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Abstract

The dueling bandit problem is a variation of
the classical multi-armed bandit in which the
allowable actions are noisy comparisons be-
tween pairs of arms. This paper focuses on
a new approach for finding the “best” arm
according to the Borda criterion using noisy
comparisons. We prove that in the absence
of structural assumptions, the sample com-
plexity of this problem is proportional to the
sum of the inverse squared gaps between the
Borda scores of each suboptimal arm and the
best arm. We explore this dependence fur-
ther and consider structural constraints on
the pairwise comparison matrix (a partic-
ular form of sparsity natural to this prob-
lem) that can significantly reduce the sample
complexity. This motivates a new algorithm
called Successive Elimination with Compar-
ison Sparsity (SECS) that exploits sparsity
to find the Borda winner using fewer samples
than standard algorithms. We also evaluate
the new algorithm experimentally with syn-
thetic and real data. The results show that
the sparsity model and the new algorithm can
provide significant improvements over stan-
dard approaches.

1 INTRODUCTION

The dueling bandit is a variation of the classic multi-
armed bandit problem in which the actions are noisy
comparisons between arms, rather than observations
from the arms themselves (Yue et al., 2012). Each
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action provides 1 bit indicating which of two arms is
probably better. For example, the arms could repre-
sent objects and the bits could be responses from peo-
ple asked to compare pairs of objects. In this paper,
we focus on the pure exploration problem of finding
the “best” arm from noisy pairwise comparisons. This
problem is different from the explore-exploit problem
studied in Yue et al. (2012). There can be different
notions of “best” in the dueling framework, including
the Condorcet and Borda criteria (defined below).

Most of the dueling-bandit algorithms are primarily
concerned with finding the Condorcet winner (the arm
that is probably as good or better than every other
arm). There are two drawbacks to this. First, a
Condorcet winner does not exist unless the underlying
probability matrix governing the outcomes of pairwise
comparisons satisfies certain restrictions. These re-
strictions may not be met in many situations. In fact,
we show that a Condorcet winner doesn’t exist in our
experiment with real data presented below. Second,
the best known upper bounds on the sample complex-
ity of finding the Condorcet winner (assuming it exists)
grow quadratically (at least) with the number of arms.
This makes Condorcet algorithms impractical for large
numbers of arms.

To address these drawbacks, we consider the Borda
criterion instead. The Borda score of an arm is
the probability that the arm is preferred to an-
other arm chosen uniformly at random. A Borda
winner (arm with the largest Borda score) always
exists for every possible probability matrix. We
assume throughout this paper that there exists a
unique Borda winner. Finding the Borda winner with
probability at least 1 − δ can be reduced to solv-
ing an instance of the standard multi-armed ban-
dit problem resulting in a sufficient sample complex-
ity of O

(∑
i>1(s1 − si)−2 log

(
log((s1 − si)−2)/δ

))
,

where si denotes Borda score of arm i and s1 > s2 >
· · · > sn are the scores in descending order (Karnin
et al., 2013; Jamieson et al., 2014). In favorable cases,
for instance, if s1 − si ≥ c, a constant for all i > 1,
then this sample complexity is linear in n as opposed
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to the quadratic sample complexity necessary to find
the Condorcet winner. In this paper we show that
this upper bound is essentially tight, thereby appar-
ently “closing” the Borda winner identification prob-
lem. However, in this paper we consider a specific
type of structure that is motivated by its existence in
real datasets that complicates this apparently simple
story. In particular, we show that the reduction to
a standard multi-armed bandit problem can result in
very bad performance when compared to an algorithm
that exploits this observed structure.

We explore the sample complexity dependence in more
detail and consider structural constraints on the ma-
trix (a particular form of sparsity natural to this prob-
lem) that can significantly reduce the sample complex-
ity. The sparsity model captures the commonly ob-
served behavior in elections in which there are a small
set of “top” candidates that are competing to be the
winner but only differ on a small number of attributes,
while a large set of “others” are mostly irrelevant as far
as predicting the winner is concerned in the sense that
they would always lose in a pairwise matchup against
one of the “top” candidates.

