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1 Derivatives of Quantile Functions

One definition of the quantile function is as the inverse of the cumulative distribution function (CDF)
Qk(βk, λ) = q(βk < βk). Writing down the definition of an inverse function and Differentiating
both sides of this definition shows that

Rk(Qk(βk, λ), λ) = βk
∂Rk

∂uk
|Qk(βk,λ),λ

∂Qk

∂λ |βk,λ + ∂Rk

∂λ |Qk(βk,λ),λ = 0 (1)
∂Rk

∂λ |Qk(βk,λ),λ = −(∂Qk

∂βk
|βk,λ)−1 ∂Qk

∂λ |βk,λ = −q(βk)−1 ∂Qk

∂λ |βk,λ,

where we use the identities that the derivative of a function’s inverse is one over the derivative of that
function and that the derivative of a CDF with respect to the random variable is the corresponding
probability distribution function (PDF). The derivative of Qk with respect to λk can be obtained
numerically using finite differences or automatic differentiation. (The same is true of Rk, but CDFs
are often much cheaper to compute than quantile functions.) For multivariate distributions defined
as in equation 7 (main text) we can compute ∂R

∂λ as

∂R
∂λ |u,λ = ∂T

∂R̂
|R̂(u,λ)

∂R̂
∂λ |u,λ; ∂R̂k

∂λ = −q̂k(R̂(uk, λ))−1 ∂Q̂k

∂λ , (2)

where q̂k is the PDF of the kth random variable obtained via the kth univariate quantile function R̂k
and Q̂k is the CDF that is the inverse of R̂k.

2 SSVI for Latent Dirichlet Allocation

In this section we demonstrate how to use SSVI to do approximate posterior inference on the popular
topic model latent Dirichlet allocation (LDA) (Blei et al., 2003). LDA is a generative model of text
that assumes that the words in a corpus of documents are generated according to the process

βk ∼ Dirichlet(η, . . . , η); θd ∼ Dirichlet(α, . . . , α);

zd,n ∼ Multinomial(θd); wd,n ∼ Multinomial(βzd,n),
(3)

where wn,m ∈ {1, . . . , V } is the index into the vocabulary of the mth word in the nth document,
zn,m ∈ {1, . . . ,K} indicates which topic is responsible for wn,m, θn,k is the prior probability of a
word in document n coming from topic k, and βk,v is the probability of drawing the word index v
from topic k. For simplicity we use symmetric Dirichlet priors.

LDA fits into the SSVI framework; the random variables β, θ, z, and w can be broken into global
variables (β) and N sets of local variables (θn, zn, and wn) that are conditionally independent given
the global variables, and the posterior over β given w, z, and θ is in the same tractable exponential
family as the prior (i.e., a Dirichlet):

p(β|w, z, θ) =
∏
k Dirichlet(βk; η + ck); ck,v ≡

∑
n,m I[wn,m = v]I[zn,m = k], (4)
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Figure 1: Predictive accuracy for various algorithms as a function of wallclock time when fitting
LDA to 3.8 million Wikipedia articles. Each algorithm ran two sweeps over the dataset. Solid lines
show average performance across five runs, dotted lines are drawn one standard deviation above
and below the mean. The algorithms used to update the global parameters and local conditional
distributions vary horizontally and vertically, respectively.

where ck,v counts the number of times that the word v is associated with topic k. Our goal will be
to approximate the marginal posterior p(β|w) ∝

∫
θ,z
p(w, z, θ, β)dzdθ with a product of Dirichlet

distributions q(β) =
∏
k Dirichlet(βk;λk). Algorithm 1 requires that we be able to sample from

qβ by inversion, but the Dirichlet distribution lacks a well-defined quantile function. However, a
Dirichlet random variable can be constructed from a set of independent gamma random variables:

βk ∼ Dirichlet(λk,1, . . . , λk,v)⇔ β′k,v ∼ Gamma(λk,v, 1);βk,v =
β′
k,v∑
i β

′
k,i
. (5)

So we could sample from qβ by sampling KV independent uniform random variables uk,v , passing
each through the gamma quantile function R̂ to get β′k,v ≡ R̂(uk,v, λk,v, 1), and letting βk,v =

β′k,v/
∑
i β
′
k,i so that we have R(uk,v, λk,v) ≡ R̂(uk,v, λk,v, 1)/

∑
i R̂(uk,i, λk,i, 1).

To compute the update for λ in algorithm 1 we need to know
( ∂2A
∂λ∂λ> )−1( ∂t∂β |β(t)

∂R
∂λ |u(t),λ(t))>ηn(wn(t) , z(t)). Since each βk is independent of all of the

other topic vectors under q, we need only consider a single βk at a time. The sufficient statistic
vector for the Dirichlet distribution is t(βk) = log βk, so we have

∂t
∂βk
|
β
(t)
k

∂R
∂λk
|
u
(t)
k ,λ

(t)
k

= diag(βk)−1(
∑
v β
′
k,v)
−1(I − β1>) ∂R̂∂λk

|uk,λk
. (6)

∂R̂
∂λk

can be evaluated using equation 1. ηn(w, z) is simply a matrix counting how many times
each unique word is associated with each topic: ηn(w, z)k,v =

∑
m I[wm = v]I[zm = k]. Fi-

nally, the log-normalizer for the Dirichlet is A(λk) = − log Γ(
∑
v λk,v) +

∑
v log Γ(λk,v), and

the Fisher matrix ∂2A
∂λk∂λ>

k

is a diagonal matrix plus a rank-one matrix: ∂2A
∂λk∂λ>

k

= diag(Ψ′(λk)) −
Ψ′(

∑
v λk,v)11>, where 1 is a column vector of ones and Ψ′ is the second derivative of the log-

arithm of the gamma function. The product of the inverse of the Fisher matrix and a vector can
therefore be computed in O(V ) time using the matrix inversion lemma (Minka, 2000).
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We now have everything we need to apply algorithm 1 to LDA.

3 Full Matrix of LDA Results

We tested various combinations of E-steps and M-steps for latent Dirichlet allocation with 100
topics on the 3,800,000-document Wikipedia dataset from (Hoffman et al., 2013). To update the
global variational distributions, we used traditional mean-field updates, SSVI updates, and SSVI-A
updates. For the local variational distributions, we used the traditional mean-field approximation
(Blei et al., 2003), the CVB0 algorithm of Asuncion et al. (2009), and Gibbs sampling as in (Mimno
et al., 2012). We also experimented with various settings of the hyperparameters α and η, which
mean-field variational inference for LDA is known to be quite sensitive to (Asuncion et al., 2009).
For all algorithms we used mini-batches of 1000 documents and a step size schedule ρ(t) = t−0.75.

Figure 1 summarizes the results for α = 0.1, which yielded the best results for all variational al-
gorithms. Using traditional mean-field inference (bottom row) to approximate p(zn|yn, β) degrades
performance, but the CVB0 approximation (top row) works almost as well as Gibbs sampling (mid-
dle row) for the two SSVI algorithms. CVB0 is outperformed by Gibbs when using the mean-field
M-step. The two SSVI algorithms perform comparably well, but the mean-field M-step (left column)
is very sensitive to hyperparameter selection compared to SSVI and SSVI-A.
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