On Approximate Non-submodular Minimization via Tree-Structured Supermodularity

Proof of Proposition 3

We first see that there always exists a lower bound
of a such that the distance term becomes smaller (or
equivalent) after AM for an initial y,, i.e.,

dp(x*,y*) < dp(z1,90)

where x; € argming &, (x,y,) and pair (x*,y*) is
the output of AM with inputs («a,y,). First, it
is obvious that dj(x*,y*) is a non-increasing func-
tion for o (while E(x*,y*) is non-decreasing). If
a = 0, then * € argmin, f(S(z)) and y* €
argmin,, Z(m)eg ¥ij(yi, y;) and thus dj(z*, y*) takes
some finite value. Meanwhile, if a@ — oo, then
dp(z*,y*) becomes 0. Therefore, the statement holds
(we denote by & the lower bound). Since we can find a
small value of F for an initial with a smaller distance
term for a common «, the statement of the proposition
follows from dp(x],y;) < dp(x1,yy) from the above
statement.

Proof of Proposition 4

For the given 6" and x*, it is obvious that

L(6")=E(x",z")+ 6 (" —x*) = E(z*,x")
> i E(z,y)= min E(z).
N m,ye{o,l}r‘r’l}ng:yi(iev) () we%{rll}" (@)

Meanwhile, since L(6) is the Lagrangian relaxation of
the original problem, we always have

L(8) <

in  E(x). 12
i (z) (12)

Thus, taking the above two equations together, we
have the equality in Eq. (12), which shows the state-
ment of the proposition.

Proof of Lemma 5

This result directly follows from the fact that the mod-
ular upper bound m/ (X) is an approximation of f such
that [15],

F(X) < mf (X) < X]

S TR D —mp@y Y

(13)

where k¢(X) is the curvature of f [14]. In the worst
case, this factor is |X|. Now let x* be the opti-
mal solution, and S(x*) be the corresponding set.

_ X]
Denote a(X) = 1+(\X|*1‘)(1*’{f(X)),

the exact solution to the problem min, m/(S(x)) +
> i jee Yij(zi,z;5). The following chain of inequalities

and let x be

hold:

+ Z Vi (Zi, 25)
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< a(S(X*) Z d}U 17 ]
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S a(S(X*>) Z w” 17 j
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Hence this provides a a(S(x*)) < |S(x*)| approxima-

tion.

Proof of Lemma 6

In this case, we assume we are given the maximization
problem,

max f(s

Z Vi (@, ;) (14)

i,j€EE

where v is a submodular tree, and f is a supermodu-
lar function. Note that this is equivalent to the orig-
inal problem, just changing the min to a max, and
correspondingly interchanging the submodularity and
supermodularities. This is different from the origi-
nal problem in the sense that simple interchanging the
max and min (which can be done my adding a minus
sign), changes the signs of the submodular function.
In order to ensure that the functions f and ¢ are pos-
itive even after changing the sign, we would need to
shift the functions.

Assuming this is done, we can provide an approx-
imation guarantee for this setup. In this case, we
use a simple surrogate for the submodular function
1. Since we assume 1 is monotone submodular, it
is easy to see that, ©;;(x;,x;) < ¥ij(x;) + ¥ij(z;) <
29;;(x;, ;). The algorithm then just uses the function
ij(x;) + 1ij(x;) as a surrogate, and solves the prob-
lem maxx f(S(x)) + 32, jee Vij(@i) + vij(z;). Since
f is supermodular, this 1s submodular minimization,
which can be performed exactly. Again, let X be the
solution using the surrogate function, and x* be the
optimal solution. Then, the following chain of inequal-
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ities hold:
+ D Wi (@i &)
i,jEE
> f(S(x)) + Z [wu(f )+ i (25)]

i,jeg

> %{f(s(fc)) 7 W (@) + i ()]}

i,je€
> %{fw(x*)) + 3 W) + ()]}
i,jE€E
Z 7{f Z 11[}1] zv ]
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Hence this provides a 1/2 approximation.

Proof of Theorem 7

To prove Theorem 7, we need the following lemmas:
Lemma 8. Let f be a submodular function. For
any B E R and b € ]R>0, t* is optimal for
t:) if and only if t* + Bb is optimal for
mlntep(f+ﬁb) i(t:) ‘R —R.

Lemma 9. Let f be a submodular function with
f(0) = 0. And, let x € [0,1]Y with unique values
uy > -+ > uy, taken at sets Ay,...,A;. Then, for
ce REO, s is optimal for maxge p(se) x s if and only if

s(A1U---UA;) = f(A1U---UA;) foralli =1,...,1—1.

mmtep(f)

, where w;

Proof of Lemma 9. It is obvious that (s+c¢)(AU---U
Ai)=(f+c)(AU---UA4;) if and only if s(A; U---U
Ai) = f(AU---UA;) for alli = 1,...,1—1. Therefore,
the statement follows from Lemma 8 and, for example,
Proposition 4.2 in [2] because P((f + ¢)¢) = P(f +
c). O

Now, we have the proof of Theorem 7 as follows.

Proof of Theorem 7. Since t* = 2a(a — X*), we know
from Lemma 9 that the dual problem of Eq. (10) is

=Y s/ + sia (15)

S

max
seP(f.m(a—lM))

Let ¢;(Z;) = A(&i — a;)? and ¥ (=t;) = 7 /(4)) — tia;.
Also, for i € V, let s be a maximizer of —;(—s;) over
(—o0, max(tF,2M\(a; — 1))]. Then, the pair (x*,s*) is
optimal for Eq. (10) and Eq. (15) if and only if (a)

(i (x5, 87) :=) wisy +Yi(x7) + ¢ (=s7) =0

and (b) f(x*) = (s*)Tx*.
For 4 such that 2} < 0 (i.e., z
2)\(ai — i‘i) (> 2)\(6% -1

¥ =0), we have tf =

)) and thus s = 2)a,. Hence,
(a) is met because t;(0) = Aa?. For i such that 0 <
z¥ < 1, (a) is met from the optimality of Eq. (11)

K2

because x} = & and ¢] is still larger than 2a(a; — 1).
And for i such that 2} > 1 (i.e., 2} = 1), we have

s5)?2/(4N) — sta;.
On the other hand, since tf < 2X(a; — 1), we have

sf = 2X(a; — 1). Therefore, we have 7;(1,s) = 0.
And, (b) follows from Lemma 9. O

ni(x7, 57) = 7+ A1 — i) + (