This motivates a new algorithm called Successive
Elimination with Comparison Sparsity (SECS). SECS
takes advantage of this structure by determining which
of two arms is better on the basis of their perfor-
mance with respect to a sparse set of “comparison”
arms. Experimental results with real data demon-
strate the practicality of the sparsity model and show
that SECS can provide significant improvements over
standard approaches.

The main contributions of this paper are as follows:

• A distribution dependent lower bound for the
sample complexity of identifying the Borda win-
ner that essentially shows that the Borda reduc-
tion to the standard multi-armed bandit problem
(explained in detail later) is essentially optimal up
to logarithmic factors, given no prior structural
information.

• A new structural assumption for the n-armed du-
eling bandits problem in which the top arms can
be distinguished by duels with a sparse set of other
arms.

• An algorithm for the dueling bandits problem un-
der this assumption, with theoretical performance
guarantees showing significant sample complex-
ity improvements compared to naive reductions
to standard multi-armed bandit algorithms.

• Experimental results, based on real-world appli-
cations, demonstrating the superior performance
of our algorithm compared to existing methods.

2 PROBLEM SETUP

The n-armed dueling bandits problem (Yue et al., 2012)
is a modification of the n-armed bandit problem, where
instead of pulling a single arm, we choose a pair of arms
(i, j) to duel, and receive one bit indicating which of
the two is better or preferred, with the probability of
i winning the duel is equal to a constant pi,j and that
of j equal to pj,i = 1 − pi,j . We define the probabilty
matrix P = [pi,j ], whose (i, j)th entry is pi,j .

Almost all existing n-armed dueling bandit methods
(Yue et al., 2012; Yue and Joachims, 2011; Zoghi et al.,
2013; Urvoy et al., 2013; Ailon et al., 2014) focus on
the explore-exploit problem and furthermore make a
variety of assumptions on the preference matrix P . In
particular, those works assume the existence of a Con-
dorcet winner: an arm, c, such that pc,j > 1

2 for all
j 6= c. The Borda winner is an arm b that satisfies∑
j 6=b pb,j ≥

∑
j 6=i pi,j for all i = 1, · · · , n. In other

words, the Borda winner is the arm with the highest
average probability of winning against other arms, or
said another way, the arm that has the highest proba-
bility of winning against an arm selected uniformly at
random from the remaining arms. The Condorcet win-
ner has been given more attention than the Borda, the
reasons being: 1) Given a choice between the Borda
and the Condorcet winner, the latter is preferred in a
direct comparison between the two. 2) As pointed out
in Urvoy et al. (2013); Zoghi et al. (2013) the Borda
winner can be found by reducing the dueling bandit
problem to a standard multi-armed bandit problem as
follows.

Definition 1. Borda Reduction. The action of pulling
arm i with reward 1

n−1

∑
j 6=i pi,j can be simulated by

dueling arm i with another arm chosen uniformly at
random.

However, we feel that the Borda problem has received
far less attention than it deserves. Firstly, the Borda
winner always exists, the Condorcet does not. For
example, a Condorcet winner does not exist in the
MSLR-WEB10k datasets considered in this paper. As-
suming the existence of a Condorcet winner severely
restricts the class of allowed P matrices: only those P
matrices are allowed which have a row with all entries
≥ 1

