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Figure 4: Algorithm performance in the orthogonal setting.
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Figure 5: Algorithm performance in the non-orthogonal setting.

A Experiments

A.1 Synthetic experiments

Orthogonal tensors We start by generating random tensors T =
∑
i πu

⊗3
i + εR with Gaussian entries in

π,R and ui distributed uniformly in the unit sphere Sd−1. We let d = 25, 50, 100 and in each case consider two
regimes: undercomplete tensors with k = 0.2d and full rank tensors, k = d. We vary ε and report the average error
‖ũi − ui‖2 across all eigenvectors ui and across 50 trials. In the orthogonal setting, we compare our algorithms
(OJD0 uses random projections, OJD1 is with plugin) with the tensor power method (TPM), alternating least
squares (ALS), and with the method of de Lauthauwer [23]. Alternating least squares displayed very poor
performance, and we omit it from our graphs. In the undercomplete case (Figure 4, right), all algorithms fare
similarly and errors are within 10% of each other. Our method realizes its full potential in the full-rank setting,
where OJD0 and OJD1 are up to three times more accurate than alternative methods ((Figure 4, left).

Non-orthogonal tensors In the non-orthogonal setting, we compare de Lathauwer, alternating least squares
(ALS), non-linear least squares (NLS), and our non-orthogonal methods (NOJD0 and NOJD1). We follow
the same experimental setup as above and summarize our experiments in Figure 5. In the undercomplete setting,
Lathauwer’s algorithm has the highest accuracy, about a 10% more than our approach (Figure 5, right). In the
full rank setting, there is little difference in performance between our method and Lathauwer’s. In both settings,
we consistently outperform the standard approaches, ALS and NLS, by 20-50% (Figure 5, left). Although we do
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Figure 6: Algorithm performance on asymmetric tensors.
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Figure 7: Number of flops performed by various algorithms.

not always outperform Lauthauwer’s state-of-the-art method, NOJD0 and NOJD1 are faster and much simpler
to implement.

Asymmetric tensors Lastly, we evaluate the extension of our algorithm to tensors of size 50×50×50 having
three distinct sets of asymmetric components (one in each mode). We find that performance is consistent with
the symmetric setting, in both orthogonal and non-orthogonal regimes; our method outperforms is competitors
by at least 25%, and in the non-orthogonal setting, it achieves an error reduction of up to 70% over Lathauer
(Figure 6).

A.2 Algorithm running time

Figure 7 compares the running time in flops of the main algorithms.

We obtain the plots in Figure 7 by calculating flops as follows. The Jacobi method performs at each sweep
2dL(dk −

(
k
2

)
) flops (where L is the number of matrices); the QRJ1 non-orthogonal diagonalization algorithm

performs 4d3L flops per sweep. The tensor power method performs a total of Lkd3 flops (where L is the number
of restarts), times the number of steps it takes to reach convergence for a given eigenvector. The flop count of
Lathauwer’s method is much higher than that of other method’s: at one stage, it requires finding the SVD of a
d4 × k2 matrix. Consequently, we do not include it in our summary.
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B Proofs for orthogonal tensor factorization

In this section we prove perturbation bounds for our algorithm in the setting of orthogonal tensors.

Recall that we observe T̂ = T + εR where T =
∑k
i=1 πiu

⊗3
i where πi are factor weights, ui ∈ Rd are orthogonal

unit vectors and R is, without loss of generality, symmetric with ‖R‖op = 1. Our objective is to estimate π
and (ui). Algorithm 1 does so by simultaneously diagonalizing a number of projections of T ; we make use of
projections along random vectors and along approximate factors. In this section we will show why both schemes
recover πi and (ui) with high probability.

Setup Let M = {M1, . . . ,ML} be the projections of T along vectors w1, . . . , wL, and M̂ = {M̂1, . . . , M̂L} be

the projections of T̂ along w1, . . . , wL. We have that Ml =
∑d
i=1 πi(w

>
l ui)ui⊗ui and that M̂l = Ml+ εRl, where

Rl = R(I, I, wl). Thus, Ml are a set of simultaneously diagonalizable matrices with factors U and factor weights
λil , πi(w

>
l ui). From the discussion in Section 2, let Ū be a full-rank extension of U , with columns u1, u2, . . . ud.

Let π̃ and ũ be a factorization of T̂ returned by Algorithm 1. From Lemma 1, we have that

‖ũj − uj‖2 ≤ ε

√√√√
d∑

i=1

E2
ij + o(ε), (9)

for j ∈ [k] where E ∈ Rd×k has entries

Eij =





0 for i = j
∑L

l=1(λil−λjl)u
>
j Rlui∑L

l=1(λil−λjl)2
for i 6= j.

(10)

For notational convenience, let pij , (πiui − πjuj) so that λil − λjl = w>l pij . Let rij , R(ui, uj , I) so that

u>j Rlui = R(uj , ui, wl) = R(ui, uj , I)>wl = r>ijwl.

The expression for Eij when j 6= i simplifies to,

Eij =

∑L
l=1 w

>
l pijr

>
ijwl∑L

l=1 w
>
l pijp

>
ijwl

. (11)

In the rest of this section, we will bound Eij for different choices of {wl}Ll=1.

B.1 Plugin projections

In Section 4 we proposed using approximate factors ũi as directions to project the tensor T̂ along. In this section,
we show that doing so guarantees small errors in ui.

We begin by bounding the terms Eij .

Lemma 3 (Eij with plug-in projections). Let w1, . . . , wk be unit-vectors approximations of the unit vectors

u1, . . . , uk: ‖wl − ul‖2 ≤ γ (so L = k), and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along

w1, . . . , wL. If the set of matrices M̂ is simultaneously diagonalized, then to a first-order approximation,

Eij =
p>ijrij
‖pij‖2

+O(γ).

