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Abstract

Iterative Proportional Fitting (IPF) gener-
ates from an input matrix W a sequence of
matrices that converges, under certain con-
ditions, to a specific limit matrix Ŵ . This
limit is the relative-entropy nearest solution
to W among all matrices of prescribed row
marginals r and column marginals c. We
prove this known fact by a novel strategy
that contributes a pure algorithmic intuition.
Then we focus on the symmetric setting:
W = WT and r = c. Since IPF inherently
generates non-symmetric matrices, we intro-
duce two symmetrized variants of IPF. We
prove convergence for both of them. Further,
we give a novel characterization for the exis-
tence of Ŵ in terms of expansion properties
of the undirected weighted graph represented
by W . Finally, we show how our results con-
tribute to recent work in machine learning.

1 INTRODUCTION

Iterative Proportional Fitting (IPF) refers to an it-
erative algorithm whose origins date back to re-
search on traffic networks in the 1930s. It was re-
discovered in other fields, in several variants, and in
a large variety of different names (for example as
Sheleikhovskii’s method, Kruithof’s algorithm, Fur-
ness method, Sinkhorn-Knopp algorithm, or RAS
method, just to name a few). Nowadays, IPF is
well-known in machine learning and many other dis-
ciplines like statistics, optimization, matrix factoriza-
tion, economics, or network theory. In particular it
serves as a bridge that allows to transfer results and
interpretations between these disciplines. IPF takes
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as its input a non-negative matrix W together with
two positive vectors r and c that specify new target
marginals for the rows and columns of W , respectively.
The traditional IPF-sequence (W 〈k〉) is determined by
W 〈0〉 := W , and for k ≥ 1 in an alternating way
by first re-scaling all rows to have marginals r, then
re-scaling all columns to have marginals c, then re-
scaling the rows again, and so forth. The IPF-sequence
converges, under certain conditions, to a limit matrix
Ŵ = limk→∞W 〈k〉 that simultaneously achieves the
desired row marginals r and column marginals c. In
the case that all entries in W are positive, the IPF-
sequence is well-understood: Sinkhorn (1967) proves
that for any choice of W ∈ Rm×n>0 , r ∈ Rm>0, c ∈ Rn>0

with ‖r‖1 = ‖c‖1 the IPF-sequence converges to a

unique limit matrix Ŵ ∈ Rm×n>0 of row marginals r

and column marginals c. Further Ŵ has the form
Ŵ = YWZ for positive diagonal matrices Y, Z that
are unique up to a scaling factor. By the Lagrangian
approach it is straightforward to prove that Ŵ is
the unique solution (among all matrices of the given
marginals) that is closest toW with respect to relative-
entropy error. However, as soon as one allows for zero-
entries in W , both the feasibility problem and the op-
timization problem become much harder. For the spe-
cial case of r = c = 1, Sinkhorn and Knopp (1967)
show that convergence and uniqueness only hold un-
der specific structural constraints on the zero-pattern.
These dependencies get even more complicated in the
general case of arbitrary positive target marginals r, c,
as handled in Section 5. Hence, assuming positivity is
not just “simplifying the argument”, as stated by Ire-
land and Kullback (1968, p.182); indeed there is still
active research on the non-negative case. One chal-
lenge for the Lagrangian approach is that the relative-
entropy objective function becomes non-smooth: Ŵ
has at least the same zero-entries as W , and whenever
Ŵ has a zero at a position where W has a non-zero,
the optimal solution lies at a non-differentiable point.
Several publications omit this detail, and simply apply
the Lagrangian approach to the non-negative setting,
although it is no longer valid. Csiszar (1975) provides
a technically sound proof that avoids the Lagrangian.
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He represents Ŵ and W as absolutely continuous mea-
sures, which allows to consider their Radon-Nikodym
derivative. This extends the relative-entropy interpre-
tation of Ŵ to the non-negative setting. However, the
proof lacks an algorithmic intuition. In this work we
contribute a novel and intuitive proof for the conver-
gence of the IPF-sequence to the relative-entropy op-
timal solution by identifying IPF as a special instance
of a more general iterative projection algorithm.

We are particularly interested in the symmetric set-
ting : W = WT and f := r = c. We study two different
symmetrizations of IPF: Pseudo-Symmetric IPF, and
Symmetric IPF, where we refer to either of both as
“symmetrized IPF”. In Section 4 we prove that both
symmetrizations converge to the same limit as the tra-
ditional IPF. However, in contrast to IPF, every inter-
mediate matrix in these sequences is symmetric and
even more, of the form XWX for positive diagonal X.

In the symmetric setting, we derive in Section 5 nec-
essary and sufficient conditions for the existence of
Ŵ in terms of expansion properties of the undirected
weighted graph G(W ). In Section 6 we show how our
results contribute to recent work in machine learning.

