10, pp. 972], we have

1 1 1
(ulr + E) 'y = —1p — 5 E1, + — E*J1y,
I I I

where J = Z:ZO(—l)m(lflE)m- From [|E]|,, <
e, we have [E?|x,c0c < d?¢? and |[J|ooo <
Yoo ||M_1E||gé,oo < > _o(ptde)™ < 2 where we
used € < pu/2d for the last inequality. Hence, we have

IE2 71kl < 1B Toeroo < 1E? foorooll T oo oo < 2%€2.

Thus, we can conclude

where (-); denotes the ith entry of the vector in the
parenthesis. In addition, the right hand side of this
inequality becomes positive when e < 11/2d, which is
assured by the assumption. This indicates that we can

choose 7 = 1/p — de/pu? — 2d?€? /ui® and the condition
(5) holds.

We now turn to the condition (6). We have

(Apgxzlr)i > (Augxzle)i — ke > (1 +0)p — ke,

from the assumption in Theorem 2, and we can choose
7" as 7" = 7{(1 + §)u — ke} — 1. The condition 7/ > 0
is assured when

k d d? k
7 =§——e— <e+2262> (1+5e>
[ T [

d &,
> 65— (24 06)—c—2(1406) e >0,
o o

which is guaranteed by the assumption € < Bsu/d,
and therefore the condition (6) holds. O

7.4 Proof of Theorem 3

From Lemma 2, we have [T — T[] < h/(k* + d?)
when 7 > 4d exp{—h?n/2C%?(k? + d?)?}, which proves
the claim. O

7.5 Proof of Theorem 4

From Lemmas 2 and 3, with probability greater than
1 —n, we have

A, = Aullloe < T = Tllog + Pmin(T) = Amin(T)]
< (1 + \/dmin{sA + sB,d})

" \/2 log(2d/n) + log 4
n

\/2 log(2d/n) + log 4
= 02 )

n

where Cy := C4 (1 + \/dmin{sA + sB,d}).

From Lemma 2, we have || A, — A,||., < Bsu/d when
n > 4d exp{—B3Zu*n/2C3d*}, which proves the claim.
(Il
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