Proof. We have that

w>l (pij) = (ul + (wl − ul))>(πiui − πjuj)
= πiδil − πjδjl + (wl − ul)>(πiui − πjuj)
≤ πiδil − πjδjl + ‖wl − ul‖2‖πiui − πjuj‖2
= πiδil − πjδjl +O(γ),
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where δij = 1 if i = j and 0 otherwise.

Thus,

Eij =

∑L
l=1 w

>
l pijr

>
ijwl∑L

l=1 w
>
l pijp

>
ijwl

=

∑L
l=1 (πiδil − πjδjl +O(γ)) r>ijwl∑L
l=1(πiδil − πjδjl +O(γ))2

=
πir
>
ijwi − πjr>ijwj +O(γ)

π2
i + π2

j +O(γ)

=
πir
>
ijui + πi(wi − ui)>rij − πjr>ijuj − πj(wj − uj)>rij +O(γ)

π2
i + π2

j +O(γ)

Note that (wi − ui)>rij = O(γ) and (wj − uj)>rij = O(γ), and hence both can be included in the O(γ) term.

Eij =
r>ij(πiui − πjuj) +O(γ)

π2
i + π2

j +O(γ)
.

Finally, recall that pij , (πiui − πjuj) and that ‖pij‖2 = π2
i + π2

j . Combining this with the observation that
1

1−x = 1 + x+ o(x), we obtain

Eij =
p>ijrij
‖pij‖2

+O(γ).

Next, we use these term-wise bounds to bound the error in ui.

Theorem 5 (Tensor factorization with plugin projections). Let w1, . . . , wk be approximations of u1, . . . , uk such

that ‖wl − ul‖2 ≤ γ = O(ε), and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL.
Then, for j ∈ [k],

‖ũj − uj‖2 ≤
(

2
√
‖π‖1πmax

π2
i

)
ε+ o(ε).

Proof. From Equation 9, we have that,

‖ũj − uj‖2 ≤ ε

√√√√
d∑

j=1;j 6=i
E2
ij ,

for all j ∈ [k]. By Lemma 3, we get,

Eij =
p>ijrij
‖pij‖2

+O(ε),

and thus,

‖ũj − uj‖2 ≤ ε

√√√√
d∑

i=1;i 6=j

(
p>ijrij
‖pij‖2

)2

+ o(ε).
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Now, we must bound
∑d
i=1;i 6=j(p

>
ijrij)

2. We expect this the projection to mostly preserve the norm of pij because

rij are effectively random vectors. Using Lemma 10 with µ = 0, we get that
∑d
i=1;i 6=j(p

>
ijrij)

2 ≤ 4‖π‖1πmax.

Finally, ‖pij‖22 = π2
i + π2

j ≥ π2
j .

‖ũj − uj‖2 ≤
(√

4‖π‖1πmax

π2
j

)
ε+ o(ε)

≤
(

2
√
‖π‖1πmax

π2
j

)
ε+ o(ε).

B.2 Random projections

Let us now consider the case when {wl}Ll=1 are random Gaussian vectors and present similar bounds.

Given Equation 11, we should expect Eij to sharply, and now show that this is indeed the case.

Lemma 4 (Concentration of error Eij). Let w1, . . . , wL be i.i.d. random Gaussian vectors wl ∼ N (0, I), and let

M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL. If the set of matrices M̂ is simultane-
ously diagonalized, then the first-order error Eij is sharply concentrated. If L ≥ 16 log(2δ), then with probability
at least 1− δ,

Eij ≤
p>ijrij
‖pij‖22

+
10 log(2/δ)√

L

‖rij‖2
‖pij‖2

.

Proof. The numerator and denominator of Equation 11 are both distributed as the sum of χ2 variables; we show
below that they respectively concentrate about p>ijrij and ‖pij‖22.

From Lemma 13, we have that the following hold independently with probability at least 1− δ/2,

1

L

L∑

l=1

w>l pijr
>
ijwl ≤ p>ijrij + ‖pij‖‖rij‖

(
3

√
log(2/δ)

L

)

1

L

L∑

l=1

w>l pijp
>
ijwl ≥ ‖pij‖2

(
1− 2 log(2/δ)√

L

)

Applying a union bound on both these events, we get that with probability at least 1− δ,

Eij =

∑L
l=1 w

>
l pijr

>
ijwl∑L

m=1 ‖w>mpij‖22

≤
p>ijrij + ‖pij‖2‖rij‖2

(
3
√

log(2/δ)
L

)

‖pij‖22
(

1− 2 log(2/δ)√
L

) .

Note that with the given condition on L, 2 log(2/δ)√
L

< 1
2 . Using the property that when x ≤ 1

2 , 1
1−x ≤ 1 + 2x, we

have that

1

1− 2 log(2/δ)√
L

≤ 1 +
4 log(2/δ)√

L
.
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Consequently,

Eij ≤
1

‖pij‖22

(
p>ijrij + ‖pij‖2‖rij‖2

(
3

√
log(2/δ)

L

))(
1 +

4 log(2/δ)√
L

)

≤
p>ijrij
‖pij‖22

(
1 +

4 log(2/δ)√
L

)
+ 6
‖rij‖2
‖pij‖2

√
log(2/δ)

L

≤
p>ijrij
‖pij‖22

+
10 log(2/δ)√

L

‖rij‖2
‖pij‖2

.

With this term-wise bound, we can again proceed to bounding the error ui.

Theorem 6 (Tensor factorization with random projections). Let w1, . . . , wL be i.i.d. random Gaussian vectors,

wl ∼ N (0, I), and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL. Furthermore, let
L ≥ 16 log(2d(k − 1)/δ)2, then, with probability at least 1− δ,

‖ũj − uj‖2 ≤
(

2
√

2‖π‖1πmax

π2
i

)
ε+

(
20
√

2 log(2d(k − 1)/δ)

√
d/L

πi

)
ε+ o(ε).

for all j ∈ [k].

Proof. From Equation 9, we have that,

‖ũj − uj‖2 ≤ ε

√√√√
d∑

i=1;i 6=j
E2
ij + o(ε).