2 . In fact, Yue et al. (2012); Yue and Joachims
(2011) require that the comparison probabilities pi,j
satisfy additional transitivity conditions that are often
violated in practice. Secondly, there are many cases
where the Borda winner and the Condorcet winner are
distinct, and the Borda winner would be preferred in
many cases. Lets assume that arm c is the Condorcet
winner, with pc,i = 0.51 for i 6= c. Let arm b be the
Borda winner with pb,i = 1 for i 6= b, c, and pb,c = 0.49.
It is reasonable that arm c is only marginally better
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than the other arms, while arm b is significantly pre-
ferred over all other arms except against arm c where
it is marginally rejected. In this example - chosen
extreme to highlight the pervasiveness of situations
where the Borda arm is preferred - it is clear that arm
b should be the winner: think of the arms represent-
ing objects being contested such as t-shirt designs, and
the P matrix is generated by showing users a pair of
items and asking them to choose the better among the
two. This example also shows that the Borda winner is
more robust to estimation errors in the P matrix (for
instance, when the P matrix is estimated by asking a
small sample of the entire population to vote among
pairwise choices). The Condorcet winner is sensitive
to entries in the Condorcet arm’s row that are close to
1
2 , which is not the case for the Borda winner. Finally,
there are important cases (explained next) where the
winner can be found in fewer number of duels than
would be required by Borda reduction.

3 MOTIVATION

We define the Borda score of an arm i to be the prob-
ability of the ith arm winning a duel with another arm
chosen uniformly at random:

si = 1
n−1

∑
j 6=i

pi,j .

Without loss of generality, we assume that s1 > s2 ≥
· · · ≥ sn but that this ordering is unknown to the
algorithm. As mentioned above, if the Borda re-
duction is used then the dueling bandit problem be-
comes a regular multi-armed bandit problem and lower
bounds for the multi-armed bandit problem (Kauf-
mann et al., 2014; Mannor and Tsitsiklis, 2004) sug-
gest that the number of samples required should scale
like Ω

(∑
i6=1

1
(s1−si)2 log 1

δ

)
, which depends only on

the Borda scores, and not the individual entries of the
preference matrix. This would imply that any pref-
erence matrix P with Borda scores si is just as hard
as another matrix P ′ with Borda scores s′i as long as
(s1 − si) = (s′1 − s′i). Of course, this lower bound
only applies to algorithms using the Borda reduction,
and not any algorithm for identifying the Borda win-
ner that may, for instance, collect the duels in a more
deliberate way. Next we consider specific P matrices
that exhibit two very different kinds of structure but
have the same differences in Borda scores which moti-
vates the structure considered in this paper.

3.1 Preference Matrix P known up to
permutation of indices

Shown below in equations (1) and (2) are two pref-
erence matrices P1 and P2 indexed by the number of

arms n that essentially have the same Borda gaps –
(s1−si) is either like ε

n or approximately 1/4 – but we
will argue that P1 is much “easier” than P2 in a certain
sense (assume ε is an unknown constant, like ε = 1/5).
Specifically, if given P1 and P2 up to a permutation of
the labels of their indices (i.e. given ΛP1ΛT for some
unknown permutation matrix Λ), how many compar-
isons does it take to find the Borda winner in each case
for different values of n?

Recall from above that if we ignore the fact that we
know the matrices up to a permutation and use the
Borda reduction technique, we can use a multi-armed
bandit algorithm (e.g. Karnin et al. (2013); Jamieson
et al. (2014)) and find the best arm for both P1 and
P2 using O

(
n2 log(log(n))

)
samples. We next argue

that given P1 and P2 up to a permutation, there ex-
ists an algorithm that can identify the Borda winner
of P1 with just O(n log(n)) samples while the identi-
fication of the Borda winner for P2 requires at least
Ω(n2) samples. This shows that given the probability
matrices up to a permutation, the sample complexity
of identifying the Borda winner does not rely just on
the Borda differences, but on the particular structure
of the probability matrix.

Consider P1. We claim that there exists a procedure
that exploits the structure of the matrix to find the
best arm of P1 using just O(n log(n)) samples. Here’s
how: For each arm, duel it with 32 log n

δ other arms
chosen uniformly at random. By Hoeffding’s inequal-
ity, with probability at least 1 − δ our empirical esti-
mate of the Borda score will be within 1/8 of its true
value for all n arms and we can remove the bottom
(n− 2) arms due to the fact that their Borda gaps ex-
ceed 1/4. Having reduced the possible winners to just
two arms, we can identify which rows in the matrix
they correspond to and duel each of these two arms
against all of the remaining (n− 2) arms O( 1

ε2 ) times
to find out which one has the larger Borda score us-
ing just O

(
2(n−2)
ε2

)
samples, giving an overall sample

complexity of O (n log n). We have improved the sam-
ple complexity from O(n2 log(log(n))) using the Borda
reduction to just O(n log(n)).