2 PRELIMINARIES

This section introduces the notation and some
basic results from matrix scaling, Bregman projec-
tions, and mean functions. For m,n ≥ 2 we denote
by Ω the set of non-negative m × n matrices that
contain no zero row and no zero column, that is
Ω := {X ∈ Rm×n≥0 | X1 > 0, XT1 > 0} with all in-

equalities applied entry-wise and 1 := (1, . . . , 1)T .
The restriction of Ω to symmetric matrices is denoted
by S := {X ∈ Rn×n≥0 | X = XT , X1 > 0}. For any
matrix A = [aij ] the set of index pairs of its non-zero
entries is denoted by E(A) := {ij | aij 6= 0}. We say
that A preserves the zeros of B if E(A) ⊆ E(B) and
that they have the same zeros if E(A) = E(B). For
a positive vector f ∈ Rn>0 and a symmetric matrix
W ∈ S we define the constrained subset S(f ,W ) :=
{X ∈ Rn×n≥0 | X = XT , X1 = f , E(X) ⊆ E(W )} ⊆ S
of those matrices in S that have row (and column)
marginals f while preserving the zeros of W . Similarly,
for positive vectors r and c we define Ω(r, c,W ) :=
{X ∈ Rm×n≥0 | X1 = r, XT1 = c, E(X) ⊆ E(W )} ⊆ Ω.
We drop individual constraints by a dot, for example
Ω(r, ·, ·) = {X ∈ Rm×n≥0 | X1 = r} ( 6⊆ Ω).

Matrix scaling. B ∈ Ω is a biproportional scal-
ing of W ∈ Ω if it can be expressed as B =
limk→∞ Y (k)WZ(k) for two sequences of diagonal ma-
trices (Y (k)) and (Z(k)) with positive diagonals y(k)

and z(k). Such scalings of W often aim at fitting B

to prescribed row marginals r ∈ Rm>0 and column
marginals c ∈ Rn>0. For that reason we also denote
a biproportional scaling B with r = B1 and c = BT1
as a biproportional fit of W to row marginals r and
column marginals c. The corresponding bipropor-
tional scaling can be seen as an iterative transforma-
tion of W into another matrix B that achieves the
desired marginals. A biproportional scaling is direct
if the sequences can be chosen to be constant, that is
Y = Y (k) and Z = Z(k) for some diagonal matrices
Y,Z ∈ diag(Rn>0) and all k, hence B = YWZ. In this
case W factorizes as W = Y −1BZ−1. For W ∈ S, we
denote the set of all symmetric direct biproportional
fits of W by Ψ(W ) := {XWX | X ∈ diag(Rn>0)}.

The following lemma (Pukelsheim, 2014, Theorem 1)
shows that any choice of row and column marginals
determines a biproportional fit uniquely, if existing.

Lemma 2.1 (Biproportional fits are unique). If
B1, B2 are two biproportional fits of W ∈ Ω to row
marginals r ∈ Rm>0 and column marginals c ∈ Rn>0,
then it holds that B1 = B2.

This justifies to talk about the biproportional fit of
W to (row and column marginals) r and c. The next
lemma can be derived from results by Menon (1968).
It characterizes directness as exactly those bipropor-
tional scalings that satisfy E(B) = E(W ).

Lemma 2.2 (Directness). Let B denote any bipro-
portional scaling of W . Then E(B) ⊆ E(W ). Further
E(B) = E(W ) if and only if B is direct.

If a biproportional scaling B is not direct then
E(W ) \ E(B) 6= ∅ implies that some diagonal entries
in Y (k) and Z(k) must tend to zero, hence some others
to infinity because of the positive marginals constraint.

Bregman projections. For matrices X,W ∈ Ω with
E(X) ⊆ E(W ), the generalized relative-entropy error
(generalized Kullback-Leibler divergence) is defined as

RE(X‖W ) :=
∑
i,j

xij log(xij/wij)− xij + wij

with the continuous extension 0 · log(0/wij) := 0. RE
is a Bregman divergence, that is it can be represented
as Dh(X‖W ) := h(X) − h(W ) + 〈∇h(W ), X −W 〉
for a continuously differentiable strictly convex func-
tion h, here h(X) =

∑
ij xij log(xij)−xij . It holds that

Dh(X‖W ) ≥ 0, with equality if and only if X = W .
For any closed convexM⊆ Ω the corresponding Breg-
man projection PhM(Q) of Q ∈ Ω to M is defined as

PhM(Q) := arg minM∈M Dh(M‖Q), (1)

which is unique whenever existing. For Dh = RE we
refer to (1) as the RE-projection, denoted by PM. For
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R := Ω(r, ·,W ) and C := Ω(·, c,W ) it holds that

PR(X) = diag(r) · diag(X1)−1 ·X ,

PC(X) = X · diag(XT1)−1 · diag(c) .
(2)

Both RE-projections in (2) have the same zeros as
X, that is E(PR(X)) = E(PC(X)) = E(X) ⊆ E(W ).
The corresponding minimization problem (1) is non-
smooth because there exists Z ∈ R (resp. Z ∈ C)
with zij = 0 < xij for some ij, which implies the par-
tial derivative limε→0 log(ε/xij) = −∞. See the sup-
plement for a proof of Equation (2) that adapts the
standard Lagrangian approach to this setting.

Mean functions. A function m : R≥0 × R≥0 → R≥0

is a (homogeneous) mean function if it is symmet-
ric, m(x, y) = m(y, x), minmax-bounded, m(x, y) ∈
[min(x, y),max(x, y)], and homogeneous, cm(x, y) =
m(cx, cy) for all c > 0. As a rich example consider
the family of Hölder p-means, defined as mp(x, y) :=
p
√

(xp + yp)/2 for parameter p ∈ R ∪ {±∞}. It
contains the minimum function for p = −∞, the
maximum function for p = ∞, the arithmetic mean
mA(x, y) := (x+y)/2 for p = 1, and for p = 0 the geo-
metric mean mG(x, y) :=

√
xy. A mean function m is

sub-arithmetic ifm(x, y) ≤ mA(x, y) for all x, y ∈ R≥0.
It is strictly sub-arithmetic if x 6= y implies strict in-
equality. Similarly for (strictly) super-arithmetic.