By Lemma 4, with probability at least 1− δ/(d(k − 1)),

Eij ≤
|p>ijrij |
‖pij‖22

+
10 log(2d(k − 1)/δ)√

L

‖rij‖2
‖pij‖2

.

Applying a union bound over (Eij)
d
j 6=i, we have that with probability at least 1− δ,

‖ũj − uj‖2 ≤ ε

√√√√
d∑

i=1;i 6=j
2

(
p>ijrij
‖pij‖22

)2

+ ε
10 log(2d(k − 1)/δ)√

L

√√√√
d∑

i=1;i 6=j
2

(‖rij‖2
‖pij‖2

)2

+ o(ε),

for all j ∈ [k]. We have used the fact that for a, b ≥ 0, (a+ b)2 = a2 + 2ab+ b2 ≤ a2 + (a2 + b2) + b2 = 2a2 + 2b2

and
√
a+ b ≤ √a+

√
b.

Note that ‖pij‖2 =
√
π2
i + π2

j ≥ |πi|. In Lemma 10, we show that
∑d
i=1;i 6=j(p

>
ijrij)

2 ≤ 4‖π‖1πmax. Furthermore,

‖rij‖ ≤ 1 by the operator norm bound on R. Thus, we get,

‖ũj − uj‖2 ≤
(

2
√

2‖π‖1πmax

π2
i

)
ε+

(
20
√

2 log(2d(k − 1)/δ)

√
d/L

πi

)
ε+ o(ε).

C Proofs for non-orthogonal tensor factorization

In this section we extend our previous analysis to non-orthogonal tensor decomposition.
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Setup As before, let M = {M1, . . . ,ML} be the projections of T along vectors w1, . . . , wL, and M̂ =

{M̂1, . . . , M̂L} be the projections of T̂ along w1, . . . , wL. We have that Ml =
∑d
i=1 πi(w

>
l ui)ui ⊗ ui and that

M̂l = Ml + εRl, where Rl = R(I, I, wl). Thus, Ml are a set of simultaneously diagonalizable matrices with
factors U and factor weights λil , πi(w

>
l ui). Let Ū be the full-rank extension of U with unit-norm columns

u1, u2, . . . , ud. In this setting, however, the factor U is not orthogonal. Let V̄ = Ū−1, with rows v1, v2, . . . , vd.
Note that we place our incoherence assumption on the columns of U and present results in terms of the 2-norm
of V >. When U is incoherent, it can be shown that ‖V >‖2 ≤ 1+O(µ). Finally, note that in the orthogonal case,
when µ = 0, the rows (vi) and columns (ui) are identical, and no distinction between the two need be made.

Let π̃ and ũ be a factorization of T̂ returned by Algorithm 1. From Lemma 2, we have that

‖ũj − uj‖2 = ε

√√√√
d∑

i=1

E2
ij ,

where the entries of E ∈ Rd×k are bounded by Lemma 16:

|Eij | ≤
1

1− ρ2ij

(
1

‖λi‖22
+

1

‖λj‖22

)(∣∣∣∣∣
L∑

l=1

v>i Rlvjλjl

∣∣∣∣∣+

∣∣∣∣∣
L∑

l=1

v>i Rlvjλil

∣∣∣∣∣

)
, (12)

where λi ∈ RL is the vector of i-th factor values of Ml, i.e. λil is the i-th factor value of matrix Ml (i.e.

λil = (Λl)ii) and ρij =
λ>i λj

‖λi‖2‖λj‖2 , the modulus of uniqueness, is a measure of the singularity of the problem.

When λil is generated by projections, λil = πiw
>
l ui. Let rij , R(vi, vj , I) so that

v>i Rlvj = R(vi, vj , wl) = R(vi, vj , I)>wl = r>ijwl.

Note that ‖rij‖2 ≤ ‖vi‖2‖vj‖2 ≤ ‖V >‖22.

Equation 12 then simplifies to,

|Eij | ≤
1

1− ρ2ij

(
1

‖λi‖22
+

1

‖λj‖22

)(
|πj |

∣∣∣∣∣
L∑

l=1

w>l ujr
>
ijwl

∣∣∣∣∣+ |πi|
∣∣∣∣∣
L∑

l=1

w>l uir
>
ijwl

∣∣∣∣∣

)
, (13)

where ‖λi‖22 = π2
i

∑L
l=1 w

>
l uiu

>
i wl, and ρij has the following expression,

ρij =
λ>i λj

‖λi‖2‖λj‖2
=

∑L
l=1 w

>
l uiu

>
j wl√

(
∑L
l=1 w

>
l uiu

>
i wl)(

∑L
l=1 w

>
l uju

>
j wl)

. (14)

Observe that the terms ui interact with the factor weights λil, while the terms vi interact only with the noise
terms Rl.

In the rest of this section, we will bound Eij and ρij with different choices of {wl}Ll=1.

C.1 Plugin projections

We now assume we have plugin estimates (wl) that are close to the inverse factors (vl): ‖wl − vl‖2 ≤ O(γ) for
l ∈ [k]. Then,

w>l ui = (vl + (wl − vl))>ui

= v>l ui + ||wl − vl||2 ·
(wl − vl)>ui
||wl − vl||2

= v>l ui +O(γ).

Recall that V = U−1, so v>l ui = δil.
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It will be useful to keep track of ‖λi‖22,

‖λi‖22 =
L∑

l=1

π2
i (w>l ui)

2

= π2
i

k∑

l=1

(v>l ui +O(γ))2

= π2
i +O(γ). (15)

Lemma 5 (Modulus of uniqueness for plugin projections). Let w1, . . . , wk be approximations of v1, . . . , vk:

‖wl − vl‖2 ≤ O(γ) for l ∈ [k], and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL.
Then, for i 6= j,

ρ2ij ≤ O(γ),

Proof. Let us first bound the numerator of Equation 14.