Consider P2. We claim that given this matrix up to a
permutation of its indices, no algorithm can determine
the winner of P2 without requesting Ω(n2) samples. To
see this, suppose an oracle has made the problem easier
by reducing the problem down to just the top two rows
of the P2 matrix. This is a binary hypothesis test for
which Fano’s inequality implies that to guarantee that
the probability of error is not above some constant
level, the number of samples to identify the Borda
winner must scale like minj∈[n]\{1,2}

1
KL(p1,j ,p2,j)

≥
minj∈[n]\{1,2}

c
(p1,j−p2,j)2 = Ω((n/ε)2) where the in-
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P1 =

1 2 3 · · · n si s1 − si



1 1
2

1
2

3
4 · · · 3

4 + ε
1
2 +ε

n−1 + 3
4
n−2
n−1 0

2 1
2

1
2

3
4 · · · 3

4

1
2

n−1 + 3
4
n−2
n−1

ε
n−1

3 1
4

1
4

1
2 · · · 1

2
1
2
n−2
n−1

1
2 +ε

n−1 + 1
4
n−2
n−1

...
...

...
...

. . .
...

...
...

n 1
4 − ε

1
4

1
2 · · · 1

2 − ε
n−1 + 1

2
n−2
n−1

1
2 +2ε

n−1 + 1
4
n−2
n−1

(1)

P2 =

1 2 3 · · · n si s1 − si



1 1
2

1
2 + ε

n−1
3
4 + ε

n−1 · · · 3
4 + ε

n−1

1
2 +ε

n−1 + 3
4
n−2
n−1 0

2 1
2 −

ε
n−1

1
2

3
4 · · · 3

4

1
2−

ε
n−1

n−1 + 3
4
n−2
n−1

ε
n−1 + ε

(n−1)2

3 1
4 −

ε
n−1

1
4

1
2 · · · 1

2

− ε
n−1

n−1 + 1
2
n−2
n−1

1
2 +ε+ ε

n−1

n−1 + 1
4
n−2
n−1

...
...

...
...

. . .
...

...
...

n 1
4 −

ε
n−1

1
4

1
2 · · · 1

2

− ε
n−1

n−1 + 1
2
n−2
n−1

1
2 +ε+ ε

n−1

n−1 + 1
4
n−2
n−1

(2)

equality holds for some c by Lemma 2 in the supple-
mentary materials.

We just argued that the structure of the P matrix, and
not just the Borda gaps, can dramatically influence the
sample complexity of finding the Borda winner. This
leads us to ask the question: if we don’t know anything
about the P matrix beforehand (i.e. do not know the
matrix up to a permutation of its indices), can we learn
and exploit this kind of structural information in an
online fashion and improve over the Borda reduction
scheme? The answer is no, as we argue next.

3.2 Distribution-Dependent Lower Bound

We prove a distribution-dependent lower bound on the
complexity of finding the best Borda arm for a general
P matrix. This is a result important in its own right
as it shows that the lower bound obtained for an algo-
rithm using the Borda reduction is tight, that is, this
result implies that barring any structural assumptions,
the Borda reduction is optimal.

Definition 2. δ-PAC dueling bandits algorithm: A
δ-PAC dueling bandits algorithm is an algorithm that
selects duels between arms and based on the outcomes
finds the Borda winner with probability greater than or
equal to 1− δ.

The techniques used to prove the following result are
inspired from Lemma 1 in Kaufmann et al. (2014) and
Theorem 1 in Mannor and Tsitsiklis (2004).