3 SYMMETRIZATION

In this section we define three sequences of matrices:

IPF: traditional IPF-sequence (W 〈k〉)

PSIPF: Pseudo-Symmetric IPF-sequence (W 〈〈k〉〉)

SIPF: Symmetric IPF-sequence (W (k)).

In the symmetric setting, all three start with the same
matrix W and then generate an individual sequence of
matrices. We show that all sequences converge to the
same limit Ŵ ∈ S(f ,W ) whenever S(f ,W ) 6= ∅.

Our first lemma summarizes specific properties of
biproportional fits in the symmetric setting. The proof
can be found in the supplement.

Lemma 3.1 (Symmetric biproportional fit). Let
B denote the biproportional fit of W ∈ S to row and
column marginals f ∈ Rn>0. Then

(i) B = BT is symmetric

(ii) B = limk→∞Wk for a sequence of Wk ∈ Ψ(W )

(iii) B ∈ Ψ(W ) if and only if B is direct

Lemma 3.1 shows that, in the symmetric setting, we
can find a sequence of matrices in Ψ(W ) that converges
to the biproportional fit. The IPF-sequence is not

of this type because its row-column-alternation inher-
ently generates non-symmetric matrices W 〈k〉 /∈ Ψ(W )
in general. The PSIPF-sequence is derived from the
IPF-sequence such that W 〈〈k〉〉 ∈ Ψ(W ). The SIPF-
sequence satisfies that W (k) ∈ Ψ(W ) without being
based on the IPF-sequence. Further, SIPF arises nat-
urally in some applications, see Section 6.

We define each of the three sequences in two ways:
recursively by a first-order recursion, and factorized
by referring inductively back to the initial matrix W .

IPF-sequence. For W ∈ Ω, r ∈ Rm>0, and c ∈ Rn>0,
the IPF-sequence is generated by alternately applying
the two RE-projections in (2), that is withW 〈0〉 := W :

W 〈k+1〉 :=

{
PR(W 〈k〉) if k even ,

PC(W 〈k〉) if k odd .

This implies the factorization W 〈k〉 = Y 〈k〉WZ〈k〉 for
some positive diagonal matrices Y 〈k〉 = diag(y〈k〉) and
Z〈k〉 = diag(z〈k〉) with y〈0〉 = z〈0〉 = 1. The factoriza-
tion can be computed explicitly by the RAS-method
(Bacharach, 1965), which directly updates the diago-
nals y〈k〉 and z〈k〉 for k ≥ 1 in each step by{

y〈k〉 = r/(Wz〈k−1〉) , z〈k〉 = z〈k−1〉 if k odd ,

y〈k〉 = y〈k−1〉 , z〈k〉 = c/(WTy〈k−1〉) if k even ,

where the division of vectors is meant to be entry-wise.

PSIPF-sequence. A straightforward strategy for
symmetrizing the IPF-sequence is to choose any mean
function m and apply it entry-wise along the sequence
(m(W 〈k〉, (W 〈k〉)T )). Every matrix in this sequence is
symmetric. In order to get that it is further in Ψ(W ),
we choose the geometric mean function mG. This de-
fines the PSIPF-sequence (W 〈〈k〉〉) of W for k ≥ 0 as

W 〈〈k〉〉 := mG(W 〈k〉, (W 〈k〉)T ) =

[√
w
〈k〉
ij w

〈k〉
ji

]
,

which implies that W 〈〈0〉〉 = W . The factorized repre-
sentation is given with S〈〈k〉〉 :=

√
Y 〈k〉Z〈k〉 as

W 〈〈k〉〉 = S〈〈k〉〉 W S〈〈k〉〉 =

[√
y
〈k〉
i z

〈k〉
i wij

√
y
〈k〉
j z

〈k〉
j

]
.

In particular it holds that W 〈〈k〉〉 ∈ Ψ(W ).

SIPF-sequence. Both IPF and PSIPF carry out
the RE-projections (2) alternately one after the other.
The approach taken by SIPF is to aggregate both pro-
jections simultaneously at each step by taking their
entry-wise geometric means. More general, for any
mean function m, we define the m-sequence (W (k)) of
W by W (0) := W and, in the symmetric setting,
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W (k+1) := m(PR(W (k)),PC(W (k)))

=

[
m

(
fi

d
(k)
i

· w(k)
ij ,

fj

d
(k)
j

· w(k)
ij

)]
=

[
wij ·

∏k
`=0m

(
fi

d
(`)
i

,
fj

d
(`)
j

)]
,

(3)

where d(k) = [d
(k)
i ] := W (k)1 denotes the positive

row (and column) marginals of symmetric W (k) =

[w
(k)
ij ]. For example, the arithmetic mean gives the

mA-sequence ((PR(W (k)) +PC(W (k)))/2). The SIPF-
sequence is defined as the mG-sequence. It allows for
the following recursive and factorized representations,
where F := diag(f) and D(k) := diag(d(k)):

W (k+1) =
√

F
D(k) ·W (k) ·

√
F
D(k)

= S(k) ·W · S(k) for S(k) =
√∏k

`=0
F
D(`) .

This particularly implies that W (k) ∈ Ψ(W ).