(λ>i λj)
2 = π2

i π
2
j

(
L∑

l=1

w>l uiu
>
j wl

)2

= π2
i π

2
j

(
L∑

l=1

v>l uiu
>
j vl +O(γ)

)2

= π2
i π

2
j δij +O(γ)

= O(γ).

Using Equation 15, we get that

ρ2ij =
O(γ)

(1 +O(γ))(1 +O(γ))

= O(γ).

where in the last line we used the fact that 1
1−x = 1 + x+ o(x).

Lemma 6 (Bound on Eij for non-orthogonal plugin projections). Let w1, . . . , wk be approximations of v1, . . . , vk:

‖wl − vl‖2 ≤ O(γ) for l ∈ [k], and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL.

|Eij | ≤
(

1

π2
i

+
1

π2
j

)
‖V >‖2 p>ijrij +O(γ),

where pij , |πi| vi
‖vi‖2 + |πj | vj

‖vj‖2 .

Proof. Let us bound each term within our expression for Eij (Equation (13)).

k∑

l=1

w>l ujr
>
ijwl =

k∑

l=1

v>l ujr
>
ijvl +O(γ)

≤ r>ijvj +O(γ).

Similarly,

k∑

l=1

w>l uir
>
ijwl ≤ r>ijvi +O(γ),
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From Equation (15), we have

‖λi‖22 = |πi|2 +O(γ)

‖λj‖22 = |πj |2 +O(γ).

From Lemma 5 we have that

ρ2ij ≤ O(γ)

1

1− ρ2ij
≤ 1

1−O(γ)
+O(γ)

≤ 1 +O(γ).

Finally,

|Eij | ≤
(

1

π2
i

+
1

π2
j

)
(
(|πi|vi + |πj |vj)>rij

)
+O(γ)

≤
(

1

π2
i

+
1

π2
j

)
‖V >‖2 p>ijrij +O(γ).

Note that the error terms depend not on ui but rather vi. This is because the projections (wl) are chosen to be
close to the vi. Now, let us bound the error in ui.

Theorem 7 (Non-orthogonal tensor factorization with plug-in projections). Let w1, . . . , wk be approximations

of v1, . . . , vk: ‖wl − vl‖2 ≤ O(ε) for l ∈ [k] and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along
w1, . . . , wL. Then, for all j ∈ [k],

‖ũj − uj‖2 ≤ 8ε

√
‖π‖1πmax

π2
min

‖V >‖32 + o(ε).

Proof. From Lemma 15 we have that

‖ũj − uj‖2 ≤ ε

√√√√
d∑

i=1

E2
ij + o(ε),

for j ∈ [k], where Eij is bounded in Lemma 6 as follows:

|Eij | ≤
(

1

π2
i

+
1

π2
j

)
‖V >‖2 p>ijrij +O(ε)

≤ 2

π2
min

‖V >‖2 p>ijrij +O(ε).

Consequently,

‖ũj − uj‖2 ≤ ε

√√√√
d∑

i 6=j
E2
ij

≤ 2ε

π2
min

√√√√
d∑

i 6=j

(
‖V >‖2 p>ijrij +O(ε)

)2
+ o(ε)

≤ 4ε

π2
min



√√√√

d∑

i6=j

(
‖V >‖2 p>ijrij

)2
+


+ o(ε),
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where we have used the fact that (a+ b)2 ≤ 2(a2 + b2) and that
√
a+ b ≤ √a+

√
b.

From Lemma 10 we have, p>ijrij ≤ 4‖π‖1πmax‖V >‖42,

‖ũj − uj‖2 ≤
4ε

π2
min

(√
4‖π‖1πmax‖V >‖62

)
+ o(ε)

≤ 8ε

√
‖π‖1πmax

π2
min

‖V >‖32 + o(ε).

C.2 Random projections

We now study the case where the random projections, (wl), are drawn from a standard Gaussian distribution.
First let us show that the modulus of uniqueness ρij sharply concentrates around u>i uj .

Lemma 7 (Modulus of Uniqueness with random projections). Let w1, · · ·wL ∈ Rd be entries drawn i.i.d. from
the standard Normal distribution. Let L > 16 log(3/δ)2 Then, with probability at least 1− δ,

ρij ≤ u>i uj +
10 log(3/δ)√

L
.

Proof. Observe from Equation 14 that the numerator and the denominator of ρij are essentially distributed as
a χ2 distribution (Lemma 13). Thus, with probability at least 1− δ/3 each, the following hold,

1

L

L∑

l=1

w>l uiu
>
j wl ≤ u>i uj + ‖ui‖2‖uj‖2

(
3

√
log(3/δ)

L

)

1

L

L∑

l=1

(w>l ui)
2 ≥ ‖ui‖2

(
1− 2 log(3/δ)√

L

)

1

L

L∑

l=1

(w>l uj)
2 ≥ ‖uj‖2

(
1− 2 log(3/δ)√

L

)
.

Noting that ‖ui‖2 = ‖uj‖2 = 1 and applying a union bound on the above three events, we get that with
probability at least 1− δ,

ρij ≤
u>i uj + 3

√
log(3/δ)

L

1− 2 log(3/δ)√
L

.

Under the conditions on L, 2 log(3/δ)√
L

≤ 1
2 . Applying the property that when x < 1

2 , 1
1−x ≤ 1 + 2x,

1

1− 2 log(3/δ)√
L

≤ 1 +
4 log(3/δ)√

L
< 2.

Finally,

ρij ≤
(
u>i uj + 3

√
log(3/δ)

L

)(
1 +

4 log(3/δ)√
L

)

≤ u>i uj
(

1 +
4 log(3/δ)√

L

)
+ 3

√
log(3/δ)

L
× 2

≤ u>i uj +
10 log(3/δ)√

L
.
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Let’s now bound the inverse modulus of uniqueness.