Theorem 1. (Distribution-Dependent Lower Bound)
Consider a matrix P such that 3

8 ≤ pi,j ≤
5
8 ,∀i, j ∈ [n]

with n ≥ 4. Let τ be the total number of duels. Then
for δ ≤ 0.15, any δ-PAC dueling bandits algorithm to
find the Borda winner has

EP [τ ] ≥ C log
1

2δ

∑
i 6=1

1

(s1 − si)2

where si = 1
n−1

∑
j 6=i pi,j denotes the Borda score of

arm i. Furthermore, C can be chosen to be 1/90.

The proof can be found in the supplementary material.

In particular, this implies that for the preference ma-
trix P1 in (1), any algorithm that makes no assumption
about the structure of the P matrix requires Ω

(
n2
)

samples. Next we argue that the particular structure
found in P1 is an extreme case of a more general struc-
tural phenomenon found in real datasets and that it is
a natural structure to assume and design algorithms
to exploit.
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3.3 Motivation from Real-World Data

The matrices P1 and P2 above illustrate a key struc-
tural aspect that can make it easier to find the Borda
winner. If the arms with the top Borda scores are dis-
tinguished by duels with a small subset of the arms (as
exemplified in P1), then finding the Borda winner may
be easier than in the general case. Before formalizing
a model for this sort of structure, let us look at two
real-world datasets, which motivate the model.

We consider the Microsoft Learning to Rank web
search datasets MSLR-WEB10k (Qin et al., 2010) and
MQ2008-list (Qin and Liu, 2013) (see the experimen-
tal section for a descrptions). Each dataset is used to
construct a corresponding probability matrix P . We
use these datasets to test the hypothesis that com-
parisons with a small subset of the arms may suffice
to determine which of two arms has a greater Borda
score.

Specifically, we will consider the Borda score of the
best arm (arm 1) and every other arm. For any other
arm i > 1 and any positive integer k ∈ [n − 2], let
Ωi,k be a set of cardinality k containing the indices
j ∈ [n] \ {1, i} with the k largest discrepancies |p1,j −
pi,j |. These are the duels that, individually, display
the greatest differences between arm 1 and i. For each
k, define αi(k) = 2(p1,i − 1

2 ) +
∑
j∈Ωi,k

(p1,j − pi,j).
If the hypothesis holds, then the duels with a small
number of (appropriately chosen) arms should indicate
that arm 1 is better than arm i. In other words, αi(k)
should become and stay positive as soon as k reaches
a relatively small value. Plots of these αi curves for
two datasets are presented in Figures 1, and indicate
that the Borda winner is apparent for small k. This
behavior is explained by the fact that the individual
discrepancies |p1,j − pi,j |, decay quickly when ordered
from largest to smallest, as shown in Figure 2.

The take away message is that it is unnecessary to es-
timate the difference or gap between the Borda scores
of two arms. It suffices to compute the partial Borda
gap based on duels with a small subset of the arms.
An appropriately chosen subset of the duels will cor-
rectly indicate which arm has a larger Borda score.
The algorithm proposed in the next section automat-
ically exploits this structure.

4 ALGORITHM AND ANALYSIS

In this section we propose a new algorithm that ex-
ploits the kind of structure just described above and
prove a sample complexity bound. The algorithm is
inspired by the Successive Elimination (SE) algorithm
of Even-Dar et al. (2006) for standard multi-armed
bandit problems. Essentially, the proposed algorithm

Figure 1: Plots of αi(k) = 2(p1,i− 1
2 ) +

∑
j∈Ωi,k

(p1,j−
p1,j) vs. k for 30 randomly chosen arms (for visualiza-
tion purposes); MSLR-WEB10k on left, MQ2008-list
on right. The curves are strictly positive after a small
number of duels.

Figure 2: Plots of discrepancies |p1,j−pi,j | in descend-
ing order for 30 randomly chosen arms (for visualiza-
tion purposes); MSLR-WEB10k on left, MQ2008-list
on right.

below implements SE with the Borda reduction and
an additional elimination criterion that exploits spar-
sity (condition 1 in the algorithm). We call the algo-
rithm Successive Elimination with Comparison Spar-
sity (SECS).