SIPF has already been studied implicitly in the lit-
erature for the special case of f = 1, that is for a
doubly stochastic limit. One aspect that makes this
case special is that it represents the projection to the
Birkhoff polytope, which allows for a variety of spe-
cialized arguments. Zass and Shashua (2005) sketch
a proof idea based on the monotony of the matrix
permanent. Recently, Knight et al. (2014) provide
a rigorous convergence proof based on the monotony

of
∏
i d

(k)
i (=

∏
i d

(k)
i /fi). However, the general case

f 6= 1 loses several monotony properties, in particular
these two stated here.

Recursive versus factorized. In case of non-direct
B = limk→∞ T (k)WT (k), some entries in T (k) tend to
infinity. This makes any factorized approach numer-
ically infeasible. All recursive approaches guarantee
bounded values by avoiding to represent T (k). But
whenever applicable, the factorized approach has the
strong advantage of providing self-stabilization: any
numerical errors ξ ∈ Rn affect the intermediate result
only in the form of (T (k)+diag(ξ))·W ·(T (k)+diag(ξ)),
which is always close to Ψ(W ) up to machine precision.
Further, the limit remains the same for any starting
point in Ψ(W ), even in presence of arbitrary large spo-
radic errors ξ. So the limit is ensured to equal B up
to machine precision. In contrast to that, the limit
of a recursive approach can drift away under numer-
ical errors towards another limit B̃ ∈ Ψ(W + ∆) for
cumulated errors ∆ ∈ Rn×n. Although B̃ provides
the specified marginals, it can differ from the intended
biproportional fit B ∈ Ψ(W ) by more than machine
precision. Thus one should prefer the factorized ap-
proach whenever it is feasible, that is whenever the
limit B is direct: B = TWT ∈ Ψ(W ). We character-
ize in Section 5 all cases where directness holds true.

4 CONVERGENCE

In this section we study the convergence of IPF, PSIPF
and SIPF, as defined in the previous section.

4.1 Convergence of the IPF-sequence

The following theorem has been proved in the liter-
ature in various ways. See for example Pukelsheim
(2014) and the references therein for an overview.

Theorem 4.1 (Convergence of IPF). Let W ∈ Ω,
r ∈ Rm>0, c ∈ Rn>0 such that Ω(r, c,W ) 6= ∅. Then the
IPF-sequence converges to PΩ(r,c,W )(W ).

Here we present a novel proof that provides an intu-
itive understanding on why RE-optimality holds. We
motivate this approach in more generality: assume
that some set F ⊆ RN can be written as the non-
empty intersection of finitely many closed convex sets,
that is F = C1 ∩ . . . ∩ C` 6= ∅, and let Pi(z) denote
the RE-projection of z to Ci. Our goal is to determine
PF (x0) ∈ F for some given x0. The easier goal of
finding an arbitrary element from F can be solved by
the iterative projection method (with Bregman projec-
tions), that is to cycle again and again through all the
Ci’s while projecting the previous result to Ci:

xk := P[k](xk−1) (4)

for k ≥ 1, where [k] := 1+(k−1 mod `). Observe that
(4) equals the IPF-sequence for C1 := R, C2 := C, and
F := Ω(r, c,W ) = R ∩ C, which aims at approximat-
ing PF (W ) for some given x0 := W ∈ Rm·n. Breg-
man (1967) proves that (4) converges to some solu-
tion x∗ ∈ F , but in general with x∗ 6= PF (x0). For
the special case of orthogonal projections P⊥, Boyle
and Dykstra (1985) provide a strategy for ensuring
that x∗ = P⊥F (x0) by considering a modified sequence:
they add a specific reflection term to each pre-image
before applying the projection. Bauschke and Lewis
(2000) generalize this idea to a large family of Bregman
projections that particularly includes orthogonal pro-
jections and RE-projections. They introduce a similar
reflection term that depends on the function h that in-
duces the Bregman divergence. This defines Dykstra’s
algorithm with Bregman projections by:

xk := (Ph[k] ◦ ∇h
∗)(∇h(xk−1) + rk−`)

and rk := ∇h(xk−1) + rk−` −∇h(xk)
(5)

for k ≥ 1 with ri := 0 whenever i ≤ 0, and h∗ the con-
vex conjugate of h. Bauschke and Lewis (2000) prove
convergence of (5) to the limit x∗ = PhF (x0). Further,
their Theorem 4.3 shows that if all Ci’s are affine, then
one can drop all reflection terms (i.e., set rk := 0 for
all k) without affecting the limit. In this case we get
immediately from ∇h∗ ◦ ∇h = id that (5) coincides
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with (4). In particular, this gives that IPF equals (5)
with all reflection terms dropped. So it remains to
show why dropping the reflection terms does not af-
fect the (RE-optimal) limit x∗ = PF (x0) in this case,
although neither R nor C are affine.

Our key insight is that the limit x∗ = PhF (x0) is unaf-
fected even under a weaker notion of affinity: it already
suffices that each element xk for k ≥ 1 of the non-
reflected sequence (4) is locally affine. That is, each
Ci is a subset of an affine space Ai, and there exists
εk > 0 such that {x ∈ A[k] | ‖x− xk‖2 ≤ εk} ⊆ C[k].
By choosing Ai as the affine hull of Ci, we get that
this is equivalent to claiming that each xk lies in the
relative interior of C[k], see Boyd and Vandenberghe
(2004). Local affinity trivially holds if C[k] is affine it-
self. Summarized, our contribution to this framework
is that all reflection terms in Dykstra’s algorithm with
Bregman projections can be dropped without affect-
ing the limit whenever sequence (4) is locally affine.
Please refer to the supplement for technical details.