Lemma 8 (Bounding inverse modulus of uniqueness). Let w1, · · ·wL ∈ Rd be entries drawn i.i.d. from the

standard Normal distribution. Assume incoherence µ for that the (ui): u
>
i uj ≤ µ for i 6= j. Let L0 ,

(
50

(1−µ2)

)2

Let L ≥ L0 log(3/δ)2. Then, with probability at least 1− δ,

1

1− ρ2ij
≤ 1

1− (u>i uj)
2

(
1 +

√
L0

L
log(3/δ)

)
.

Proof. From Lemma 7, we have that with probability at least 1− δ,

ρij ≤ u>i uj +
10 log(3/δ)√

L
.

Then,

ρ2ij ≤ (u>i uj)
2 + 2u>i uj

(
10 log(3/δ)√

L

)
+

(
10 log(3/δ)√

L

)2

.

Given the assumptions on L, we have that L ≥ L0 log(3/δ)2 ≥ 50 log(3/δ)2 and thus 10 log(3/δ)√
L

≤ 1
2 :

ρ2ij ≤ (u>i uj)
2 + 2

(
10 log(3/δ)√

L

)
+

1

2

10 log(3/δ)√
L

= (u>i uj)
2 +

25 log(3/δ)√
L

.

Now, we bound 1
1−ρ2ij

,

1

1− ρ2ij
≤ 1

1− (u>i uj)
2 − 25 log(3/δ)√

L

≤ 1

1− (u>i uj)
2

1

1− 25 log(3/δ)

(1−(u>i uj)2)
√
L

≤ 1

1− (u>i uj)
2

1

1− 25 log(3/δ)

(1−µ2)
√
L

≤ 1

1− (u>i uj)
2

1

1− 1
2 log(3/δ)

√
L0

L

.

Again, given assumptions on L, 1
2 log(3/δ)

√
L0

L ≤ 1
2 . Using the identity that if x < 1

2 , 1
1−x ≤ 1 + 2x,

1

1− ρ2ij
≤ 1

1− (u>i uj)
2

(
1 + log(3/δ)

√
L0

L

)
.

We are now ready to bound the termwise entries of E.

Lemma 9 (Concentration of Eij). Let w1, . . . , wL be i.i.d. random Gaussian vectors wl ∼ N (0, I), and let

M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL. Assume incoherence µ for that the
(ui): u

>
i uj ≤ µ for i 6= j. Furthermore, let L ≥ L0 log(15/δ)2. Then, with probability at least 1− δ,

|Eij | ≤
(

1

π2
i

+
1

π2
j

)(
p̄>ijrij

1− (u>i uj)
2

+
π̄ij‖rij‖2

1− (u>i uj)
2

(
20 +

√
L0

)
log(15/δ)√
L

)
,

where p̄ij , |πi|ui + |πj |uj and π̄ij , |πi|+ |πj |.
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Proof. Each term in Equation 13 concentrates sharply about its mean value. We bound each in turn.

First, consider ‖λi‖22/L = 1
L |πi|2

∑L
l=1(w>l ui)

2. With probability at least 1− δ/5 each, the following hold,

1

L
‖λi‖22 ≥ π2

i ‖ui‖22
(

1− 2 log(5/δ)√
L

)

1

L
‖λj‖22 ≥ π2

j ‖uj‖22
(

1− 2 log(5/δ)√
L

)
.

Thus, using the fact that ‖ui‖22 = 1,

L

(
1

‖λi‖22
+

1

‖λj‖22

)
≤

1
π2
i

+ 1
π2
j

1− 2 log(5/δ)√
L

.

Given our assumption on L, it follows that 2 log(5/δ)√
L

≤ 1
2 . Thus we can use the fact that 1

1−x ≤ 1 + 2x when

x ≤ 1
2 to obtain the following bound:

L

(
1

‖λi‖22
+

1

‖λj‖22

)
≤
(

1

π2
i

+
1

π2
j

)(
1 +

4 log(5/δ)√
L

)
.

Next, we bound 1
L

∑L
l=1 w

>
l uir

>
ijwl and 1

L

∑L
l=1 w

>
l ujr

>
ijwl. From Lemma 13, we have with probability at least

1− δ/5 each,

1

L

L∑

l=1

w>l ujr
>
ijwl ≤ r>ijuj + ‖rij‖2‖uj‖2

(
3

√
log(5/δ)

L

)

1

L

L∑

l=1

w>l uir
>
ijwl ≤ r>ijui + ‖rij‖2‖ui‖2

(
3

√
log(5/δ)

L

)
.

Note that by definition, ‖ui‖2 = 1.

Using Lemma 8, we have that with probability at least 1− δ/5,

1

1− ρ2ij
≤ 1

1− (u>i uj)
2

(
1 +

√
L0

L
log(15/δ)

)
.

Putting it all together, we get that with probability at least 1− δ,

|Eij | ≤
1

1− (u>i uj)
2

(
1 +

√
L0

L
log(15/δ)

)(
1

π2
i

+
1

π2
j

)(
1 +

4 log(5/δ)√
L

)

(
|πi|r>ijui + |πj |r>ijuj + (|πi|+ |πj |)‖rij‖2

(
3

√
log(5/δ)

L

))
.

Let us define p̄ij , |πi|ui + |πj |uj and π̄ij , |πi|+ |πj |:

|Eij | ≤
1

1− (u>i uj)
2

(
1 +

√
L0

L
log(15/δ)

)(
1

π2
i

+
1

π2
j

)(
1 +

4 log(5/δ)√
L

)

(
p̄>ijrij + π̄ij‖rij‖2

(
3

√
log(5/δ)

L

))
.