We will use 1E to denote the indicator of the event
E and [n] = {1, 2, . . . , n}. The algorithm maintains
an active set of arms At such that if j /∈ At then the
algorithm has concluded that arm j is not the Borda
winner. At each time t, the algorithm chooses an arm
It uniformly at random from [n] and compares it with
all the arms in At. Note that Ak ⊆ A` for all k ≥ `.
Let Z(t)

i,j ∈ {0, 1} be independent Bernoulli random
variables with E[Z

(t)
i,j ] = pi,j , each denoting the out-

come of “dueling” i, j ∈ [n] at time t (define Z(t)
i,j = 0

for i = j). For any t ≥ 1, i ∈ [n], and j ∈ At define

p̂j,i,t =
n

t

t∑
`=1

Z
(`)
j,I`

1I`=i

so that E [p̂j,i,t] = pj,i. Furthermore, for any t ≥ 1,
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Algorithm 1: Sparse Borda Algorithm
Input sparsity level k ∈ [n− 2], time gate T0 ≥ 0
Start with active set A1 = {1, 2, · · · , n}, t = 1

Let Ct =
√

2 log(4n2t2/δ)
t/n + 2 log(4n2t2/δ)

3t/n

while |At| > 1 do
Choose It uniformly at random [n].
for j ∈ At do

Observe Z(t)
j,It

and update p̂j,It,t = n
t

∑t
`=1 Z

(`)
j,I`

1I`=It , ŝj,t = n/(n−1)
t

∑t
`=1 Z

(`)
j,I`

.
end

At+1 = At \
{
j ∈ At : ∃i ∈ At with

1) 1{t>T0} ∆̂i,j,t

(
arg maxΩ⊂[n]:|Ω|=k ∇̂i,j,t(Ω)

)
> 6(k + 1)Ct

OR 2) ŝi,t > ŝj,t + n
n−1

√
2 log(4nt2/δ)

t

}
t← t+ 1

end

j ∈ At define

ŝj,t =
n/(n− 1)

t

t∑
`=1

Z
(`)
j,I`

so that E [ŝj,t] = sj . For any Ω ⊂ [n] and i, j ∈ [n]
define

∆i,j(Ω) = 2(pi,j − 1
2 ) +

∑
ω∈Ω:ω 6=i 6=j

(pi,ω − pj,ω)

∆̂i,j,t(Ω) = 2(p̂i,j,t − 1
2 ) +

∑
ω∈Ω:ω 6=i 6=j

(p̂i,ω,t − p̂j,ω,t)

∇i,j(Ω) =
∑

ω∈Ω:ω 6=i 6=j

|pi,ω − pj,ω|

∇̂i,j(Ω) =
∑

ω∈Ω:ω 6=i 6=j

|p̂i,ω,t − p̂j,ω,t| .

The quantity ∆i,j(Ω) is the partial gap between the
Borda scores for i and j, based on only the comparisons
with the arms in Ω. Note that 1

n−1∆i,j([n]) = si −
sj . The quantity arg maxΩ⊂[n]:|Ω|=k∇i,j(Ω) selects the
indices ω yielding the largest discrepancies |pi,ω−pj,ω|.
∆̂ and ∇̂ are empirical analogs of these quantities.

Definition 3. For any i ∈ [n] \ 1 we say the set
{(p1,ω − pi,ω)}ω 6=16=i is (γ, k)-approximately sparse if

max
Ω∈[n]:|Ω|≤k

∇1,i(Ω \ Ωi) ≤ γ∆1,i(Ωi)

where Ωi = arg max
Ω⊂[n]:|Ω|=k

∇1,i(Ω).

Instead of the strong assumption that the set {(p1,ω −
pi,ω)}ω 6=1 6=i has no more than k non-zero coefficients,
the above definition relaxes this idea and just assumes
that the absolute value of the coefficients outside the

largest k are small relative to the partial Borda gap.
This definition is inspired by the structure described
in previous sections and will allow us to find the Borda
winner faster.