It is straightforward to see that the IPF-sequence is
locally affine: C1(= R) is a subset of the affine space
A1 := {X ∈ Rm×n | X1 = r}. Similarly for C2.
From (2) we get that E(W 〈k〉) = E(W ). Thus, for

k ≥ 1 and εk<min{w〈k〉ij |w
〈k〉
ij >0}, every matrix from

the ball of radius εk around W 〈k〉 in A[k] lies in C[k].

The fruit of the above is the following compact proof.

Proof (of Theorem 4.1). IPF equals Dykstra’s algo-
rithm with Bregman projections and with all reflection
terms dropped, which does not affect its RE-optimal
limit because the IPF-sequence is locally affine.

It further follows from uniqueness and Lemma 3.1 that
PΩ(f ,f ,W )(W ) = PS(f ,W )(W ) in the symmetric setting.

4.2 Convergence of the PSIPF-sequence

The convergence of PSIPF follows from the con-
vergence of IPF. Indeed it is easy to see that
(m(W 〈k〉, (W 〈k〉)T )) converges to PS(f ,W )(W ) for any
mean function m, along symmetric matrices. However,
only for m = mG, that is for the PSIPF-sequence, all
intermediate matrices lie in Ψ(W ).

Theorem 4.2 (Convergence of PSIPF). Let
W ∈ S and f ∈ Rn>0 such that S(f ,W ) 6= ∅. Then
the PSIPF-sequence (W 〈〈k〉〉) converges to PS(f ,W )(W ).

Further, W 〈〈k〉〉 ∈ Ψ(W ) for all k ≥ 0.

The proof is by reduction to IPF, see the supplement.

4.3 Convergence of the SIPF-sequence

In this section we prove convergence of the SIPF-
sequence, that is the m-sequence for m = mG.

Theorem 4.3 (Convergence of SIPF). Let W ∈ S
and f ∈ Rn>0 such that S(f ,W ) 6= ∅. Then the SIPF-
sequence (W (k)) converges to PS(f ,W )(W ). Further,

W (k) ∈ Ψ(W ) for all k ≥ 0, and ‖f −W (k)1‖1 → 0
monotonously decreasing.

In contrast to the PSIPF-sequence, the limit Ŵm of an
m-sequence can differ depending on the choice of m. If
m = min or m = max, then the m-sequence can even
converge to an infeasible limit Ŵm /∈ S(f ,W ) 6= ∅. It is

left open for future work whether Ŵm can be related
by an appropriate f -divergence to W for m 6= mG.
The proof of Theorem 4.3 requires the following four
lemmas, which are of their own interest because they
even hold for m 6= mG. All proofs can be found in the
supplement. Throughout this section, (W (k)) denotes
the m-sequence of W and d(k) := W (k)1. The first
lemma guarantees L1-monotony for every m-sequence.

Lemma 4.4 (L1-monotony). For any W ∈ S and
any mean function m, the m-sequence of W implies
that ‖f − d(k)‖1 is monotonously decreasing.

The second lemma bounds the “volume” ‖d(k)‖1 from
above or below by ‖f‖1 if the mean function is sub-
arithmetic or super-arithmetic.

Lemma 4.5 (Volume bounds). For any W ∈ S and
any mean function m, the m-sequence of W satisfies
for all k ≥ 1 that

(i) ‖d(k)‖1 ≤ ‖f‖1 if m is sub-arithmetic
(ii) ‖d(k)‖1 = ‖f‖1 if m = mA

(iii) ‖d(k)‖1 ≥ ‖f‖1 if m is super-arithmetic

If m is strict in (i) or (iii), then equality holds if and

only if fi/d
(k)
i = fj/d

(k)
j for all wij 6= 0.

The third lemma characterizes all limit points of m-
sequences. It shows that all that remains in order to
prove Theorem 4.3 is to prove that ‖f − d(k)‖1 → 0.

Lemma 4.6 (Limit points). Every m-sequence is
bounded and has at least one limit point W ∗. If
‖f − d(k)‖1 → 0, then every limit point W ∗ satisfies
W ∗1 = f . If further m = mG, then W ∗ is the (unique)
biproportional fit of W to row and column marginals f ,
and it holds that W (k) →W ∗.

The fourth lemma proves strong convergence under
relative-entropy error if the volumes bound each other.

Lemma 4.7 (Strong convergence). For any x :=
(x1, . . . , xn) ∈ Rn>0, a := (a1, . . . , an) ∈ Rn>0 with∑
i xi ≤

∑
i ai let f(x) :=

∑
i ai log ai

xi
. Then

f(x) ≥ 0 with equality iff x = a. (6)

Further, for any sequence (x(k))k≥0 in Rn>0 with∑
i x

(k)
i ≤

∑
i ai it holds that

lim
k→∞

f(x(k)) = 0 ⇔ lim
k→∞

x(k) = a. (7)
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Now we are ready to prove that ‖f − d(k)‖1 → 0. The
proof is partly inspired by ideas of Pretzel (1980).

Proof (of Theorem 4.3). By assumption there ex-
ists some A = [aij ] ∈ S(f ,W ). Equation (3) gives that

w
(k+1)
ij = wij ·u(k)

ij with u
(k)
ij =

∏k
`=0m

(
s

(`)
i , s

(`)
j

)
6= 0

and s
(`)
i := fi/d

(`)
i for all i, j ∈ {1, . . . , n} and k ≥ 0.