Given that L ≥ L0 log(15/δ)2, we have that
√

L0

L log(15/δ) ≤ 1 and 4 log(5/δ)√
L

≤ 1, thus

(
1 +

√
L0

L
log(15/δ)

)(
1 +

4 log(5/δ)√
L

)
≤ 2× 2

≤ 4.
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Finally, note that |πi|r>ijui + |πj |r>ijuj ≤ (|πi|+ |πj |)‖rij‖2, giving us,

|Eij | ≤
(

1

π2
i

+
1

π2
j

) (
p̄>ijrij

)

1− (u>i uj)
2

+

(
1

π2
i

+
1

π2
j

)
π̄ij‖rij‖2

1− (u>i uj)
2

(√
L0

L
log(15/δ) + 2

4 log(5/δ)√
L

+ 4

(
3

√
log(5/δ)

L

))

≤
(

1

π2
i

+
1

π2
j

)(
p̄>ijrij

1− (u>i uj)
2

+
π̄ij‖rij‖2

1− (u>i uj)
2

(
20 +

√
L0

)
log(15/δ)√
L

)
.

Finally, we bound the error in estimating uj .

Theorem 8 (Non-orthogonal tensor factorization with random projections). Let w1, . . . , wL be i.i.d. random

Gaussian vectors, wl ∼ N (0, I), and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL.

Assume incoherence µ for both (ui) and (vi): u>i uj ≤ µ and v>i vj ≤ µ for i 6= j. Let L0 ,
(

50
1−µ2

)2
. Let

L ≥ L0 log(15d(k − 1)/δ)2. Then, with probability at least 1− δ and for ε small enough,

‖ũj − uj‖2 ≤
8ε

1− µ2

√
‖π‖1πmax

π2
min

‖V >‖22
(

1 + C(δ)
√
d
)
,

where C(δ) , 20+
√
L0√
L

log(15(d(k − 1))/δ).

Proof. From Lemma 15 we have that

‖ũj − uj‖2 ≤ ε

√√√√
d∑

i=1

E2
ij + o(ε),

for j ∈ [k].

Using Lemma 9, we have that with probability at least 1− δ/(d(k − 1)),

|Eij | ≤
(

1

π2
i

+
1

π2
j

)(
p̄>ijrij

1− (u>i uj)
2

+
π̄ij‖rij‖2

1− (u>i uj)
2

(
20 +

√
L0

)
log(15(d(k − 1))/δ)√

L

)

≤
(

2

π2
min

)(
1

1− µ2

)(
p̄>ijrij + 2|πmin|‖V >‖22

(
20 +

√
L0

)
log(15(d(k − 1))/δ)√

L

)

≤
(

2

π2
min

)(
1

1− µ2

)(
p̄>ijrij + 2|πmin|‖V >‖22C(δ)

)
,

where we have defined C(δ) , 20+
√
L0√
L

log(15(d(k − 1))/δ) and are using the fact that u>i uj ≤ µ and π̄ij =

|πi|+ |πj | ≤ 2|πmax|.
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Applying a union bound on all the entries of Eij , we arrive at the following bound for all j.

‖ũj − uj‖2 ≤ ε
√∑

i 6=j
E2
ij

≤ 2ε

π2
min(1− µ2)

√√√√√



d∑

i 6=j
p̄>ijrij + 2πmax‖V >‖22C(δ)




2

≤ 4ε

π2
min(1− µ2)



√√√√

d∑

i6=j
(p̄>ijrij)

2 + 2πmax‖V >‖22C(δ)

√√√√
d∑

i6=j
1




≤ 4ε

π2
min(1− µ2)



√√√√

d∑

i6=j
(p̄>ijrij)

2 + 2πmax‖V >‖22C(δ)
√
d


 .

where we use the fact that (a+ b)2 ≤ 2(a2 + b2).

By Lemma 10 we also have,
∑d
j 6=i(p̄

>
ijrij)

2 ≤ 4‖π‖1πmax‖V >‖42. Finally, note that πmax ≤
√
πmax‖π‖1:

‖ũj − uj‖2 ≤
4ε

π2
min(1− µ2)

(√
4‖π‖1πmax‖V >‖22 + 2πmax‖V >‖22C(δ)

√
d
)

≤ 8ε

1− µ2

√
‖π‖1πmax

π2
min

‖V >‖22
(

1 + C(δ)
√
d
)
.

D Proofs of auxiliary lemmas

In this section, we prove some auxiliary results that appear as intermediate steps in the main lemmas above.

Lemma 10 (Bounding p>ijrij). Let pij , πiui− πjuj ∈ Rd and rij , R(vi, vj , I) ∈ Rd, where R is a tensor with

unit operator norm and where (ui) ∈ Rd are unit vectors and (vi) ∈ Rd′ form the columns of the matrix V with
bounded 2 norm. Then,

d∑

i 6=j
(p>ijrij)

2 ≤ 4πmax‖π‖1‖V ‖42.

Proof. Firstly, note that it is trivial to bound the sum as follows,

d∑

i6=j
(p>ijrij)

2 ≤
d∑

i 6=j
‖pij‖22‖rij‖22

≤ 4(d− 1)π2
max‖V ‖42,

using the properties that pij , πiui − πjuj and that R has unit operator norm and thus ‖pij‖2 ≤ 2πmax and
‖rij‖2 = ‖R(vi, vj , I)‖2 ≤ ‖V ‖22.

However, we would like a tighter bound with a lower-order dependence on k. To do so, let us expand pij ,

d∑

i 6=j
(p>ijrij)

2 =
d∑

i6=j
((πiui − πjuj)>rij)2

=
d∑

i6=j
(πiR(vi, vj , ui)− πjR(vi, vj , uj))

2

=

d∑

i 6=j
π2
jR(vi, vj , uj)

2 +

d∑

i6=j
π2
iR(vi, vj , ui)

2 −
d∑

i 6=j
2πiπjR(vi, vj , ui)R(vi, vj , uj).
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Using the assumption that R has unit norm, the latter two terms can be bounded by ‖π‖22‖V ‖42 and 2 πj‖π‖1‖V ‖42
respectively.