The parameter T0 is specified (see Theorem 2) to guar-
antee that all arms with sufficiently large gaps s1 − si
are eliminated by time step T0 (condition 2). Once
t > T0, condition 1 also becomes active and the algo-
rithm starts removing arms with large partial Borda
gaps, exploiting the assumption that the top arms can
be distinguished by comparisons with a sparse set of
other arms. The algorithm terminates when only one
arm remains.
Theorem 2. Let k ≥ 0 and T0 > 0 be inputs
to the above algorithm and let R be the solution to
32
R2 log

(
32n/δ
R2

)
= T0. If for all i ∈ [n] \ 1, at least one

of the following holds:

1. {(p1,ω − pi,ω)}ω 6=16=i is ( 1
3 , k)-approximately

sparse,

2. (s1 − si) ≥ R,

then with probability at least 1− 3δ, the algorithm re-
turns the best arm after no more than

c
∑
j>1

min
{

max
{

1
R2 log

(
n/δ
R2

)
, (k+1)2/n

∆2
j

log
(
n/δ
∆2
j

)}
,

1
∆2
j

log
(
n/δ
∆2
j

)}
samples where ∆j := s1 − sj and c > 0 is an absolute
constant.

The second argument of the min is precisely the re-
sult one would obtain by running Successive Elimina-
tion with the Borda reduction (Even-Dar et al., 2006).
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Thus, under the stated assumptions, the algorithm
never does worse than the Borda reduction scheme.
The first argument of the min indicates the poten-
tial improvement gained by exploiting the sparsity as-
sumption. The first argument of the max is the result
of throwing out the arms with large Borda differences
and the second argument is the result of throwing out
arms where a partial Borda difference was observed to
be large.

To illustrate the potential improvements, consider the
P1 matrix discussed above, the theorem implies that
by setting T0 = 32

R2 log
(

32n/δ
R2

)
with R = 1/2+ε

n−1 +
1
4
n−2
n−1 ≈

1
4 and k = 1 we obtain a sample complexity of

O(ε−2n log(n)) for the proposed algorithm compared
to the standard Borda reduction sample complexity of
Ω(n2).

In practice it is difficult optimize the choice of T0 and
k, but motivated by the results shown in the experi-
ments section, we recommend setting T0 = 0 and k = 5
for typical problems.

5 EXPERIMENTS

The goal of this section is not to obtain the best
possible sample complexity results for the specified
datasets, but to show the relative performance gain
of exploiting structure using the proposed SECS algo-
rithm with respect to the Borda reduction. That is, we
just want to measure the effect of exploiting sparsity
while keeping all other parts of the algorithms con-
stant. Thus, the algorithm we compare to that uses the
simple Borda reduction is simply the SECS algorithm
described above but with T0 = ∞ so that the sparse
condition never becomes activated. Running the al-
gorithm in this way, it is very closely related to the
Successive Elimination algorithm of Even-Dar et al.
(2006). In what follows, our proposed algorithm will
be called SECS and the benchmark algorithm will be
denoted as just the Borda reduction (BR) algorithm.

We experiment on both simulated data and two real-
world datasets. During all experiments, both the BR
and SECS algorithms were run with δ = 0.1. For the
SECS algorithm we set T0 = 0 to enable condition 1
from the very beginning (recall for BR we set T0 =
∞). Also, while the algorithm has a constant factor
of 6 multiplying (k + 1)Ct, we feel that the analysis
that led to this constant is very loose so in practice
we recommend the use of a constant of 1/2 which was
used in our experiments. While the change of this
constant invalidates the guarantee of Theorem 2, we
note that in all of the experiments to be presented
here, neither algorithm ever failed to return the best
arm. This observation also suggests that the SECS

Figure 3: Comparison of the Borda reduction algo-
rithm and the proposed SECS algorithm ran on the
P1 matrix for different values of n. Plot is on log-
log scale so that the sample complexity grows like ns
where s is the slope of the line.

algorithm is robust to possible inconsistencies of the
model assumptions.