From wij = 0⇔ w
(k)
ij = 0⇒ aij = 0 we get that

v(k+1) :=
∑
i,j aij log(w

(k+1)
ij /wij) =

∑
i,j aij log u

(k)
ij

=
∑
i,j aij

∑k
`=0 logm

(
s

(`)
i , s

(`)
j

)
.

For k ≥ 1 this gives for m = mG that

v(k+1) − v(k) =
∑
i,j aij logm

(
s

(k)
i , s

(k)
j

)
= 1

2

∑
i,j aij(log s

(k)
i + log s

(k)
j )

= 1
2

∑
i fi log s

(k)
i + 1

2

∑
j fj log s

(k)
j

=
∑
i fi log fi/d

(k)
i .

Since mG is sub-arithmetic, we get from Lemma 4.5

that
∑
i d

(k)
i ≤

∑
i fi. This allows to apply Lemma 4.7

which gives that v(k+1) ≥ v(k), thus, (v(k))k≥0 is
monotonously increasing. Further v(k) is bounded

from above because w
(k)
ij ≤ ‖d(k)‖1 ≤ ‖f‖1 =

∑
i,j aij

implies together with wmin := min{wij | wij > 0} that

v(k)=
∑
i,j aij log(w

(k)
ij /wij) ≤

∑
i,j aij log(‖f‖1/wmin)

= ‖f‖1 · log(‖f‖1/wmin) < ∞. (※)

It follows that limk→∞ v(k) exists, which implies that∑
i fi log fi/d

(k)
i = v(k+1) − v(k) → 0 and hence with

Lemma 4.7 that d
(k)
i → fi for all i ∈ {1, . . . , n}. Thus

‖f − d(k)‖1 → 0 with monotony given by Lemma 4.4.
This proves that S(f ,W ) 6= ∅ is sufficient to let the

mG-sequence converge to some Ŵ ∈ S(f ,W ). By

Lemma 4.6 we get that Ŵ is the unique bipropor-
tional fit of W to f , hence the same limit as for the
IPF-sequence. In particular this implies that Ŵ is
RE-optimal, thus Ŵ = PS(f ,W )(W ).

Corollary 4.8 (Maximality). For all A ∈ S(f ,W )
it holds that E(A) ⊆ E(PS(f ,W )(W )).

Proof. For all A ∈ S(f ,W ), equation (※) implies

that aij log(w
(k)
ij /wij) + (‖f‖1− aij) log(‖f‖1/wmin) ≥

v(k) ≥ v(1) > −∞, thus aij 6= 0⇒ limk→∞ w
(k)
ij 6= 0.

5 FITTING GRAPH MATRICES

In this section we study the applicability of the three
convergence theorems (4.1, 4.2 and 4.3) to undirected

weighted graphs. For any d ∈ Rn>0 and W ∈ S(d, ·),
we denote by G(W ) := (V,E,W ) the graph on vertex
set V = {1, . . . , n} with an undirected edge ij = ji
of weight wij = wji for every ij ∈ E(W ). The edge
weights sum up to the degree vector d = W1 = WT1.
All three theorems base on the non-emptiness assump-
tion Ω(f , f ,W ) 6= ∅ and S(f ,W ) 6= ∅, respectively,
which are easily seen to be equivalent. Moreover, there
exists a strictly positive solution M ∈ Ω(f , f ,W ), that
is some M with E(M) = E(W ), if and only if S(f ,W )
contains a strictly positive solution. Thus, it suffices
to focus only on S(f ,W ) in the following.

In the language of graphs, non-emptiness S(f ,W ) 6= ∅
means to assume that there exists an assignment of
new weights ŵij ∈ [0,∞) to all existing edges in G(W )

such that the new vertex degrees d̂i :=
∑
j∈V ŵij equal

fi for all i ∈ V . Strict positivity further restricts the
assignment to take only positive values ŵij ∈ (0,∞).

We now reformulate the non-emptiness assumption
and the existence of a strictly positive solution in terms
of weighted vertex expansion properties in G(W ). Let
N(S) := {j ∈ V | ∃i ∈ S : ij ∈ E} denote the vertex
neighborhood of S ⊆ V . A graph is a weak f -expander
for a positive vector f if it holds for all S ⊆ V that∑

i∈N(S) fi ≥
∑
i∈S fi . (8)

A weak f -expander is strict for S if inequality (8) is
strict for S. This is a weaker notion of “expansion”,
which typically refers to the stronger assumption that
(8) holds for the boundary N(S) \ S instead of the
neighborhood N(S). In particular, if W has a positive
diagonal, then G(W ) has self-loops at all vertices, and
is a weak f -expander for every choice of f ∈ Rn>0.

Proposition 5.1 (Feasibility). Let W ∈ S and f ∈
Rn>0. Then S(f ,W ) 6= ∅ if and only if G(W ) is a weak
f -expander.