We now focus on the first term, π2
j

∑d
i 6=j R(vi, vj , uj)

2. Note that R(vi, vj , uj) = R(I, vj , uj)
>vi = r̃>j vi, where

r̃j , R(I, vj , uj) and ‖r̃j‖2 ≤ ‖V ‖2 by the operator norm condition on R.

d∑

i=1

(r̃>j vi)
2 = ‖V r̃j‖22

≤ ‖V ‖22‖r̃j‖22
= ‖V ‖42

Put together, we get that,

d∑

i 6=j
(p>ijrij)

2 ≤ π2
j ‖V ‖42 + ‖π‖22‖V ‖42 + 2πi‖π‖1‖V ‖42.

Finally, π2
i ≤ πmax‖π‖1 and, by Hölder’s inequality, ‖π‖22 ≤ πmax‖π‖1, giving us,

d∑

i 6=j
(p>ijrij)

2 ≤ 4πmax‖π‖1‖V ‖42.

E Concentration Inequalities

In this section, we present several concentration results that are key to our results. The χ2 tail bounds presented
in Laurent and Massart [34] play a key role and are reproduced below.

Lemma 11 (χ2
k tail inequality). Let q ∼ χ2

k be distributed as a chi-squared variable with k degrees of freedom.
Then, for any t > 0,

P(q − k > 2
√
kt+ 2t) ≤ e−t

P(k − q > 2
√
kt) ≤ e−t.

Alternatively, we have that with probability at least 1− δ,

q ≥ k
(

1− 2 log(1/δ)√
k

)
. (16)

and similarly, with probability at least 1− δ,

q ≤ k
(

1 + 2

√
log(1/δ)

k
+

2 log(1/δ)

k

)
. (17)

Proof. See Laurent and Massart [34, Lemma 1].

Lemma 12 (Gaussian quadratic forms). Let x ∼ N (0, I) ∈ Rd be a random Gaussian vector. If A is symmetric,

x>Ax is distributed as the sum of d independent χ2 variables,
∑d
i=1 λi(A)χ2

1, where λi are the eigenvalues of A.

Proof. Let A =
∑d
i=1 λiuiu

>
i be the eigendecomposition of A. Then, x>Ax =

∑d
i=1 λi‖u>i xi‖2. However, ui>xi

is distributed as independent χ2
1 random variables. Thus, x>Ax =

∑d
i=1 λiχ

2
1.

Lemma 13 (Gaussian products). Let xi ∼ N (0, I) ∈ Rd for i = 1, . . . , L be random Gaussian vectors. Let
L ≥ 4 log(1/δ). Then,
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1.
∑L
i=1(x>i a)2 where a ∈ Rd is distributed as ‖a‖22χ2

L. Consequently, with probability at least 1− δ,

1

L

L∑

i=1

(x>i a)2 ≤ ‖a‖22

(
1 + 2

√
log(1/δ)

L
+

2 log(1/δ)

L

)

≤ ‖a‖22

(
1 + 3

√
log(1/δ)

L

)

1

L

L∑

i=1

(x>i a)2 ≥ ‖a‖22
(

1− 2 log(1/δ)√
L

)
.

2.
∑L
i=1 x

>
i ab

>xi a, b ∈ Rd and a 6= b is sharply concentrated around a>b: with probability at least 1− δ,

1

L

L∑

i=1

x>i ab
>xi ≤ a>b+ ‖a‖2‖b‖2

(
2

√
log(1/δ)

L
+

2 log(1/δ)

L

)

≤ a>b+ ‖a‖2‖b‖2
(

3

√
log(1/δ)

L

)
.

Proof. The first part follows directly from Lemma 12 and the χ2 tail bound, Lemma 11.

For the second part, let A = ab>+ba>

2 . Note that x>i ab
>xi = x>i Axi. Then, by Lemma 12, x>i Axi = λ1χ

2
1+λ2χ

2
1,

where λ1 and λ2 are the eigenvalues of A. Furthermore, because A = ab>+ba>

2 , one of λ1 or λ2 is negative, and
the other is positive. Without loss of generality, let λ1 > 0 > λ2.

Applying the χ2 tail bound, Lemma 11, we get that with probability at least 1− δ,

λ1χ
2
1 ≤ λ1(1 + 2

√
log(2/δ)

L
+ 2

log(2/δ)

L
)

|λ2|χ2
1 ≥ |λ2|(1−

2 log(2/δ)√
L

).

Applying a union bound, we get,

1

L

L∑

i=1

x>i ab
>xi ≤ λ1(1 + 2

√
log(2/δ)

L
+ 2

log(2/δ)

L
) + λ2(1− 2 log(2/δ)√

L
)

≤ (λ1 + λ2) + |λ1|
(

2

√
log(2/δ)

L
+

2 log(2/δ)

L

)
+ |λ2|

2 log(2/δ)√
L

≤ (λ1 + λ2) + (|λ1|+ |λ2|)
(

2

√
log(2/δ)

L
+

2 log(2/δ)

L

)
.

Observe that λ1 + λ2 = tr(A) = a>b. Similarly, |λ1| + |λ2| = ‖A‖∗ = 2( 1
2‖a‖2‖b‖2). Thus, we finally have that

with probability at least 1− δ,

1

L

L∑

i=1

x>i ab
>xi ≤ a>b+ ‖a‖2‖b‖2

(
2

√
log(2/δ)

L
+

2 log(2/δ)

L

)
.

F Perturbation bounds for joint diagonalization

In this section, we present minor extensions to the perturbation bounds of Cardoso [28] and Afsari [24] so that
they apply in the low-rank setting.
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Notation Let Ml = UΛlU
> + εRl for l = 1, 2, . . . , L be a set of d × d matrices to be jointly diagonalized.

Λl ∈ Rk×k is a diagonal matrix, Rl ∈ Rd×d is an arbitrary unit operator norm matrix and ε is a scalar. In the
orthogonal setting, U ∈ Rd×k is orthogonal, while in the non-orthogonal setting U ∈ Rd×k is an arbitrary matrix
with unit operator norm. Let λil , (Λl)i be the i-th factor weight of matrix Ml. Finally, we say that a set of

matrices {M1, · · · ,ML}, Ml =
∑d
i=1 λiluiv

T
i has joint rank k if

∣∣∣{i |
∑L
l=1 |λil| > 0}

∣∣∣ = k.

