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1 Random regression forests for CMP

We wish to learn a mapping f from contextual messages c to the consensus message m from training data
{(cd,md)}d=1...D. This is challenging since the inputs and outputs of the regression problem are both messages (i.e.
distributions), and special care needs to be taken to account for this fact. We follow closely the methodology of Eslami
et al. (2014), who use random forests to predict outgoing messages from a factor given the incoming messages to it. For a
review of forests see (Criminisi and Shotton, 2013).

In approximate message passing (e.g. EP; Minka, 2001 and VMP; Winn and Bishop, 2005), messages can be represented
using only a few numbers, e.g. a Gaussian message can be represented by its natural parameters. We represent the contex-
tual messages c collectively, in two different ways: the first is a concatenation of the parameters of its constituent messages
which we call the ‘regression parameterization’ and denote by rc; and the second is a vector of features computed on the
set which we call the ‘tree parameterization’ and denote by tc. This parametrization typically contains features of the set
as a whole (e.g. moments of their means). We represent the outgoing message m by a vector of real valued numbers rm.

Prediction model. Each leaf node is associated with a subset of the labelled training data. During testing, a previously
unseen set of contextual messages represented by tc traverses the tree until it reaches a leaf which by construction is likely
to contain similar training examples. We therefore use the statistics of the data gathered in that leaf to predict the consensus
message with a multivariate regression model of the form: rm = W · rc + ε where ε is a vector of normal error terms. We
use the learned matrix of coefficients W at test time to make predictions rm for each rc. To recap, tc is used to traverse
the contextual messages down to leaves, and rc is used by a linear regressor to predict the parameters rm of the consensus
message.

Training objective function. The optimization of the split functions proceeds in a greedy manner. At each node j, de-
pending on the subset of the incoming training set Sj we learn the function that ‘best’ splits Sj into the training sets
corresponding to each child, SL

j and SR
j , i.e. the parameters of the split criterion τj = argmaxτ∈Tj I(Sj , τ ). This opti-

mization is performed as a search over a discrete set Tj of a random sample of possible parameter settings. The objective
function I is:

I(Sj , τ ) = −E(SL
j ,W

L)− E(SR
j ,W

R), (1)

where WL and WR are the parameters of the regression models corresponding to the left and right training sets SL
j and SR

j ,
and E is the ‘fit residual’ as defined in (Eslami et al., 2014). In simple terms, this objective function splits the training data
at each node in a way that the relationship between the incoming and outgoing messages is well captured by the regression
in each child.

Ensemble model. During testing, a set of contextual messages simultaneously traverses every tree in the forest from their
roots until it reaches their leaves. Combining the predictions into a single forest prediction might be done by averaging the
parameters rtm of the predicted messagesmt by each tree t, however this would be sensitive to the chosen parameterization.
Instead we compute the moment averagem of the distributions {mt} by averaging the first few moments of the predictions
across trees, and solving for the distribution parameters which match the averaged moments (see e.g. Grosse et al., 2013).

†The first two authors contribute equally to this work.



Varun Jampani†, S. M. Ali Eslami†, Daniel Tarlow, Pushmeet Kohli and John Winn

2 Results on the face problem

2.1 Qualitative results

Figure 1 shows inference results for reflectance maps, normal maps and lights for randomly chosen test images, and
Figure 2 shows reflectance estimation results on multiple images of the same subject produced under different illumination
conditions. Consensus message passing is able to produce reflectance estimates that are closer to the photometric stereo
groundtruth across subjects and across different illumination conditions.

2.2 Quantitative results

Figure 3 shows quantitative results for both real images from ‘Yale B’ and ‘Extended Yale B’ datasets (Georghiades et al.,
2001; Lee et al., 2005) and synthetic shadowless images. The synthetic shadowless images were created using the same
light, reflectance and normal map statistics as that of images in the real dataset (however estimated using photometric
stereo (Quéau et al., 2013)). Subject recognition results indicate superior performance of CMP in comparison to other
baselines in both real and synthetic image settings.

Figure 4 shows the quantitative results of light inference using the different inference techniques. We use the cosine
angle distance between the estimated light and the photometric stereo groundtruth (error = cos−1(̂lest .̂lps)) as an error
metric. Here, l̂est is a unit vector in the same direction as the mean of the posterior light estimate of CMP and l̂ps is a unit
vector in the same direction as the corresponding photometric stereo groundtruth. Again, these results indicate the superior
performance of CMP in comparison to other baselines in both real and synthetic image settings.

(a) Observed (b) Reflectance (c) Variance (d) Light (e) Normal︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

GT BU MP Forest CMP CMP GT MP Forest CMP GT MP CMP
Figure 1: A visual comparison of inference results. For 4 randomly chosen test images, we show inference results
obtained by competing methods. (a) Observed images. (b) Inferred reflectance maps. GT is the photometric stereo
groundtruth, BU is the Biswas et al. (2009) reflectance estimate and Forest is the consensus prediction. (c) The variance
of the inferred reflectance estimate produced by CMP (normalized across rows). High variance regions correlate strongly
with cast shadows. (d) Visualization of inferred light directions. (e) Inferred normal maps.
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Observed ‘GT’ BU VMP Forest CMP Variance Observed ‘GT’ BU VMP Forest CMP Variance

Figure 2: Robustness to varying illumination. Reflectance estimation on two subject images with varying illumination.
Left to right: observed image, photometric stereo estimate which is used as a proxy for groundtruth, bottom-up estimate of
Biswas et al. (2009), VMP result, consensus forest estimate, CMP mean, and CMP variance.
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Figure 3: Reflectance inference accuracy. Results have been averaged over all images of test subjects. (a) Synthetic,
shadowless images. (b) Real images.
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Figure 4: Light inference accuracy. Results have been averaged over all images of test subjects. (a) Synthetic, shadowless
images. (b) Real images.
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