Proposition 5.1 is already known in other formula-
tions. For example in network theory for flows in di-
rected graphs as the Gale-Hoffman theorem, which is a
weighted variant of Hall’s Marriage Theorem. Further
it appears as (c) ⇔ (d) in Theorem 3 of Pukelsheim
(2014), and it has also been proved for multi-graphs
by Behrend (2013, Theorem 6). Proposition 5.1 im-
plies convergence of IPF/PSIPF/SIPF to the bipro-
portional fit B ∈ S(f ,W ) if and only if G(W ) is weakly
f -expanding. However, it does not guarantee direct-
ness of Ŵ , so factorized approaches can be numerically
infeasible. Corollary 4.8 gives that Ŵ is direct if and
only if there exists any strictly positive A ∈ S(f ,W ).
The key to the existence of A is to claim that the weak
f -expansion of G(W ) is strict for all sets S whenever
“possible in principle”, that is up to “trivial” cases
that enforce equality. Let us make this precise: the
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vertex set of any graph can uniquely be partitioned
into V = D1 ∪̇ . . . ∪̇ DK , where each D` is either
a non-bipartite connected component, or it forms for
an `′ ∈ {`− 1, `+ 1} the unique bipartition D` ∪̇ D`′

of some bipartite connected component. We refer to
V =

⋃K
`=1D` as the non-bipartite decomposition of

the graph. K equals the number of non-bipartite con-
nected components plus twice the number of bipar-
tite connected components. Observe that whenever S
equals the union of any of the Di’s, its f -weighted ex-
pansion (8) is forced to hold with equality. The follow-
ing proposition shows that a strictly positive solution
exists if and only if these are the only exceptions, so if
every other S implies strict inequality in (8).

Proposition 5.2 (Strictly positive feasibility).
Let G(W ) = (V,E,W ) denote the graph correspond-

ing to W ∈ S, and V =
⋃K
i=`D` its non-bipartite

decomposition. For any f ∈ Rn>0 there exists a
strictly positive solution in S(f ,W ) if and only if
G(W ) is a weak f -expander that is strict for all
S /∈ {

⋃
`∈I D` | I ⊆ {1, . . . ,K}}.

Proposition 5.2 is implicitly proved by Brualdi (1968)
in terms of sub-matrices of W and by Behrend (2013,
Theorem 7) in terms of tri-partitions of multi-graphs.
The special case of connected non-bipartite graphs,
that is K = 1, is equivalent to considering symmet-
ric “connected matrices” as Pukelsheim (2014, The-
orem 2). However, it takes a considerable effort to
transform any of these results to the plain formulation
presented here. See the supplement for details.

Note that Zass and Shashua (2005) misleadingly state
their Proposition 1 (convergence to a doubly stochastic
limit) to hold for every non-negative symmetric ma-
trix, which omits the necessary feasibility conditions.
A counterexample is the simple path graph on 3 ver-
tices, for which the iteration does not converge to a
doubly stochastic limit. We emphasize again that con-
vergence is provided only for a specific family of ma-
trices: G(W ) must be a weak f -expander, and when-
ever a factorized approach is used, G(W ) must addi-
tionally satisfy the strictness assumptions in Proposi-
tion 5.2. In particular the factorization stated in (Zass
and Shashua, 2006, Proposition 2) does not apply in
general. The tempting Lagrangian approach is invalid
whenever E(Ŵ ) 6= E(W ).

6 APPLICATIONS

IPF is widely used in many different fields, so there
is a potential impact on a variety of applications. Let
us point out some examples: similar to Knight et al.
(2014) for the doubly stochastic case, SIPF can serve
as a preconditioner even for f 6= 1. In Quadratic Non-
Negative Matrix Factorization, SIPF is the canonical

candidate for determining the factorization of W ∈ S
into the formW = Y XY for a positive diagonal matrix
Y and with X constrained to prescribed marginals f .
Further, Corollary 4.8 corresponds to the combinato-
rial problem of identifying the unique minimum set
of edges in a graph that must be removed (set to
weight 0) in order to be able to achieve degree vec-
tor f on the remaining edges. We now present three
other related applications in more detail.

Earth Mover’s Distance (EMD). For a, b ∈ Rd≥0

the EMD equals the minimum cost of a transporta-
tion plan for moving masses (initially distributed ac-
cording to a) between the dimensions such that the
result is b. The costs for moving masses are deter-
mined by some additional information M ∈ Rd×d≥0 on
pairwise distances between dimensions, denoted as the
ground metric. In image analysis the canonical candi-
date for the ground metric is the Euclidean distance
between the pixel positions. Known algorithms for
computing EMD take at least time super-cubic in d.
Cuturi (2013) introduces the Sinkhorn distance by
adding an entropic regularization to EMD that avoids
over-complex transportation plans in a precise sense.
The dual of this modified distance can be approx-
imated efficiently by performing IPF of the matrix
K := exp(−M) towards row marginals a and column
marginals b. Convergence is guaranteed for all a, b
because all entries in K are positive. We suggest
to consider non-negative IPF here, that is to al-
low for 0-entries in K, which correspond to ∞-entries
in M . These entries refer to pairs of dimensions be-
tween which no direct mass transport is possible. Re-
stricting the mass transport to, for example, nearby di-
mensions is an additional sense of regularization. This
allows for sparse K, which is a crucial improvement,
since for example 250×250 images already imply that
d = 62500, which requires 32 GB memory for storing
a dense K with double-precision. As long as a and b
are not “fully incompatible” (i.e., Ω(a,b,K) = ∅) their
“sparse EMD” stays finite. This can be exploited as
follows: in classification, data can often be normal-
ized (e.g., images by centering, scaling, and rotation).
After normalization, the mass transport can likely be
restricted to smaller radii without leading to fully in-
compatible pairs of elements from the same or sim-
ilar classes. Further, instead of a single sparse K,
we might consider a sequence K1,K2, ...,KR with de-
creasing sparsity (e.g., by doubling the radii of possible
mass transport when going from Ki to Ki+1). Then
one may first compute very sparse EMD on K1 very ef-
ficiently, and only in case of infinite distance continue
with K2, K3, ..., until a finite distance is attained.
This can drastically speed up the average computa-
tion time. The same generalization from positive to
non-negative IPF applies to the work of Cuturi and
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Doucet (2014) on computing the Barycenter of mul-
tiple points a1,a2, · · · ,an ∈ Rd≥0 with respect to a
regularized 2-Wasserstein distance.