Lemma 14 (Cardoso [28]). Let Ml = UΛlU
> + εRl, l ∈ [L], be matrices with common factors U ∈ Rd×k and

diagonal Λl ∈ Rk×k. Let Ū ∈ Rd×d be a full-rank extension of U with columns u1, u2, . . . , ud and let Ũ ∈ Rd×d
be the orthogonal minimizer of the joint diagonalization objective F (·). Then, for all uj, j ∈ [k], there exists a

column ũj of Ũ such that

‖ũj − uj‖2 ≤ ε

√√√√
d∑

i=1

E2
ij + o(ε), (18)

where E ∈ Rd×k is

Eij ,
∑L
l=1(λil − λjl)u>j Rlui∑L

l=1(λil − λjl)2
(19)

when i 6= j and i ≤ k or j ≤ k. We define Eij = 0 when i = j and λil = 0 when i > k.

Proof. See Cardoso [28, Proposition 1]. Note that in the low rank setting, the entries of Eij (Cardoso [28,

Equation 15]) where i, j > k are not defined, however, these terms only effect the last d− k columns of Ũ . The
bounds for vectors u1, ..., uk only depend on Eij where i ∈ [d] and j ∈ [k], and these are derived in the low-rank
setting in the same way as they are derived in the full-rank proof of Cardoso [28].

We now present the corresponding perturbation bounds in Afsari [24] to the low rank setting.

Lemma 15 (Afsari [24]). Let Ml = UΛlU
> + εRl, l ∈ [L], be matrices with common factors U ∈ Rd×k and

diagonal Λl ∈ Rk×k. Let Ū ∈ Rd×d be a full-rank extension of U with columns u1, u2, . . . , ud and let V̄ = Ū−1,
with rows v1, v2, . . . , vd. Let Ṽ ∈ Rd×d be the minimizer of the joint diagonalization objective F (·) and let
Ũ = Ṽ −1.

Then, for all uj, j ∈ [k], there exists a column ũj of Ũ such that

‖ũj − uj‖2 ≤ ε

√√√√
d∑

i=1

E2
ij + o(ε), (20)

where the entries of E ∈ Rd×k satisfy the equation

[
Eij
Eji

]
=

−1

γij(1− ρ2ij)

[
ηij −ρij
−ρij η−1ij

] [
Tij
Tji

]
.

when i 6= j and either i ≤ k or j ≤ k. When i = j, Eij = 0. The matrix T has zero on-diagonal elements, and
is defined as

Tij =
∑

l

v>i Rlvjλjl, for 1 ≤ j 6= i ≤ d

and the other parameters are

γij = ‖λi‖2‖λj‖2, ηij =
‖λi‖2
‖λj‖2

, ρij =
λ>i λj

‖λj‖2‖λi‖2
, (λi)k = λik.

We define λil = 0 when i > k.
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Proof. In Afsari [24, Theorem 3] it is shown that Ṽ = (I + εE)V + o(ε), where Eij is defined for i, j ∈ [d] (Afsari
[24, Equation 36]). Then,

Ũ = Ũ(I + εE)−1 + o(ε)

= Ũ(I − εE) + o(ε).

Note that, once again, in the low rank setting, the entries of Eij when i, j > k are not characterized by Afsari’s

results; however, these terms only effect the last d− k columns of Ũ .

Lemma 16. Let Ml = UΛlU
> + εRl, l ∈ [L], be matrices with common factors U ∈ Rd×k and diagonal

Λl ∈ Rk×k. Let Ū ∈ Rd×d be a full-rank extension of U with columns u1, u2, . . . , ud and let V̄ = Ū−1, with rows
v1, v2, . . . , vd. Let Ṽ ∈ Rd×d be the minimizer of the joint diagonalization objective F (·) and let Ũ = Ṽ −1.

Then, for all uj, j ∈ [k], there exists a column ũj of Ũ such that

‖ũj − uj‖2 ≤ ε

√√√√
d∑

i=1

E2
ij + o(ε), (21)

where the entries of E ∈ Rd×k are bounded by

|Eij | ≤
1

1− ρ2ij

(
1

‖λi‖22
+

1

‖λj‖22

)(∣∣∣∣∣
L∑

l=1

v>i Rlvjλjl

∣∣∣∣∣+

∣∣∣∣∣
L∑

l=1

v>i Rlvjλil

∣∣∣∣∣

)
,

when i 6= j and Eij = 0 when i = j and λil = 0 when i > k. Here λi = (λi1, λi2, ..., λiL) ∈ RL and ρij =
λ>i λj

‖λi‖2‖λj‖2
is the modulus of uniqueness, a measure of how ill-conditioned the problem is.

Proof. From Lemma 15, we have that

∥∥∥∥
[
Eij
Eji

]∥∥∥∥ ≤
ηij + ηji

γji(1− ρ2ij)

∥∥∥∥
[
Tij
Tji

]∥∥∥∥ ,

where

γij = ‖λi‖2‖λj‖2, ηij =
‖λi‖2
‖λj‖2

, ρij =
λ>i λj

‖λj‖2‖λi‖2
,

and the matrix T is defined to be zero on the diagonal and for i 6= j defined as

Tij =
L∑

l=1

v>i Rlvjλjl, for 1 ≤ j 6= i ≤ d

Taking ‖ · ‖ to be the l1-norm in the above expression, we have that

|Eij | ≤ |Eij |+ |Eji| ≤
ηij + ηji

γji(1− ρ2ij)
(|Tij |+ |Tji|) .

Since
ηij + ηji
γji

=
‖λi‖22 + ‖λj‖22
‖λi‖22‖λj‖22

=
1

‖λi‖22
+

1

‖λj‖22
and

Tij =
L∑

l=1

v>i Rlvjλjl,

the claim follows.