5.1 Synthetic Preference matrix

Both algorithms were tasked with finding the best arm
using the P1 matrix of (1) with ε = 1/5 for problem
sizes equal to n = 10, 20, 30, 40, 50, 60, 70, 80 arms. In-
specting the P1 matrix, we see that a value of k = 1 in
the SECS algorithm suffices so this is used for all prob-
lem sizes. The entries of the preference matrix Pi,j are
used to simulate comparisons between the respective
arms and each experiment was repeated 75 times.

Recall from Section 3 that any algorithm using the
Borda reduction on the P1 matrix has a sample com-
plexity of Ω(n2). Moreover, inspecting the proof of
Theorem 2 one concludes that the BR algorithm has a
sample complexity of O(n2 log(n)) for the P1 matrix.
On the other hand, Theorem 2 states that the SECS
algorithm should have a sample complexity no worse
than O(n log(n)) for the P1 matrix. Figure 3 plots
the sample complexities of SECS and BR on a log-log
plot. On this scale, to match our sample complexity
hypotheses, the slope of the BR line should be about
2 while the slope of the SECS line should be about 1,
which is exactly what we observe.

5.2 Web search data

We consider two web search data sets. The first is
the MSLR-WEB10k Microsoft Learning to Rank data
set (Qin et al., 2010) that is characterized by approx-
imately 30,000 search queries over a number of docu-
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ments from search results. The data also contains the
values of 136 features and corresponding user labelled
relevance factors with respect to each query-document
pair. We use the training set of Fold 1, which com-
prises of about 2,000 queries. The second data set is
the MQ2008-list from the Microsoft Learning to Rank
4.0 (MQ2008) data set (Qin and Liu, 2013). We use
the training set of Fold 1, which has about 550 queries.
Each query has a list of documents with 46 features
and corresponding user labelled relevance factors.

For each data set, we create a set of rankers, each cor-
responding to a feature from the feature list. The aim
of this task is be to determine the feature whose rank-
ing of query-document pairs is the most relevant. To
compare two rankers, we randomly choose a pair of
documents and compare their relevance rankings with
those of the features. Whenever a mismatch occurs
between the rankings returned by the two features,
the feature whose ranking matches that of the rele-
vance factors of the two documents “wins the duel”. If
both features rank the documents similarly, the duel is
deemed to have resulted in a tie and we flip a fair coin.
We run a Monte Carlo simulation on both data sets to
obtain a preference matrix P corresponding to their re-
spective feature sets. As with the previous setup, the
entries of the preference matrices ([P ]i,j = pi,j) are
used to simulate comparisons between the respective
arms and each experiment was repeated 75 times.

From the MSLR-WEB10k data set, a single arm was
removed for our experiments as its Borda score was
unreasonably close to the arm with the best Borda
score and behaved unlike any other arm in the dataset
with respect to its αi curves, confounding our model.
For these real datasets, we consider a range of differ-
ent k values for the SECS algorithm. As noted above,
while there is no guarantee that the SECS algorithm
will return the true Borda winner, in all of our trials
for all values of k reported we never observed a single
error. This is remarkable as it shows that the correct-
ness of the algorithm is insensitive to the value of k on
at least these two real datasets. The sample complex-
ities of BR and SECS on both datasets are reported
in Figure 4. We observe that the SECS algorithm, for
small values of k, can identify the Borda winner using
as few as half the number required using the Borda re-
duction method. As k grows, the performance of the
SECS algorithm becomes that of the BR algorithm, as
predicted by Theorem 2.

Lastly, the preference matrices of the two data sets
support the argument for finding the Borda winner
over the Condorcet winner. The MSLR-WEB10k data
set has no Condorcet winner arm. However, while the
MQ2008 data set has a Condorcet winner, when we
consider the Borda scores of the arms, it ranks second.

(a) MSLR-WEB10k (b) MQ2008

Figure 4: Comparison of an action elimination-style
algorithm using the Borda reduction (denoted as BR)
and the proposed SECS algorithm with different values
of k on the two datasets.
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