ICE method. Imakaev et al. (2012) introduce a
method called “Iterative Correction and Eigenvector
decomposition” (ICE) for studying genomes by ob-
serving the interactions between different locations
on it. The measurements give a histogram of pair-
wise interactions between the locations (double-sided
reads). Optionally, additional one-directed actions
(single-sided reads) are considered, which we leave out
here. The double-sided reads define a graph G(W )
with the locations as vertices and with the empirical
amounts of pairwise interaction as edge weights. De-
grees in this graph refer to the observed “visibility”
of that location. These visibilities are non-uniform
due to several biases in the experiment. Deeper do-
main knowledge suggests that the “true” visibilities
should be uniform. This motivates to find a degree-
balanced matrix that “best approximates” the empir-
ical data W ; such as the relative-entropy nearest dou-
bly stochastic matrix Ŵ := PS(1,W )(W ). It can be ap-
proximated by IPF or its symmetrized variants. The
authors suggest another iterative algorithm, denoted
as Iterative Correction (IC), without proving conver-
gence. Indeed the convergence behavior is different,
since IC can diverge for unconnected graphs. So we
suggest to replace IC by SIPF whenever one-sided
reads are skipped. This modification further enables
to deal with non-uniform visibilities f 6= 1. This allows
for applications where uniform visibility does not hold,
or where some biases are known and can be corrected
separately, so we only need to correct for the remaining
(non-uniform) bias. Another application is the com-
parison of two different genome matrices W1 and W2.
The authors suggest to 1-balance W1 and W2 individu-
ally before comparing them. SIPF alternatively allows
to directly compare the d2-fitted W1 to W2 and vice
versa. The last step in the ICE method is an analy-
sis of the largest eigenvectors of the “corrected” graph
matrix Ŵ . For doubly stochastic Ŵ this is equal to
classical multi-way spectral analysis, that is to explore
structural properties of Ŵ by the smallest eigenvec-
tors of its normalized Laplacian matrix. Hence, in this
case the ICE method can compactly be summarized as
classical spectral analysis of the normalized Laplacian
of the “1-fitted” graph. This motivates the following
application, which generalizes this approach to f 6= 1.

f-fitted Laplacian matrix. The normalized
graph Laplacian matrix of W ∈ S is defined by
L(W ) := I −D−1/2WD−1/2. It has the same eigen-
vectors (with eigenvalue λi mapped to 1 − λi) as the
matrix D−1/2WD−1/2 = W (1), the first element of the
SIPF-sequence for f = 1. This allows for a novel inter-
pretation of the type of normalization in L(W ): eigen-

values and eigenvectors of L(W ) refer to a first step
approximation of scaling W towards degree vector 1
by SIPF. Indeed experiments show that W (1)1 ≈ 1,
whenever the structure of the non-zero entries is not
too restrictive; however, W (1)1 is still correlated to
the original degree vector d. This relation between
the Laplacian and SIPF generalizes to f 6= 1: Kurras
et al. (2014) introduce the f -adjusted Laplacian ma-
trix Lf (W ) for parameter f ∈ Rn>0, which generalizes
the normalized Laplacian. Lf (W ) refers to a modi-
fied graph W f that is constructed from W by apply-
ing SIPF with f for a single step, followed by adding
the residuals f − d(1) along the main diagonal. Thus
Lf (W ) refers to a first step approximation of scalingW
to fit degree vector f by SIPF. This interpretation mo-
tivates a new variant of a graph Laplacian matrix: for
f ∈ Rn>0 we define the f-fitted Laplacian of W ∈ S
by L̂f (W ) := L(PS(f ,W )), where SIPF is the natural
candidate in order to approximate PS(f ,W ). When-

ever W (1) ≈ Ŵ , the geometric interpretation of W f

as a density shift for geometric graphs also applies to
Ŵ . It is an interesting question for future work to de-
termine the differences between Lf (W ) and L̂f (W ) in

the case that W (1) 6≈ Ŵ . Summarized, spectral anal-
ysis of the f -fitted Laplacian L̂f (W ) infers about W
after “correcting” its degrees to f by replacing W with
its relative-entropy nearest re-weighting that provides
degrees f . This approach already has a prominent ap-
plication, as it captures the idea of the ICE method.

7 CONCLUSION

It is folklore that the iterative projection method con-
verges to a feasible solution (if existing). We prove
that local affinity is sufficient for this limit to be the
Bregman projection of the initial element. Our result
contributes a novel and purely algorithmic intuition
for the fact that IPF converges to the relative-entropy
optimum. However, the IPF-sequence does not fit well
to the symmetric setting. We introduce two symmet-
ric alternatives to IPF, and prove convergence. Both
variants allow for a factorized approach that is prefer-
able over the recursive approach whenever applicable.
We characterize all feasible symmetric settings, in par-
ticular those in which the factorized approach is appli-
cable, in a way that is far more intuitive than previous
results. Finally, we point out open questions and var-
ious applications in order to motivate future work.
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